
Received August 20, 2019, accepted September 2, 2019, date of publication September 5, 2019,
date of current version September 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939566

ATOS: Adaptive Program Tracing With Online
Control Flow Graph Support
HE SUN 1,2, CHAO ZHANG2,3, HE LI2,4, ZHENHUA WU2,4, LIFA WU5, AND YUN LI2
1Institute of Command and Control Engineering, Army Engineering University of PLA, Nanjing 210007, China
2Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China
3Beijing National Research Center for Information Science and Technology, Beijing 100084, China
4Information Engineering University of PLA Strategic Support Force, Zhengzhou 450002, China
5School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Corresponding authors: Chao Zhang (chaoz@tsinghua.edu.cn) and Lifa Wu (wulifa@njupt.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0802900, in part
by the NUPTSF under Grant NY219004, in part by the National Natural Science Foundation of China under Grant 61772308 and Grant
U1736209, and in part by the BNRist Network and Software Security Research Program under Grant BNR2019TD01004 and Grant
BNR2019RC01009.

ABSTRACT Program tracing solutions (i.e., tracers) can faithfully record runtime information about
a program’s execution and enable flexible and powerful offline analysis. Therefore, they have become
fundamental techniques extensively utilized in software analysis applications. However, few tracers have
paid attention to the size of traces and corresponding overheads introduced to offline analysis, as well as the
Control Flow Graph (CFG) support. This paper presents ATOS, an efficient tracing solution, to address these
issues. It adaptively adjusts the granularity of tracing while conservatively preserving the essential execution
information.We implement a prototype of ATOS and evaluate it on several benchmarks. The results show that
ATOS can greatly reduce the size of a trace and accelerate offline analysis, while preserving the execution
states and supporting existing applications seamlessly. For example, using ATOS, the trace produced by the
application CryptoHunt is reduced by 46 times, while the analysis time is reduced by 34 times.

INDEX TERMS Program tracing, control flow graph, loop optimization, adaptive granularity, check point.

I. INTRODUCTION
Program tracing involves recording the runtime information
about a program’s execution. The recorded trace information
is useful for software analysis, especially for security anal-
ysis, such as malware analysis and vulnerability discovery.
Therefore, program tracing becomes a fundamental building
block of diversified applications [1]–[4], especially for offline
mode approaches. Figure 1 shows a general workflow of
applications that utilize tracing.

Despite its wide applications, tracing has two limitations
that are not well discussed. First, in general, the traces
recorded are very large, making offline trace analysis time-
consuming and inefficient. For example, the average size of
the trace log files produced by CryptoHunt [4] is over 2 GB in
our test; the smallest one is about 750 MB, while the biggest
one is over 9 GB. Moreover, CryptoHunt is reported to spend
43.3 minutes parsing and analyzing a single trace of an
RSA-based application [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Sedat Akleylek.

Second, existing tracing solutions do not provide
CFG (Control Flow Graph) information during runtime log-
ging and leave CFG recovery to the offline trace analysis
phase, which in general inefficiently parses all instructions
and potential paths along the trace to recover the CFG.
As reported by X-Force [2], it needs about 8h on average
for dynamically recovering the CFGs.

Note that, a CFG is essential for manual understanding of
a program (e.g., reverse engineering) and automated program
analysis (e.g., function identification).Missing CFG informa-
tion in the trace, therefore, causes performance penalty for
offline analysis. On the other hand, it also stumbles certain
online applications.

However, few solutions have addressed these problems.
A good tracing solution should (1) produce reasonably sized
traces while retaining all relevant information and (2) effi-
ciently build and maintain a CFG during runtime tracing.

Our Solution. To solve the above problems, we hereby
present ATOS , an adaptive tracing solution with online
CFG support. It selectively skips tracing instructions that
can be efficiently recovered offline, rather than recording

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 127495

https://orcid.org/0000-0001-9216-6443


H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

FIGURE 1. The general workflow of tracing-based applications.

instructions one by one, to reduce the size of a trace. Further,
ATOS statically analyzes the target program, and dynamically
tracks the code generated at runtime, thus building a CFG
while tracing.
Tracing with Adaptively Adjusted Granularity. In many

cases, it can be deduced whether some instructions will be
executed and we can skip recording them one by one without
losing information. For example, once the instruction list of a
basic block is resolved, we can tracewhether this block is exe-
cuted (block-level tracing) rather than tracing each instruction
within it (instruction-level tracing).1 Similarly, there are two
other tracing levels: function-level and loop-level. Adjusting
different tracing granularity for different code snippets is a
straightforward approach for reducing the size of a trace.
Therefore, ATOS adopts a novel solution to adjust the tracing
granularity adaptively by examining the tracing state and
choosing granularity accordingly.
Loop Identification and Optimization. A loop, in general,

is a repeated sequence of instructions. Loops are one of the
root causes of the oversized traces. To reduce the size of a
trace, ATOS performs loop-level tracing once the instruction
list of a loop iteration has been determined. The challenge
here is identifying loops during runtime tracing. ATOS first
statically analyzes the target program to identify candidate
loops (including nested loops) and then monitors runtime
code modification and generation to recognize new loops.
Moreover, we have refined the loop-level tracing process to
handle complicated loops, that is, ones that have a very high
cyclomatic complexity.
Online CFG Support. CFG support is essential for pro-

gram analysis. ATOS provides online CFG support, not only
for offline analysis but also for the online tracing process.
For example, both the aforementioned adaptive tracing and
loop identification rely on CFG. To enable such an analysis,
ATOS tracks not only the control flow information, but also
the type of each instruction (e.g., call instruction and indirect
jump instruction), the tracing status of all basic blocks and
functions, and loop structure information. This information
is recorded in an augmented CFG, called the shadow CFG.
Furthermore, applications that utilize just-in-time compila-
tion (e.g., script engines) or those that tend to hide their inner
logic (e.g., malware) often update their code and CFG at

1This rule does not apply if the block has indirect call instruc-
tions or instructions that dynamically update code. Otherwise, certain infor-
mation could be missed in the trace.

runtime. To handle this, ATOS also monitors dynamic code
generation or modification during tracing and updates the
CFG dynamically.

Results.We implement a prototype of ATOS based on the
debugger shipped with IDA Pro2 and evaluate ATOS on a
wide range of applications. The results show that ATOS is
able to efficiently trace these programs with sufficient infor-
mation, and reduce the time and space overheads by order of
magnitude, compared to state-of-the-art tracing approaches.
For example, after replacing the default tracer with ATOS ,
the application CryptoHunt [4] yields a trace that is 46x
shorter and reduces the analysis time by 34x.

In summary, we make the following contributions.
• We propose a novel tracing solution that can adaptively
adjust the tracing granularity, able to selectively record
instructions to reduce trace size while preserving suffi-
cient runtime information.

• We present a practical and efficient loop identification
method that is suitable for online tracing.

• We design a shadow CFGmechanism and implement an
efficient CFGmaintenance scheme that can support both
online analysis and offline analysis.

• We implement a prototype of ATOS , which is able to
trace programs efficiently and support existing applica-
tions seamlessly.

Organization. The rest of this paper is organized as fol-
lows. We present the related work in Section II and illustrate
the overview design of ATOS in Section III. More details of
ATOS , including tracing granularity, CFG management, and
the adaptive tracing strategy are discussed in Sections IV, V,
and VI, respectively. The evaluation results are presented in
Section VII, followed by the discussion in Section VIII and
conclusion in Section IX.

II. RELATED WORK
In this section, we will briefly review existing tracing meth-
ods and discuss different aspects of tracing, including the
underlying tracing mechanisms, the tracing granularity pro-
vided by existing methods and post-tracing analysis methods.

A. TRACING MECHANISMS
There are five main types of tracing mechanisms:
hardware-assisted tracing, static-instrumentation-based trac-
ing, dynamic-instrumentation-based tracing, full-system-
emulation-based tracing, and debugger-based tracing.

