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ABSTRACT This paper is concerned with robust nonlinear control for multiple unmanned surface ves-
sel (MUSV) systems. Firstly, a mixed nonlinear model was built, in which the probabilistic actuator and
fault time-varying communication delay was considered. On the basis of the new model, a robust nonlinear
control approach by utilizing Lyapunov-Krosovskii functional is proposed, which can robustly stabilize the
MUSV system with a given level of disturbance attenuation ensure the MUSV can track well. Furthermore,
additional conditions were established for the designed controller to guaranteeing mesh stability. Eventually,
the superiority and effectiveness of the proposed control strategies are verified by numerical simulation.

INDEX TERMS Actuator faults, mesh stability, multiple unmanned surface vessel, time-varying delay.

I. INTRODUCTION
In the past decades, the MUSV system exemplifies the
advance in maritime transportation and has been attracting
more and more interest from scientific survey and military
mission in virtue of their potential to substantially increase
operational efficiency and fuel economy in various ocean
engineering projects [1]. The key features of the MUSV
are to maintain a certain geometric shape during the vessel
moving without operation from the pilots, which, the other
side of the shield, justifies an elaborated cooperative control
of autonomous vessels via communication network.

Up to now, a lot of problems have been solved from
different standpoints in this field [2]–[7]. Just to name a few,
Fossen [2] used a classic linear control method for tracking
control of MUSV, and ensure tracking performance with
the desired trajectory is piecewise linear; in [3] and [4],
the back-stepping technology is adopted to reject the non-
linear dynamics and kinematics of the MUSV and achieve
good performance in tracking control; and in [5], a combined
sliding model control and PID method was proposed which
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is more sensitive to model uncertainties; in order to eliminate
the drawback ‘chattering’ associated with sliding model
control, an adaptive sliding model method is designed in [6];
in [7], the author proposed more practical method which
considers the thrust limit and safe operating area.

Since the MUSVs are dynamically coupled via maritime
communication network, which have the same properties as
autonomous platoon [8] or multiple unmanned aerial vehi-
cles [9], i.e. the state occurring in single individual may still
affect those around it, a phenomenon known as the mesh
instability or string instability. In this research, we want to
design coordination controller for MUSV so that any shock-
wave arising from disturbance propagation should restrict as
it travels away from the source. There have many researches
on multi-agent application control field, see, e.g., in [10] an
H∞ control method for a string of vehicles without leader
information was proposed; in [11] the inclusion principle was
applied to decouple the interconnected vehicles system, and
proposed a decentralized optimal controller to hold string
stability; The communication constraints and sensor faults
was investigated in [12] and strict demands was put forward
to failure rate, sampling period and controller gains to achieve
string stability. Furthermore, in [13], a controller design
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methodology was designed by extensively investigated the
limitations on performance, and in [14] the authors provided
a warning system to avoid the string unstable in mixed traffic.

Although significant progress has been made in the
research of MUSVs, there are still many potential problems
to be solved, waiting for the emergence of new technologies.
Firstly, the state of vessel transmitted via maritime commu-
nication network brings time-varying delay inevitable [15],
which make the MUSV is difficult to control, in the worst
case, it can even lead to collision accidents [16]. Under such
a situation, in [17], cooperative path-following controllers
are developed for a USVs subject to constant disturbances
and a time-varying delay. The composite actuator failures
are the second part, which may increase restrictions because
actuator failures can lead to thrust and steering errors. Pre-
liminary work on actuator fault detection and fault tolerant
control bound up with MUSVs control have been developed
by [18], [19]. However, the proposed detection technique
does not apply toMUSVs that we are interested in here. To the
author’s knowledge, there are no reports on the expected
performance of MUSVs, communication time-varying delay
and probabilistic sensor fault simultaneously.

The major contributions of this study, which distinguish
from the related literatures, are summarized as follows.

1) We formulate a mixed nonlinear model (including time-
delay and actuator faults) for MUSVs, which is more realis-
tic than the traditional model extensively used in literature,
see, e.g., [4] and [7].

2) We obtain a nonlinear MUSV controller, which can
simultaneously achieve disturbance attenuation, robust stabil-
ity and mesh stability with the effects of maritime communi-
cation constraints.

The organization of this research is as follows. A nonlinear
MUSVs model with the effects of maritime communica-
tion delay and actuator faults is established in section II.
In section III, a robust nonlinear controller design proce-
dure is suggested and the stability conditions are obtained.
In section IV, the constraints on controller gains with distur-
bance attenuation and mesh stability is further investigated
by considering the objectives. In Section V, contains the
numerical simulations. The conclusion and future work are
given in section VI.

II. PROBLEM FORMULATION
Consider a MUSV system composed by n vessels with a
maritime communication network, which includes a leading
vessel and n following vessels. Each vessel transmits its sway
velocity, yaw velocity, heading angle, roll velocity, and roll
angle to its neighboring vessels via wireless communication.
In the following, wewill give the details on theMUSV system
model, the probability fault, communication delay and our
objective, respectively.