2https://www.hex-rays.com/products/ida/

127496 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

Hardware-assisted tracing mechanisms record simplified
control flow and timing information in an encoded data
stream with hardware facilities, such as Intel Processor Trace
(PT) [5] and ARM Embedded Trace Macrocell (ETM). They
only introduce a very low overhead (e.g., less than 5% for
kAFL [6]) in the tracing process, and tracing can be per-
formed on any operating system as long as the hardware
supports the mechanism. However, the tracing results should
be decoded by static analysis before performing further anal-
ysis [5], and online mode analysis is difficult for hardware
assisted approaches [7].
Binary instrumentation inserts additional code into an exe-

cutable to observe or modify its behavior. There are two
kinds of approaches for instrumentation: static instrumen-
tation and dynamic instrumentation. Static-instrumentation-
based-tracing mechanisms, such as Pebil [8] and MIL [9],
rewrite the target program to insert tracing code. However,
in dynamic-instrumentation-based-tracing mechanisms, such
as Intel Pin [10], Dyninst [11], and Valgrind [12], the code
for tracing is inserted at runtime. Static instrumentation is
faster because the code is statically written in the binary, but it
also suffers from the known drawbacks of static analysis [10],
[13], for example, it cannot handle dynamically generated
code, indirect branches or opaque predicates very well. Thus
dynamic instrumentation is used more widely.
Full-system-emulation-based tracing is built upon a full-

system emulator, such as QEMU3. It can access the whole
state of the guest machine, and therefore can be used for
full-system analysis. Various approaches have been proposed
based on it, including online mode analysis platforms such as
S2E [14] and the record-and-reply approach of Panda [15].
Debugger-based tracing [16] introduces the highest over-

head compared to the other tracing mechanisms. How-
ever, debugger-based tracers can be easily ported to plat-
forms that are not commonly used since debuggers are sup-
ported by most environments, and their design are always
similar.

In summary, hardware-assisted and full-system-emulation-
based approaches can perform system-wide tracing, while
others can only trace target applications. Full-system-
emulation-based tracing has a greater capability but is slower
than hardware-assisted tracing. Static instrumentation is
faster than dynamic instrumentation and debugger, but its
capability is the weakest. The capabilities of dynamic instru-
mentation and debuggers are almost equal, while dynamic
instrumentation is a little faster.

B. TRACING GRANULARITY
Generally, there are three types of traces with different lev-
els of granularity: instruction-level tracing, basic-block-level
tracing, and API-level (system-call-level, or function-level)
tracing.
Instruction-level tracing records all executed instruc-

tions, as well as the execution state of each instruction.

3https://www.qemu.org

Most dynamic taint analysis solutions [17], [18] use
instruction-level tracers.
Basic-block-level tracing records the information for each

basic block executed. Different approaches have different
ways of identifying basic blocks. For example, Intel Pin [10]
dynamically identifies the borderboarder of each basic block
at runtime, while IDA Debugger [19] identifies all basic
blocks statically before executing them. Basic-block-level
tracing is often used in fuzzing solutions to evaluate code
coverage [20], [21].
API-level tracing records all function calls (API calls)

during execution. It is one of the most important techniques
for kernel analysis [22] and malware analysis [23].

Among these, instruction-level tracing is fine-grained,
but requires the maximum overhead. The other two are
coarse-grained methods, which produce smaller traces, but
additional operations are required to recover the full trace.
Therefore, an adaptive solution is required to adjust the gran-
ularity according to different cases. The similar insight has
been used in approaches [24]–[26] and achieves excellent
performance.

C. TRACE ANALYSIS
There are two main ways to analyze traces. Online analysis
approaches perform the analysis during the tracing process,
while offline analysis approaches perform it after the tracing
process.

A classical application of tracing is dynamic symbolic exe-
cution (DSE) [1], which has both online and offline analysis
modes. For example, S2E [14] is a typical online analysis
DSE solution. It performs a selective symbolic execution that
automatically makes decisions about whether to execute the
program symbolically or concretely. Unlike S2E, SAGE [27]
uses an offline analysis that analyzes the trace after the trac-
ing finishes. Mayhem [28] proposes a hybrid execution that
combines online and offline analyses. Either online or offline
analysis is selected at each branch according to the system
resources (memory usage).

As shown in Figure 1, offline mode analysis requires
an extra overhead when saving and parsing the trace log
file. However, offline analysis is more friendly to the trac-
ers. It is obvious that a lighter tracer will make the trac-
ing application more stable. Besides, for time-consuming
approaches, such as taint analysis [29], an online mode anal-
ysis may interfere with the normal execution of the target
programs, for example, by causing a network connection
timeout.

On the other hand, an online mode analysis does not have
the overheads of saving the trace log file and parsing traces.
Furthermore, some tracing applications, such as selective
symbolic execution [14], [30], have to manipulate the control
flow [14], [30]. Online mode analysis is more suitable for
these applications. In summary, for different applications,
wemust balance the overheads of tracing and analysis, as well
as the application scenario.

VOLUME 7, 2019 127497



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

FIGURE 2. Illustration of the adaptive tracer ATOS ’s workflow.

III. OVERVIEW
Figure 2 shows the workflow of our tracer ATOS . At its
core, it adaptively selects the tracing granularity, allowing it to
skip the recording of repeated and deterministic instructions,
which, thus, reduces the size of the trace log without losing
information.

To support adaptive granularity selection, ATOS instru-
ments target programs with check points (e.g., an augmented
form of breakpoints for debugger-based tracers4) to control
the tracing granularity of code snippets, and dynamically
updates these check points according to the tracing state.

The tracing state is recorded in the augmented control
flow graph (denoted as shadow CFG), which is dynamically
updated by ATOS during tracing, and used for making deci-
sions about the tracing granularity.

Note that, ATOS outputs a structured trace instead of the
plain text used in existing approaches [4], [31]. With CFG
information the provided, we could efficiently recover the full
trace for further analysis.

A. INSTRUMENTATION WITH CHECK POINTS
ATOS instruments target programs with check points to con-
trol how the tracing is performed, for example, where to trace
and what level of granularity to use.

A check point is an augmented form of a breakpoint.
It can be informally represented by a tuple of (addr, code,
attr), where addr is the address of the instrumentation, code
represents the tracing logic to perform when the check point
is hit, and attr represents attributes associated with this check
point, e.g., the type of the check points and static analysis
results (e.g., loop details) that can be used for tracing.

ATOS introduces seven types of check points, as listed
in Table 1: three types, three types of them support
instruction-level, branch-level (discussed later) and API-level
(or function-level) tracing; another three types, support loop

4Check points are of different forms for different types of tracers. For
example, for dynamic binary instrumentation based tracers, a check point
is an augmented form of instrumentation callback function.

TABLE 1. Description of check points introduced by ATOS.

identification and optimization (for loop-level tracing), and
the final one monitors dynamic code modification or genera-
tion (for dynamic CFG updates).

Given a check point CP (addr, code, attr), the program
being traced will suspend at addr during execution, and exe-
cute the instrumented code to conduct the tracing depending
on the attributes recorded in attr. After a check point is hit
and executed, the target program will resume its execution.

B. BOOTSTRAP
To bootstrap the tracing, initial check points should be set and
essential support data should be retrieved during startup.

First, ATOS applies classic static analysis [19] to obtain
the control flow graph of the target program. It also initial-
izes the instruction type, tracing status and loop information
respectively, and stores them together in the shadow CFG.

Then, ATOS identifies the first function that will be instru-
mented with check points. In general, the function at the
entry point of the program will be used as the first function.
However, a program usually has some bootstrap code, which
is not of interest for offline analysis, before its main func-
tion. To further reduce the size of the trace, ATOS tries to
identify themain function, for example, via solutions such as
F.L.I.R.T [32], and uses it as the first function to instrument.

Note that each instruction has to be traced when it is
executed for the first time. In other words, instruction-level
tracing has to be applied to instructions at first. Therefore,

127498 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

ATOS instruments each instruction in the first function with
the Insn-CP check point during startup.

Note that programs could dynamically modify or gener-
ate code, which may change existing instructions that have
already been traced , as well as the control flow graph.
To preserve the execution information, ATOS instruments
recognized code regions withWE-CP check points. Once the
executable memory region is being written to, the WE-CP
check point will be hit and the tracer will perform instruction-
level tracing on the overwritten (or generated) instructions
again and update the CFG accordingly.

C. TRACING GRANULARITY
To reduce the trace size, the tracer must selectively record the
executed instructions. ATOS provides four levels of tracing
granularity.

All instructions, including those dynamically modi-
fied or generated code, are required to be traced when they
are executed for the first time. Therefore, ATOS provides the
basic instruction-level tracing.
With the CFG support, a tracer can skip recording instruc-

tions in a basic block, if all its instructions have been resolved
and recorded before, and record only whether the block is
executed. This is called block-level tracing, and is often used
in tracers. Furthermore, note that if a basic block has only
one successor, then the successor will always be executed if
this block is executed. Thus, such successors can be merged
into their predecessor basic blocks. Then, for a basic block
withmultiple successors, the tracer will record the basic block
together with its branch conditions (which can indicate the
successor). This is the block level tracing solution provided
by ATOS , which is also called branch-level tracing.
In certain cases, the details of some functions (e.g., library

functions) are not of interest for further analysis. Therefore,
ATOS provides an API-level tracing, which skips API details
during recording.

Loops can also result in oversized traces. ATOS uses loop-
level tracing, which folds the execution of a loop structure by
skipping the repeatedly executed code. tracing, which folds
the execution of the loop structure by skipping the repeatedly
executed code.

D. CFG MAINTENANCE
CFG is fundamental for most program analysis applications.
However, due to the open challenges of static analysis [13],
[33], statically-computed CFGs are often incomplete (refer to
the left-hand CFG in Figure 2). Thus, it is necessary to update
the CFG with runtime information. ) is incomplete.

At runtime, the target program may self-modify its code
and generate a new edge (e.g., the red dotted line in the right-
hand CFG), which is unknown to static analysis. Further-
more, the new code may introduce a backward edge pointing
to the existing code, forming a loop which is also unknown
to static analysis neither.

Therefore, ATOS provides runtime CFGmaintenance sup-
port, which updates the CFG and loop structure information
according to the runtime tracing states.

FIGURE 3. The tracing granularity transition state machine.

E. ADAPTIVE TRACING STRATEGY
Code snippets (e.g., instructions, basic blocks, and loops) of
different tracing states should have different tracing granu-
larity. ATOS adopts a novel solution to adaptively adjust the
tracing granularity of code snippets. The granularity transi-
tion state machine is illustrated in Figure 3.

By default, all instructions will be recorded one-by-one
when they are executed for the first time; that is, Insn-CP
check points will be hit (line 1© in Figure3). If the conditions
for skipping certain code snippets aremet, that is,Branch-CP,
Func-CP or loop-based check points are hit (line 2© 3© 4©
respectively), ATOS will perform the coarse-grained tracing
accordingly. If a WE-CP check point is hit (line 5©), that is,
some code is dynamically generated or modified, ATOS will
switch back to instruction-level tracing to record necessary
execution information.

In the following sections, we will present the detailed
design and implementation of tracing granularity, CFGmain-
tenance and the tracing strategy in ATOS .

IV. TRACING GRANULARITY
In this section, we will describe the four levels of tracing
granularity supported by ATOS , including two main aspects:
(1) what information is recorded; and (2) how to recover the
trace with a succinct record.
Instruction-level tracing is the basic tracing method,

which records information about each instruction executed.
When an Insn-CP is hit, ATOS records the current stack, reg-
isters, referencedmemory values, etc. Afterward, ATOS com-
pares the current code and control flow to those recorded
in the shadow CFG, and updates the shadow CFG if they
are inconsistent. Furthermore, ATOS sets new check points
on the code according to the tracing state to enable coarse-
grained tracing. There are more details of the CFG mainte-
nance and checkpoints given in Sections V and VI.
Branch-level tracing is used for coarse-grained tracing.

We propose two rules to filter the basic blocks that should

VOLUME 7, 2019 127499



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

FIGURE 4. Branch level tracing.

be recorded for tracing, and introduce the way to recover the
full trace with limited information. First, Branch-CP check
points are set only on the traced basic blocks that have at
least two successors. Figure 4 shows an example of branch-
level tracing. Initially, all basic blocks are not traced and an
Insn-CP is set on each instruction. When all instructions in
the basic block have been traced, ATOS removes the Insn-
CP from them. Then Branch-CP are set on the gray nodes A,
B, C, F (Figure 4 (a)), since they have at least two successors.
Second, all basic blocks that are within the loop struc-

tures should be instrumented with Branch-CP. Otherwise,
we would not be able to distinguish between two different
iterations of the same loop. For example, in Figure 4 (b), if
no check points are set on blocksH, I, J, K, then ATOS cannot
recover the details of any iteration of a loop from G to L.

When triggering a Branch-CP, more information is
recorded in addition to the current execution state, to help
facilitate later recovery of the entire trace. The candidate
paths between two blocks with Branch-CP are recorded in
the successor block’s tracing state. For example, paths (B, F),
(B, D, F), and (C, E, F) are recorded in F’s tracing state.
In this way, ATOS can recover the sub-trace between two
blocks, by simply requesting the starting block’s branch con-
dition and the ending block’s tracing state.

Moreover, the path information is recorded for basic blocks
that do not have any successor. These basic blocks end with
an indirect jump, ret instruction or call instruction to function
exit. ATOS does not remove the Insn-CPs from them, and
records the last instruction during branch-level tracing, so that
the trace can be recovered with the path information.
API-level tracing is used for tracing calls to library

functions. ATOS considers only functions statically linked
or dynamically exported by system-provided libraries as
API functions, since they are not of interest for most appli-
cations. ATOS sets a Func-CP on each call target. When
a Func-CP is hit, ATOS checks whether the execution has
reached the first instruction of an API function. If it has,
ATOS performs API-level tracing to trace this function; that

is, only the function name, arguments, and return value are
recorded.
Loop-level tracing is used to fold the loop bodies in the

trace. In the static analysis phase, the information about loop
structures is recorded (Section V-C). The loop structures are
identified at runtime, and the execution of a loop body is
folded dynamically. The number of basic blocks executed,
as well as the whole loop body, is recorded. With this infor-
mation, ATOS is able to recover the entire trace, even if the
loop structure has been folded.

To identify loops and optimize loop tracing, ATOS pro-
vides multiple types of check point. More details are given
introduced in Section V-C1 and Section VI-B.
Dynamic code.ATOS also provides a mechanism to detect

the use of the dynamic code [34], which generates new
code or modifies existing code at runtime.

The new code can be discovered and added to the shadow
CFG (Section IV). However, it works only if the code is
instrumented with instruction-level tracing. To enable tracing
the dynamic code in coarse-grained tracing, ATOS provides
a new type of check point, WE-CP, to monitor the newly
generated code.

A WE-CP is set on all identified code regions. When
an executable code region is being written to, the WE-CP
check point will be hit. ATOS then obtains the address that
is written by parsing the instruction that is just executed.
Then, instruction-level tracing is enabled so that the newly
generated code can be added into the shadow CFG.

V. CFG MAINTENANCE
The shadow CFG may be inconsistent with the runtime pro-
gram state due to the incompleteness of the static analysis.
Thus, ATOS proposes an efficient CFGmaintenance scheme,
by applying which ATOS can identify the code and con-
trol flow transfers, which are not recorded in the shadow
CFG. Edges in the shadow CFG are updated and obfus-
cated or smashed CFGs are merged.

Moreover, to set the check points for coarse-grained trac-
ing, ATOS identifies the tracing state based on the CFG and
the execution information. Four types of tracing states are
identified. They indicate which specific code snippets have
been executed, including basic blocks, loop structures, and
control flow transfers, etc. In later phases, ATOS sets check
points according to the tracing state, and enables the adaptive
tracing strategy (Section VI).

A. CFG MAINTENANCE SCHEME
ATOS maintains the CFG by locating the current instruction
in the shadow CFG. The main workflow is as follows.

A pointer is moving accordingly to the execution. If the
current control flow transfer is identified by static analysis,
ATOS can obtain potential instructions that will be exe-
cuted by querying the successors of the previous instruction
(which the pointer is pointing to) in the shadow CFG. This
operation can be performed in O(1) time, since information
about the successors is already stored in the shadow CFG.

127500 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

The address and byte code are both considered to check
whether the recorded instruction is the same as the code
executed. The static obtained control flow is correct in most
cases, so most control flow transfers can be identified by
querying the pointer.

For the self-modified code [3], junk code [34], and indirect
control flow transfers [35], static analysis results are usu-
ally not correct enough. The code and control flow trans-
fers that are not recorded in the CFG are called new code
and new edge or new control flow transfer. To locate new
code or a new edge, ATOS also stores each instruction as
a tuple (address, byte code, pointer). Given an unrecorded
instruction, ATOS first indexes it by successively query-
ing the address and the byte code. If a record is found,
the pointer is updated to the recorded one, and the new edge
is recorded as well; otherwise, it indicates that new code has
been executed, static analysis is performed to obtain the CFG
for it.

1) IDENTIFYING NEW CFG EDGES
New CFG edges are identified as follows.

If the current instruction is inside a basic block, the next
instruction can be indexed in the basic block. If the executed
instruction is not the one in the basic block right after the
current instruction, a new CFG edge should be added and
treated as a jmp or cJmp instruction. There are several cases
for jmp and cJmp instructions.
• If the instruction jumps to the head of a library function,
it is processed as a call instruction.

• If it jumps to an existing block in the current function,
ATOS first checks whether this control flow transfer is
already recorded in the shadow CFG. If not, a new edge
will be added.

• If it jumps inside a function, ATOS will add an edge and
merge the CFG.

• If it jumps inside a function but the boundary is recog-
nized incorrectly, i.e., the target is on the chunk, then a
new function will be created and static analysis will be
performed for it. And the jmp/cJmp process is repeated.

• If the jump target is not even in the function area and
does not belong to any other function, ATOS creates
a function at the address and checks whether the jump
target is a standard function header. If so, the instruction
is processed as a call; otherwise, the CFG of the new
function is merged into the original one.

A call instruction is treated as a jump if the called address
is not a normal function or within a known function. If the call
target is the header of a known function, but the static analysis
fails to recognize the call, ATOS will add the CFG edge.
A call to an unknown area will lead to static analysis at
the target address, and the call process routine will be
re-executed.

For ret instructions, if the return address is inconsistent
with the statically recognized return address, ATOS will treat
the instruction as jump since no representation of the current
call stack can be found.

In addition, an exception handler can also lead to control
flow transfers. The CFG of an exception handler is also
merged.
Merging CFGs. Suppose there is a control flow transfer

from basic block a to b, which belong to CFGs A and B,
respectively. The sub-CFG of B rooted by b is marked as C.
ATOSmergesC into A by calculating the address intersection
of A and C. If the intersection is a null set, ATOS will directly
add C into A; otherwise, a new function will be created by
merging C and the sub-CFG of A that does not overlap C.

B. IDENTIFYING NEW CODE
If the byte code in the given address is not the same as that
recorded in the shadow CFG, or there is no code available at
the target address in the shadow CFG, this indicates that new
code has been generated. ATOS statically obtains the sub-
CFG of the new code and then adds the edge. The sub-CFG
is added into the shadow CFG, so that the following newly
generated code will not be identified as new code.

C. IDENTIFYING TRACING STATES
After maintaining the CFG, ATOS identifies the current trac-
ing state

Table 2 shows the defined tracing states. Initially, all code
is marked as NormalTracing. During the tracing, when a
specific code snippet is traced, the tracing state saved in
the check point is updated correspondingly. After further
operations (e.g., setting check points; See Section VI), the
tracing state will be recorded in the shadow CFG and shift
back to NormalTracing.
When the previous instruction is the last one of a basic

block, the tracing state is updated to BBTraced. If a control
flow transfer is executed (such as jump, call, or exception
handler), the tracing state is set to CFTTraced. Section V-A
introduced different cases of control flow transfers, and mod-
ification of the shadow CFG is recorded as a sub-tracing state
of CFTTraced. The details are shown in Table 2.

1) UPDATING TRACING STATE OF LOOP STRUCTURE
LoopTraced is set when all basic blocks in the loop body
have been traced. To achieve this, ATOS should be able to
identify the loop structure, and be aware that the loop body
has been executed during the tracing, which indicates that the
loop body may execute repeatedly soon.

Here, we clarify the definition of a loop used in this paper.
ATOS inherits the same definition as CryptoHunt [4]. A loop
is a sequence of instructions that meets one of the following
requirements. 1) The sequence of instructions repeats at least
one time. 2) The instruction sequence ends with a condi-
tional or unconditional jump instruction to the beginning
of the instruction sequence. CryptoHunt comes up with an
offline method to identify loop structure and nested loop.
Unlike CryptoHunt, we focus on two forms of loop structure
that can be identified by static analysis: simple cycles and the
loop of strongly connected components (SCC loop). A simple
cycle does not visit any vertex more than once [36], [37]

VOLUME 7, 2019 127501



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

TABLE 2. Description of tracing states.

FIGURE 5. Loop struture.

and an SCC loop of a directed graph is a maximal strongly
connected subgraph in which strongly connected means that
there is a path between all pairs of vertices of the directed
graph [38]. As shown in Figure 5, A, B, C, D, E, F is an SCC
loop; while A, B and C, D, E are two simple cycles.

Second, loop structures are identified in initialization
and when ATOS finds new code or a control flow trans-
fer. Simple cycles (loop structures) and SCC loops are
identified by Johnson’s algorithm [37] and Kosaraju’s
algorithm [38].

Suppose b and s are basic blocks in a CFG, C is the basic
block sequence of the cycle or SCC loop, and succ(b) are
the successors of basic block b in the CFG. If b satisfies (1),
which means that at least one successor of b is not in the cycle
(or SCC loop), b will be recorded for later use.

b ∈ C ∧ ∃s (s ∈ succ (b) ∧ s /∈ C) (1)

Once the loop structures are identified, OutLoop check
points are set on any basic blocks that may jump out of the
cycle. In Figure 5, B is a basic block that may jump out
of cycle A, B, an E is a basic block that may jump out of
cycle C, D, E.

Third, in the following tracing, if an OutLoop check point
is hit, ATOS checks whether all the code in the corresponding
simple cycle has been traced successively (ignoring the func-
tion calls in them) before the check point. If so, this indicates
that the loop structure has been traced; LoopTraced state is
set and loop level tracing is enabled.

VI. TRACING STRATEGY
So far, we have discussed tracing granularity and the
CFG maintenance scheme. In this section, we will introduce
how they are associated for adaptive tracing. Generally, check
points are set according to the tracing state, and when check
points are hit, tracing is performed for the corresponding
granularity.

When the tracing state is NormalTracing, no check points
are set and the execution resumes.

When the tracing state is BBTraced, it indicates that the
basic block has just been traced. ATOS removes the Insn-CP
in the basic block, and sets Branch-CP on the last instruc-
tion of a basic block with more than one successors. Note
that since ATOS must confirm all the control flow has been
recorded in the shadow CFG, an Insn-CP is always set for
control flow transfer instructions, such as call, ind-jmp and
ret instructions.

A. TRACING STRATEGY FOR CONTROL FLOW TRANSFER
When the tracing state is CFTTraced, ATOS deals with
all possible cases mentioned in Section V-A.1. Generally,
the check points can be classified into two categories, inter-
procedure and intra-procedure.
NoCFGChange, IntraCFGChange, IntraCFGAddEdge,

and InterCFGAdd are dealt with in the intra-procedure
phase. If the tracing state is NoCFGChange, no check
point will be set. If the tracing state is IntraCFGChange,
InterCFGAdd or IntraCFGAddEdge, static analysis will
be performed, and the loop structures are identified.
And OutLoop-CPs will be set. If the tracing state is
IntraCFGChange or IntraCFGAddEdge, an Insn-CP will be
set on each code in the function. If the tracing state is InterCF-
GAdd and there is no check point set on the merged sub-CFG,
an Insn-CP will be set on each code in the sub-CFG.
APICalled, FunctionCalled, and FunctionReCalled are

dealt with in the inter-procedure phase. If the tracing state

127502 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

is APICalled, an Insn-CP will be set on the return address
of the current function. If the tracing state is FunctionCalled,
static analysis will be performed and OutLoop-CPs will be
set. Moreover Insn-CPs will be set on all the code in the
function. If the tracing state is FunctionReCalled, no new
check points will be set since the check points have been set
on the function.

B. TRACING STRATEGY FOR LOOP STRUCTURE
When the tracing state is LoopTraced, loop level tracing can
be enabled. ATOS sets check points as follows.

First, BreakLoop-CPs are set on the basic blocks that sat-
isfy (1) in Section V-C1. For example, in Figure 5, C, H are
selected for the simple cycle A, B, and F is selected for the
simple cycle C, D, E.

Then, ATOS removes all branch check points between the
start and end instructions in each identified loop structure,
which is recorded. Besides, a LoopCount-CP is set on an
instruction in the loop structure. The instruction is selected
if it belongs to only one loop structure.

Afterward, ATOS resumes tracing. If a BreakLoop-CP is
hit, ATOS again adds the removed check points and records
the number of the loop body executed from the Counter-CP.
If other check points are hit, then more code has been exe-
cuted in the called function in the loop body. ATOS picks the
current basic block, and obtains its predecessors. A prede-
cessor without Branch-CP and Insn-CP is recorded, which is
used for recovering the trace in the later phase.
Dealing with functions with large cyclomatic complexity.

When the cyclomatic complexity is large (40 based on our
observations), there will be a large number of simple circles
in the CFG.Moreover, the overhead for identifying loops will
be unacceptable since there are too many simple cycles to
be matched. We propose a simple workaround in which is a
loosen solution. ATOS randomly drops some of the statically
found simple cycles. As the cyclomatic complexity increases,
more of the simple cycles are dropped randomly. Branch level
tracing is used for the dropped simple cycles.
Dealing with SCCs. If the instruction (marked as ins) with

a BreakLoop-CP and the traced simple cycle are in the same
SCC loop, ATOS searches the instructions that satisfy (1)
of the SCC loop and sets BreakLoop-CP on them. Then
ATOS has two modes for dealing with this. The first one is
to continue tracing the program. The code in the SCC loop
is traced at branch level. Note that since the OutLoop-CPs
are still set on the code, the loop structures within the SCC
loop will be continually identified. The trace obtained can be
recovered in this mode.

The second mode is to simply skip the details of the loop
structures. ATOS removes the check points of all the code
in the SCC that is not with a Insn-CP on it. Thus, only the
untraced code can be hit, until the execution leaves the SCC
loop (e.g., a BreakLoop-CP is hit). At this time, the trace
can not be recovered any more. However, it is sufficient
for applications that do not need a full trace, such as CFG
recovery, fuzzing, and most malware analysis approaches.

Recover the trace. The recovery of a branch level trace is
as discussed in Section IV.

ATOS has recorded enough information during loop-level
tracing, including the execution number of the loop struc-
tures, the instruction with the BreakLoop-CP that was hit,
the instructions with OutLoop-CP, and the details of the
called functions that execute different paths. With the main-
tained CFG and the trace of the first execution of the loop
structure, the skipped code from the simple cycles can be
recovered by counting the number of loops and filling them
with the loop body obtained by static analysis.

Take the loop A, B in the CFG in Figure 5 as an example.
There are only two basic blocks A, B in the trace for the
loop. Suppose the execution reaches the basic block C, and
the number of the repeated executions of A, B recorded in
Counter-CP is 3. Then the full trace is A, B, A, B, A, B, C.

If ATOS runs in the second mode to deal with the
SCC loop, the skipped code in the SCC loop cannot be
recovered. ATOS provides a configuration for the cases where
complex loop structures are important.

VII. EVALUATION
We implemented the prototype of ATOS based on IDA built-
in dissembler, debugger and IDAPython, which is the IDA
Pro Python language programming interface [19]. ATOS sup-
ports all architectures that IDA supports. We use IDA
Pro v6.95 because of copyright issues. VirtualBox5 with
Windows 7 OS is used for executing the samples, with 8 GB
of memory and two cores. The project has 4000 lines of code
in total.

In the following of this section, we will first introduce the
evaluation setup, and then discuss the details and results of
our evaluation. The following questions are answered aiming
to borne out the completeness and effectiveness of ATOS .
• Is the trace complete, especially for code that is traced
under branch level and loop level?

• Is ATOS efficient enough for tracing purpose?
• Can ATOS help to reduce the whole analysis time com-
pared to the existing approaches?

• Is the online maintained CFG helpful for real
applications?

A. EVALUATION SETUP
We chose various programs and open source or accessible
approaches as the baseline approaches.
Dataset. There are various kinds of samples in the dataset,

including OpenSSL test programs, SPEC CPU2000 bench-
marks, known programs packed by various off-the-shelf
packing tools, programs of different algorithms written in
C programming language, and real APT (Advanced Per-
sistent Threat) samples from open malware collections.
We randomly pick several samples for each evaluation. Rel-
evant data are fed to the programs that needed inputs. For
example, we feed a small but valid piece of C programming

5https://www.virtualbox.org/

VOLUME 7, 2019 127503



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

TABLE 3. Trace length of different approaches. Columns 2-5 are the trace
length of different approaches. The last column is whether ATOS ’s
recovered trace is the same as the baseline result,
in which ‘Y’ means yes and ‘N’ means no.

language source code with 143 LoC for cc1 from SPEC
CPU2000 benchmarks, and an array of 800 numbers for bub-
ble sort and binary search. The OpenSSL library functions
are statically linked in the programs.
Baseline Approaches. We compare ATOS with sev-

eral approaches. CrytpoHunt [4] is a state-of-art Pin-based
approach for detecting cryptographic functions. It has very
clear boundaries for tracing, parsing trace log file, and per-
forming further analysis. Besides, the pin tracer is also used
in VMHunt [31]. The IDA tracer is published as a default
module of IDA Pro.6 Moreover, we compare ATOS with
DPI [3] to evaluate the efficiency of packer analysis.

B. COMPLETENESS
Q1: Is the trace result of ATOS complete?

Since ATOS outputs a trace with different levels of gran-
ularity, we need to verify the completeness of the trace. The
intuition behind this evaluation is that if the traces output by
ATOS and a baseline approach are the same, then ATOS gives
a complete result.

Approach. The baseline tracer was that of CryptoHunt.
Tominimize possible randomness in the programs, we choose
six programs that implement several algorithms written
in C language. Only the code in the main function7 is
evaluated.

The first step is tracing and recovering the trace of ATOS .
The details of how to recover the trace under branch level and
loop level are introduced in Sections IV and Sections VI-B,
respectively. Then, we use the tracer of CryptoHunt to trace
the programs. At last, we compare the traces to verify the
completeness of ATOS .

Results. Table 3 shows the results of this evaluation. The
baseline trace length obtained by the tracer of CryptoHunt
is shown in the second column. The results of ATOS are in
the third column. And the forth column shows the recovered
trace length of ATOS . Note that as both CryptoHunt and
ATOS records the trace of the full program, wemanually pick
out the corresponding trace for the code of themain function.
The last column shows that the results for ATOS outputs are
the same results as those for the CryptoHunt tracer.

6This evaluation is also tested on IDA Pro v6.95. We can see from the
update logs that higher versions do not have much promotion in the default
tracer, so the evaluation is acceptable.

7The code in main function performs the algorithms. Besides, since they
are basic algorithms, we are sure that there is no randomness in the code.

Due to the API-level tracing, ATOS ’s results do not
include the execution path of system provided library func-
tions. But the loss is reasonable, because the details of the
known library functions are not useful in most cases. For
example, since user-defined code causes most crashes, most
fuzzing approaches (such as PTFuzz [39], redqueen [40],
CollAFL [41], etc.) do not pay any attention to library func-
tions. Malware analysis approaches (such as X-Force [2] and
BE-PUM [42]) also ignore the details of the library function
either. They pay more attention on which library functions
are called and what their arguments are, which are already
recorded.

Conclusion. In summary, the traces under coarse-grained
tracing are recoverable and the recovered traces are complete.

C. PERFORMANCE
Q2: How about the performance of ATOS ? How much space
is spent for the trace log file? How much time is spent in
tracing and parsing the trace log file?

We evaluate how ATOS performs compared to existing
solutions, including the time and space overheads. Generally,
the time overhead includes the overheads for tracing and
parsing the trace log file. The size of the trace log file is
used as the measure of the space used. For ATOS , the time
overhead includes the time spent of static analysis, tracing,
and parsing trace log file. For the other approaches evaluated,
the time overhead includes the time spent of tracing and
parsing trace log file.

Approach. We evaluate ATOS , IDA tracer, and Crypto-
Hunt. The parser of CryptoHunt is used as the baseline in
comparing the time spent on parsing different trace log files.
IDA tracer can generate trace files, but no default parser is
provided. We implement one just like CryptoHunt. I

We separately recorded the time and storage spent by each
approach. The time spent was normalized with the native
execution time for the sample.

Space overhead results. The y-axis of Figure 6 shows
sizes of the trace log files for the three approaches using
a logarithmic scale for clarity. The results vary consider-
ably: srptest has the largest trace log file at over 9 GB.
The trace produced by IDA tracer for mcf is the smallest at
only 24 kB.

In most cases, ATOS uses the least amount of space ,
though it contains both trace information and CFG informa-
tion. CryptoHunt outputs very large trace log files, because
it records all the instructions, even those before the entry
point of the program and those after the program has exited.
Specifically, the average size of the trace log files produced
by ATOS is 46 times smaller than the average for CryptoHunt

Note that IDA tracer skips all the library functions, so the
space overhead is smaller than that for CrytoHunt. For the
sample mcf, because we feed it with infeasible input, the pro-
gram exits soon after its main function starts. Therefore, the
trace result for IDA tracer is very short.

For the packed samples, the space used by IDA tracer is
a little smaller than that used by of ATOS . This is because

127504 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

FIGURE 6. Space overhead of different approaches. To show the results more clearly, y axis is normalized using the base 10 logarithm.

FIGURE 7. Time overhead of different approaches. To show the results more clearly, y axis is normalized using the base 5 logarithm.

IDA tracer cannot record the details of dynamically generated
code. Only the addresses of the instructions that generated
at runtime are recorded, which reduces the amount of space
required.

Time overhead results. Figure 7 shows the time overhead
compared to native execution. The y-axis has a logarithmic
scale to base 5. Note that we have added the static analysis
overhead into the tracer’s overhead and all the data is nor-
malized to the time spent for the native execution.

The time spent by IDA tracer is really high, which is in line
with our expectations. Although ATOS is built upon IDA Pro,
it performs better, especially when considering the overall
time, which includes both tracing and parsing. Because the
trace produced by ATOS is much shorter than those produced
by the other approaches, ATOS performs best for all samples,
except for aspack and UPX packed samples. This is because
ATOS performs static analysis during the execution when
the dynamically generated code is executed. Figure 7 clearly
shows that ATOS performs better than the other approaches
in most cases.

Figure 8 shows the tracer overhead for CryptoHunt and
ATOS , and Figure 9 shows the parser overhead for pars-
ing the trace log files obtained by CryptoHunt and ATOS .
Although ATOS spends more time in tracing packed samples,
overall ATOS spends much less time tracing than CryptoHunt
tracer. The parsing time for ATOS is much less than that for
CryptoHunt.

Complexity. Additionally, we evaluate the time computa-
tional complexity of the proposed algorithms. There are three
main parts in ATOS : static analysis, tracing, and parsing trace
log file. Suppose there are v vertices, e edges, and c cycles
in the CFG.

In the static analysis phase, a deep first search algorithm
is applied to generate the CFG and record the essential
information for branch-level tracing. The time complexity is
O(v+e) and the space complexity is O(e) for performing
DSF and O(v) for recording branch level tracing infor-
mation. Simple cycles are statically identified by applying
Johnson’s algorithm, with O((v+e)(c+1)) time complex-
ity and O(n+e) space complexity. SCC loops are statically

VOLUME 7, 2019 127505



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

FIGURE 8. Tracer overhead of ATOS and CryptoHunt.

FIGURE 9. Parser overhead of ATOS and CryptoHunt.

identified by utilizing Kosaraju’s algorithm. They run in
O(v+e) time and need O(v) space.
In the dynamic analysis phase, ATOS runs O(1) time to

locate control flow in the shadow CFG. In addition, it needs
O(1) time to record the current execution state and O(n)
time to locate the loop body where n is the number of loops.
Besides, it needs O(n) time to recover the simplified trace,

where n denotes the number of the basic blocks that have
additional information of the folded trace.

Conclusion. ATOS does well in this evaluation. Much
shorter traces than other approaches are output, although
it obtains both trace and CFG information of the program.
Using the disassembly results, we can recover the instruction
trace. ATOS also performs best in most cases in the time
overhead evaluation, which proves that that the length of the
trace is significant. This evaluation indicates that the longer
the trace is, the more time is needed to parse it, which is fully
in line with our intuitive perception.

D. TIME REDUCED FOR EXISTING APPROACHES
Q3: Can ATOS help in reducing the whole analysis time
compared to existing approaches?

In the above evaluation, we have discussed the over-
head of tracing and parsing trace log file. We evaluate
whether ATOS can help in reducing the time overhead of
applications that utilize tracing as a built-in component.
The state-of-art cryptographic function detection approach
(CryptoHunt [4]), the code simplification approach for virtu-
alized binary (VMHunt [31]) and packer &malware analysis
approach (DPI [3]) is used as the benchmark. Note that since
DPI provides a web service without open-source code, we do

FIGURE 10. Overall performance among ATOS , Intel PT, Panda, and
CryptoHunt.

not evaluate the different phases of these applications. The
entire analysis time spent is recorded and OpenSSL, packed,
and APT are used in this evaluation.

CryptoHunt evaluation approach. The OpenSSL sam-
ples are used for CryptoHunt. Since CryptoHunt is open-
source, we replace the default tracer of CryptoHunt with
ATOS , Intel PT, and Panda respectively and compare
the overall time spent with the time spent by the original
CryptoHunt.

CryptoHunt evaluation results. Figure 10 shows the time
spent by CryptoHunt with different tracers. CryptoHunt. All
of them can identify the cryptographic functions correctly.
Owing to the shorter trace generated by ATOS , CryptoHunt
with ATOS performs much better than the others, although
the tracing process of Intel PT is really fast. The result cor-
roborates the fact that the length of the trace significantly
affects the time overhead of the post-analysis. Specifically,
ATOS helps to reduce the analysis time of original Crypto-
Hunt by about 34 times on average.

VMHunt evaluation approach. The samples packed by
VMProctect8 are used to evaluate the VMHunt. VMHunt is
open-sourced just like CryptoHunt. We replaced the default
tracer of VMHunt with ATOS and recorded the overall time
spent. Then, the time spent of the original VMHunt is com-
pared with VMHunt with ATOS .

VMHunt evaluation results. Figure 11 depicts the time
spent by the VMHunt with ATOS and the original VMHunt.
Both the original VMHunt and the VMHunt with ATOS as
its tracer can simplify the virtualized code. ATOS generated
a good shorter trace, and VMHunt with ATOS greatly out-
performs the original VMHunt. In particular, ATOS helps to
reduce the analysis time for about three times on average.
Since the innumerable loop structures are difficult to be
fully identified in virtualized samples and ATOS randomly
records some of them statically, the loop bodies of the original
code are only partially recorded and optimized. Therefore,
the improvement made is not as significant as that of Crypto-
Hunt with ATOS . Moreover, ATOS is helpful.

8https://vmpsoft.com/

127506 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

FIGURE 11. Overall performance between ATOS and VMHunt.

FIGURE 12. Results of DPI and ATOS.

DPI evaluation approach. The packer samples and real
APT samples are utilized for DPI. We extend the ATOS to
report equivalent information such as DPI. ATOS can easily
report the unpacking routine of packers. Whenever the exe-
cuted bytes are not the same as those recorded in the shadow
CFG, it demonstrates that a new layer is built; static analysis
is performed to make the CFG consistent with the execution
state. Since ATOS cannot observe the repacked code which
is not executed, the only limitation is that it cannot identify
the packers of Type VI [3].9 However, this is unimportant
because it does not affect anything but the type of the packer
defined by DPI. Finally, we compare the analysis time of
ATOS and DPI.

DPI evaluation results. Figure 12 illustrates the analysis
time for ATOS and DPI. It can be observed that the analysis
time for ATOS is much faster than that of DPI, on the tested
samples. There is a manual verification in the web service of
DPI, and the web service seems to be slightly unstable. There-
fore, we did not perform a large-scale evaluation of ATOS and
DPI. In addition, we believe that DPI can also analyze more
packers and malware. In Section VII-E, we present more
results of ATOS regarding packers and real-world malware.

Conclusion. ATOS is able to help to reduce the analysis
time of existing approaches.

9Insn-CP will be set on the modified code because of the hit of WE-CP,
however, the Insn-CP will not be triggered, so ATOS cannot identify packer
behaviour of Type VI.

TABLE 4. Evaluate on packed samples.

E. APPLICATIONS
Q4:Whether ATOS can be helpful to more real applications?

In the former evaluation, we have shown that ATOS can
help to improve the analysis performance of existing
approaches. In this section, we introduce several applications
that can be built on ATOS .

Approach. First we evaluate ATOS on more packers.
A simple binary that writes a file is packed by different
packers. Since ATOS is only a trace solution, we do not use
any additional option of the packers that may disable the
tracing process in this evaluation. Therefore, the original code
can be executed successfully in the evaluation. In addition,
since we cannot access the programs evaluated by BB-DSE,
the data of BB-DSE result are only used as reference data
on the length of the trace. Besides, IDA tracer is chosen
as the benchmark for evaluating the time spent, because
(1) BB-DSE does not report the analysis time; (2) ATOS is
developed on IDA tracer.

Then, in case the malware detects the analysis engine
at runtime, we also build a path exploration approach
based on ATOS . We execute ATOS according to the path
exploration strategy to improve the coverage of dynamic
analysis. The indirect control flow transfers, exceptions, and
self-modification layers are recorded during the exploration.
Real APT samples are used in this evaluation.

Afterward, we show the benefit of online maintained CFG.
The obfuscated code may split a single function into different
pieces and store them in discontinuous memory, whichmakes
it difficult to recognize the function boundary for a state-of-
art disassembler.Moreover, when some of the code in the loop
structure is generated at runtime or ret instruction is involved
in the loop structure, it is difficult to identify the loop structure
at runtime.

Finally, we discuss the methods used to extend ATOS for
the fuzzing test and API-based approaches.

Packer analysis result. Table 4 show results of ATOS as
well as the length of the trace and the time spent on tracing.

The second and third columns indicate the ATOS results.
The fourth column shows that ATOS is able to identify the
original entry points of these packers, since the main func-
tion can be marked by F.L.I.R.T [32]. 10 The fifth column
is the length recorded by BB-DSE. We can obtain the CFG

10ATOS make it possible by applying static analysis method at runtime.
The F.L.I.R.T is used as long as new code is generated.

VOLUME 7, 2019 127507



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

TABLE 5. Path exploration and malware analysis results. exec means the
number of exceptions, ind-ret means the number of ret instructions that
do not return to the caller of the function, ind-call means the number of
indirect call instructions, layers means the number of code layers that are
generated at runtime by self-modification.

of the packer within a trace of less than 1% of that recorded
by BB-DSE. ZProtect is not reported by BB-DSE, so there
is no result for it in the fifth column. The last column is the
tracing time of IDA tracer. We can see that ATOS is much
more efficient than the original IDA tracer.

Path exploration and malware analysis results. Table 5
shows the analysis results of the newly reported APT mal-
ware. The second column shows the number of deliberately
set exceptions which means only the exception is triggered,
the further payload can be executed. The third column shows
the number of abnormal return instructions. The normal ret
instruction will lead the control flow back to the caller of the
current function. However, packers and malware may break
this rule and the ret instruction is used for leading the control
flow to a certain address. This technique is called stack tem-
pering in BB-DSE, which can be identified by ATOS is. The
fourth column is the number of newly found indirect call sites.
Only when a certain path is executed, do we get to know the
real call site of the indirect call instruction. The last column
is the layers contained in the samples. A Layermeans a piece
of code that is generated at runtime which is first introduced
by DPI. As discussed above, ATOS can also identify the
number of layers.

The result indicates that ATOS can be used as the front end
of a malware analysis engine.

Note that BackdoorWormSMB requires to open some ser-
vices installed in the operating system. However, the services
are invalid by default in our environment. Thus, the sample
continually triggers exceptions and a total of 107 exceptions
are recorded. We extends ATOS to bypass certain exceptions
according to the path exploration strategy, so ATOS is able to
trace the sample as well.

CFG construction results. ATOS constructs the entire
CFG during the execution and the loop can be easily recog-
nized. Take the packerWinUpack as an example. Figure 13 (a)
shows the results for IDA Pro. The later code from 0x40f08 is
dynamically generated so that IDA Pro cannot obtain the
whole CFG. Even if the execution has come to the address,
IDA cannot generate the CFG by default either. Figure 13 (b)

FIGURE 13. Part of CFG generated by ATOS.

shows the reconstruction result of ATOS . Since the entire
CFG is very large, the key part is shown in the figure. It is
obvious that ATOS can help to understand the program better,
both for human analyzers and automatic approaches.

Other applications. Besides the above applications,
ATOS can be used in nearly all applications that need tracing
methods. For example, state-of-art fuzzing approaches usu-
ally do not care about the execution details. Instead, they often
have a requirement to identify whether the code has been
executed (as known as code coverage). At this time, we can
add a new type of check points in ATOS , which are only
set on the code that has not been executed. If the execution
with a seed leads the control flow to an un-executed area,
the check point on the code will be triggered. In this way,
we can determinewhether the seed has hit an un-executed
area. This idea has been used in UnTracer [43].

As ATOS is able to adjust the tracing granularity according
to the tracing status, we can also extract the API information
during the tracing process. Therefore, ATOS can be used in
API-based approaches [23], [44].

Conclusion. ATOS is useful for various tracing-based
applications.

VIII. DISCUSSION
ATOS is not intended to be a new tracing mechanism, but
rather a novel tracing method that improves the perfor-
mance of tracing based offline mode analysis. The evaluation
shows that ATOS is able to reduce the overhead of existing
approaches.

In this section, we first discuss the difference between
ATOS and existing approaches from the concept aspect. Since
there is a large body of related work in the areas of tracing,
to limit our scope of discussion, we concentrate on several
widely used approaches in the discussion. Then, we discuss
the future work that can make ATOS more powerful.
Compared to Intel Pin. Pin uses an incremental manner

to build the PinTool. Callback functions will be called every
time according to the tracing granularity, even if the user does
not want to trace a piece of code under a certain tracing level.
Lots of filters should be placed in the callback functions to
avoid tracing the specific code.

Besides, the statically linked library functions are difficult
to be identified by Pin approaches. CryptoHunt has shown

127508 VOLUME 7, 2019



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

that to identify the function by analyzing the trace is time-
consuming.

In fact, other dynamic instrumentation approaches also
have the above problems. Though one can also implement
a tool such as ATOS with Pin, as far as we know, no such
approach proposed.
Compared to Intel PT. We do not implement ATOS upon

PT, based on the following concerns. First, PT based
approaches cannot output the instructions trace directly. Only
part of the control flow transfer instructions addresses are
recorded, and the record is stored in compressed form.
Therefore, static analysis is needed to decode the trace [5].
Obviously, it is difficult to obtain the details of the dynam-
ically generated code which is widely used in malware and
JIT programs.

Second, we have trouble in building a virtual environ-
ment or a sandbox with PT. In fact, as far as we know, no such
existingwork is available currently, though a recoverable con-
trolled virtual environment is essential for malware analysis.
However, we regard implementing ATOS with PT as future
work, since debugger is not the only best choice. Besides,
the way to record the information by PT is just the same as the
proposed branch level tracing in this paper. The key problem
is decoding the dynamically generated code.
Compared to Panda. We do not implement ATOS upon

Panda, different phase of ATOS . although the methods of
ATOS can be used in the reply phase to record less but
sufficient information for further analysis. However, it may
not be a good choice to perform offline analysis with Panda.
The same thing happens in other QEMU-based approaches.
These approaches are more suitable for online mode analysis.
Besides, it is difficult to perform path exploration of malware
with Panda, since many malware are environment sensitive
and logic bombs are common in malware.
Future work. First, malware can disable the analyzer

by attacking the debugger or detecting the runtime envi-
ronment [45]. This problem can be alleviated by path
exploration approaches and we are trying to propose one
with ATOS .

Moreover, ATOS is weak at tracing multi-thread andmulti-
process programs. In fact, this is a general problem of all
the local perspective approaches. There is no overall solution
to this problem, because some of the approaches are too
complex to be solved by program analysis methods. In the
current implementation, we try to hook the entry of new
threads or processes to monitor the details, which can alle-
viate the problem.

ATOS performs well as shown in the evaluation, even
though it has some limitations. Additionally, ATOS is still
under developing to improve its capability.

IX. CONCLUSION
This paper proposes ATOS , an efficient tracing method with
adaptively adjusted granularity. It dynamically adjusts the
tracing granularity to reduce the size of the trace log file with-
out missing essential information. A generic loop structure

folding method is used to reduce the tracing of repeatedly
executed code, and an efficient CFG maintenance scheme is
introduced to support both online and offline analyses. The
prototype of ATOS is implemented. The evaluation results
validate the efficiency of ATOS .

REFERENCES
[1] S. Bardin, R. David, and J.-Y. Marion, ‘‘Backward-bounded DSE: Tar-

geting infeasibility questions on obfuscated codes,’’ in Proc. IEEE Symp.
Security Privacy (SP), May 2017, pp. 633–651.

[2] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, ‘‘X-force:
Force-executing binary programs for security applications,’’ in Proc. 23rd
USENIX Secur. Symp., 2014, pp. 829–844.

[3] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, ‘‘SoK:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2015,
pp. 659–673.

[4] D. Xu, J. Ming, and D. Wu, ‘‘Cryptographic function detection in obfus-
cated binaries via bit-precise symbolic loop mapping,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2017, pp. 921–937.

[5] Intel Corporation. Intel Processor Trace. Accessed: Mar. 14, 2019.
[Online]. Available: https://software.intel.com/en-us/blogs/2013/09/18/
processor-tracing

[6] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
‘‘KAFL: Hardware-assisted feedback fuzzing for OS kernels,’’ in Proc.
26th USENIX Secur. Symp., 2017, pp. 167–182.

[7] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, ‘‘PT-CFI: Transparent backward-
edge control flow violation detection using intel processor trace,’’ in Proc.
7th ACM Conf. Data Appl. Secur. Privacy, Mar. 2017, pp. 173–184.

[8] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, ‘‘PEBIL:
Efficient static binary instrumentation for Linux,’’ in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), Mar. 2010, pp. 175–183.

[9] A. S. Charif-Rubial, D. Barthou, C. Valensi, S. Shende, A. Malony, and
W. Jalby, ‘‘MIL: A language to build program analysis tools through static
binary instrumentation,’’ in Proc. 20th Annu. Int. Conf. High Perform.
Comput., Dec. 2013, pp. 206–215.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, ‘‘Pin: Building customized program analy-
sis tools with dynamic instrumentation,’’ ACM SIGPLAN Notices, vol. 40,
no. 6, pp. 190–200, Jun. 2005.

[11] Open Source. (2016).Dyninst: An Application Program Interface (API) for
Runtime Code Generation. Accessed: Sep. 10, 2019. [Online]. Available:
http://www.dyninst.org

[12] N. Nethercote and J. Seward, ‘‘Valgrind: A framework for heavyweight
dynamic binary instrumentation,’’ ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 89–100, Jun. 2007.

[13] A. Moser, C. Kruegel, and E. Kirda, ‘‘Limits of static analysis for malware
detection,’’ in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 2007, pp. 421–430.

[14] V. Chipounov, V. Kuznetsov, and G. Candea, ‘‘S2E: A platform for in-vivo
multi-path analysis of software systems,’’ in Proc. 16th Conf. Architectural
Support Program. Lang. Oper. Syst. (ASPLOS), Mar. 2011, pp. 265–278.

[15] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, ‘‘Tappan zee (north)
bridge:Miningmemory accesses for introspection,’’ inProc. ACMSIGSAC
Conf. Comput. Commun. Secur., Nov. 2013, pp. 839–850.

[16] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, ‘‘PolyUnpack:
Automating the hidden-code extraction of unpack-executing malware,’’
in Proc. 22nd Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec. 2006,
pp. 289–300.

[17] E. J. Schwartz, T. Avgerinos, and D. Brumley, ‘‘All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),’’ in Proc. IEEE Symp. Secur. Privacy,
May 2010, pp. 317–331.

[18] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, ‘‘A generic
approach to automatic deobfuscation of executable code,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2015, pp. 674–691.

[19] C. Eagle, The IDA Pro Book. San Francisco, CA, USA: No Starch Press,
2011.

[20] M. Zalewski. American Fuzzy Lop. Accessed: Sep. 10, 2019. [Online].
Available: http://lcamtuf.coredump.cx/afl/

VOLUME 7, 2019 127509



H. Sun et al.: ATOS: Adaptive Program Tracing With Online CFG Support

[21] M. Böhme, V.-T. Pham, and A. Roychoudhury, ‘‘Coverage-based greybox
fuzzing asMarkov chain,’’ inProc. ACM SIGSACConf. Comput. Commun.
Secur., Oct. 2016, pp. 1032–1043.

[22] S. Lu, M. Zhang, Z. Li, H. Li, X. Kuang, and G. Zhao, ‘‘Dynamic binary
translation and instrumentation based function call tracing,’’ J. Comput.
Res. Develop., vol. 56, no. 2, pp. 421–430, Feb. 2019.

[23] R. Veeramani and N. Rai, ‘‘Windows API based malware detection and
framework analysis,’’ Int. J. Sci. Eng. Res., vol. 25, no. 3, pp. 1–6,
Mar. 2012.

[24] Z. Cheng, X. Chang, L. Zhu, R. C. Kanjirathinkal, and M. Kankanhalli,
‘‘MMALFM: Explainable recommendation by leveraging reviews and
images,’’ ACM Trans. Inf. Syst., vol. 37, no. 2, Mar. 2019, Art. no. 16.

[25] M. Luo, F. Nie, X. Chang, Y. Yang, A. G. Hauptmann, and Q. Zheng,
‘‘Adaptive unsupervised feature selection with structure regularization,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 944–956,
Apr. 2018.

[26] M. Luo, X. Chang, L. Nie, Y. Yang, A. G. Hauptmann, and Q. Zheng, ‘‘An
adaptive semisupervised feature analysis for video semantic recognition,’’
IEEE Trans. Cybern., vol. 48, no. 2, pp. 648–660, Feb. 2018.

[27] P. Godefroid, M. Y. Levin, and D. Molnar, ‘‘SAGE: Whitebox fuzzing for
security testing,’’ ACM Queue, vol. 55, no. 3, pp. 40–44, Mar. 2012.

[28] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, ‘‘Unleashing may-
hem on binary code,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 380–394.

[29] B. Yadegari and S. Debray, ‘‘Bit-level taint analysis,’’ in Proc. IEEE
14th Int. Working Conf. Source Code Anal. Manipulation, Sep. 2014,
pp. 255–264.

[30] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, ‘‘Selective sym-
bolic execution,’’ in Proc. 5th Workshop Hot Topics Syst. Dependability
(HotDep), 2009, pp. 1–6.

[31] D. Xu, J. Ming, Y. Fu, and D. Wu, ‘‘Vmhunt: A verifiable approach to
partially-virtualized binary code simplification,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2018, pp. 442–458.

[32] Hex-Rays. Fast Library Identification and Recognition Technology
(F.L.I.R.T.). Accessed: Mar. 14, 2019. [Online]. Available: https://www.
hex-rays.com/products/ida/tech/flirt/index.shtml

[33] C. Linn and S. Debray, ‘‘Obfuscation of executable code to improve resis-
tance to static disassembly,’’ in Proc. 10th ACM Conf. Comput. Commun.
Secur., Oct. 2003, pp. 290–299.

[34] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry, ‘‘CoDisasm: Medium scale concatic disassembly of self-
modifying binaries with overlapping instructions,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2015, pp. 745–756.

[35] B. Yadegari and S. Debray, ‘‘Symbolic execution of obfuscated code,’’
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 732–744.

[36] P.-L. Giscard, P. Rochet, and R.Wilson, ‘‘Evaluating balance on social net-
works from their simple cycles,’’ Jun. 2016, arXiv:1606.03347. [Online].
Available: https://arxiv.org/abs/1606.03347

[37] D. B. Johnson, ‘‘Finding all the elementary circuits of a directed graph,’’
SIAM J. Comput., vol. 4, no. 1, pp. 77–84, 1975.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[39] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, ‘‘PTfuzz: Guided fuzzing
with processor trace feedback,’’ IEEE Access, vol. 6, pp. 37302–37313,
2018.

[40] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
‘‘Redqueen: Fuzzing with input-to-state correspondence,’’ in Proc. NDSS,
2019, pp. 1–15.

[41] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, ‘‘Col-
lAFL: Path sensitive fuzzing,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 679–696.

[42] N.M.Hai,M. Ogawa, andQ. T. Tho, ‘‘Obfuscation code localization based
on CFG generation of malware,’’ in Proc. Int. Symp. Found. Pract. Secur.
Cham, Switzerland: Springer, 2015, pp. 229–247.

[43] S. Nagy and M. Hicks, ‘‘Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing,’’ in Proc. IEEE Symp. Security Privacy
(SP), 2019, pp. 1122–1137.

[44] M. Alazab, R. Layton, S. Venkataraman, and P. Watters, ‘‘Malware detec-
tion based on structural and behavioural features of api calls,’’ in Proc.
Int. Cyber Resilience Conf. Joondalup, WA, Australia: Edith Cowan Univ.,
2010, pp. 1–11.

[45] D. Kirat and G. Vigna, ‘‘Malgene: Automatic extraction of malware
analysis evasion signature,’’ in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2015, pp. 769–780.

HE SUN was born in Qiqihar, Heilongjiang,
China, in 1990. He received the B.E. and M.S.
degrees from the PLA University of Science and
Technology, in 2013 and 2016, respectively, where
he is currently pursuing the Ph.D. degree. He is
also a Visiting Student with Tsinghua University.
His research interests include malware analysis
and network security.

CHAO ZHANG was born in Hubei, China,
in 1986. He received the B.E. and Ph.D. degrees
from Peking University, in 2008 and 2013, respec-
tively. He is currently an Associate Professor with
TsinghuaUniversity. His research interests include
software analysis and machine learning.

HE LI was born in Datong, Shanxi, China, in 1989.
He received the B.E. degree from PLA Informa-
tion Engineering University, in 2011, where he
is currently pursuing the M.S. degree. He is also
a Visiting Student with Tsinghua University. His
research interest includes system security.

ZHENHUA WU was born in Zaozhuang, Shan-
dong, China, in 1989. He received the B.E. degree
from PLA Information Engineering University,
in 2012, where he is currently pursuing the M.S.
degree. He is also a Visiting Student with Tsinghua
University. His research interests include malware
analysis and software supply chain security.

LIFA WU was born in Hubei, China, in 1968.
He received the Ph.D. degree from Nanjing Uni-
versity, in 1998. He is currently a Professor with
the Nanjing University of Posts and Telecommu-
nications. His research interests include network
security and protocol reverse engineering.

YUN LI was born in Zhoukou, Henan, China,
in 1997. She received the B.E. degree from the
Beijing University of Posts and Telecommunica-
tions, in 2019. She is currently pursuing the Ph.D.
degree with Tsinghua University. Her research
interests include program analysis, system secu-
rity, and blockchain security.

127510 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	TRACING MECHANISMS
	TRACING GRANULARITY
	TRACE ANALYSIS

	OVERVIEW
	INSTRUMENTATION WITH CHECK POINTS
	BOOTSTRAP
	TRACING GRANULARITY
	CFG MAINTENANCE
	ADAPTIVE TRACING STRATEGY

	TRACING GRANULARITY
	CFG MAINTENANCE
	CFG MAINTENANCE SCHEME
	IDENTIFYING NEW CFG EDGES

	IDENTIFYING NEW CODE
	IDENTIFYING TRACING STATES
	UPDATING TRACING STATE OF LOOP STRUCTURE


	TRACING STRATEGY
	TRACING STRATEGY FOR CONTROL FLOW TRANSFER
	TRACING STRATEGY FOR LOOP STRUCTURE

	EVALUATION
	EVALUATION SETUP
	COMPLETENESS
	PERFORMANCE
	TIME REDUCED FOR EXISTING APPROACHES
	APPLICATIONS

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	HE SUN
	CHAO ZHANG
	HE LI
	ZHENHUA WU
	LIFA WU
	YUN LI