A. MUSVs MODELING WITH TIME-VARYING DELAY
The motion of the ith vessel can be precisely described by
a kinematic equation and a kinetic equation in the following

form, {
η̇i = Ri(ϕi)Vi
V̇i = eiVi + fi(Vi)+ giui + hid1i

(1)

where ηi = [ xi yi φi ]T with (xi, yi) represents the
position the ith vessel in the earth-fixed reference frame;
Vi = [µi vi ri ]T withµi, vi and ri denotes the surge velocity,
the sway velocity and the yaw velocity of the ith vessel in the
body-fixed reference frame, and

Ri(φi) =

 cosφi − sinφi 0
sinφi cosφi 0
0 0 1

 , (2)

with RTi (ϕi) = R−1i (ϕi), φi represents the heading of the ith
vessel in the earth-fixed reference frame.

fi(Vi) =
[ mvi
mµi

viri −
mµi
mvi

µiri
mµvi
mri

µivi
]T
,

ei=diag{−
dui
mui
,− dvi

mvi
,− dri

mri
}, ui = [uui, uri]T is the control

input in the surge direction and yaw direction with gi =[
1 0 0
0 0 1

]T
; d1i = [ dui dvi dri ]T denotes the disturbance from

the wind waves and ocean currents with hi=I3×3.
While with the relative position related to the surface vessel

as shown in Fig. 1, the relative model can be written as:

Ṙi = −µi cos(ϕi)+ µi−1 cos(θi − ϕi)

ϕ̇i =
1
Ri
µi sin(ϕi)+

1
Ri
µi−1 sin(θi − ϕi)− ri

θ̇i = −ri + ri−1
V̇i = eiVi + fi(Vi)+ giui + hid1i

(3)

where Ri denotes the relative distance from the previous
vessel; ϕi denotes the angle between the heading direction
of a vessel and vessel-to-vessel connection line; θi denotes
the relative orientation. Xi = [Ri ϕi θi µi vi ri ]T as the
state vectors, and then the state space equation for the entire
MUSV can be described,{
Ẋi(t) = AiXi(t)+ Biui(t)+ Hiwi(t)+ fi(Xi)+ Gidi(t)
Yi(t) = C1iXi(t)+ C2iwi(t)

(4)

where Yi(t) is the measurement output vectors with
C1i = I6×6, C2i = diag{0, 0, 1, 0, 0, 0},

Ai =
[
zero(3) Ai1
zero(3) ei

]
, Ai1 =

 0 0 0
0 0 −1
0 0 −1

 ,
Bi =

[
0 0 0 1 0 0
0 0 0 0 0 1

]T
,

Hi = diag{0, 0, 1, 0, 0, 0},

Gi =
[
zero(3) zero(3)
∗ I3×3

]
,

wi(t) =
[
0 0 ri−1 0 0 0

]T
,
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FIGURE 1. MUSV system with the relative coordinate.

fi(Xi) =
[
f1i(Xi) f2i(Xi) 0 fi(Vi)

]
is the nonlinear term with

f1i(Xi) = −µi cos(ϕi)+ µi−1 cos(θi − ϕi),

f2i(Xi) =
1
Ri
µi sin(ϕi)+

1
Ri
µi−1 sin(θi − ϕi).

For vessels in the MUSV, the output feedback controller is
designed as:

ui(t) = KiYi(t) (5)

where Ki is the controller gain to be determined.
Remark 1: It’s should be noting that in the MUSV system

setup, the control method is based on the relative distance
and the relative orientation between two adjacent vessels,
the angle between the heading direction, the yaw velocity
of vessel i − 1, and the surge velocity, the sway velocity
and the yaw velocity of vessel i. The first fourth quantities
are transmitted through a wireless communication channel,
while the others can be measured by the onboard sensor on
vessel i.
Considering the wireless communication delay, the con-

troller (5) can be rewritten as

ui(t) = KiYi(t) = KiC̄1iXi(t)+ KiC̄2iXi(tk − τi(tk ))

+KiC2iwi(tk − τi(tk )), t ∈ [tk , tk+1) (6)

where C̄1i =

[
zero(3) zero(3)
∗ I3×3

]
, C̄2i =

[
I3×3 zero(3)
∗ zero(3)

]
,

τi(tk ) is the time-varying delay withtk represents the updating
instant of the ZOH, and satisfies 0 ≤ τi(tk ) ≤ τ̄i and
τ̇i(tk ) = 1, and the sampling intervals are alterable with an
upper bound h, i.e., tk−1 − tk ≤ h.

B. EFFECT OF PROBABILISTIC ON THE ACTUATOR
In this research, the general actuator fault model in [20] was
used to describe the probabilistic fault phenomenon, namely,
uFui = σuiuui, u

F
ri = σriuri, where σui, σri ∈ (0, 1] represents

the effectiveness coefficient of ith vessel actuator, and the
mathematical expectation of σui, σri are εui, εri, respectively.
When σui = σri = 1, which means the ith actuator is in
normal operation. When 0 < σui, σri < 1, it corresponds
to the case of certain fault happen.

Combing the actuator fault into consideration, the con-
troller in (6) can be rewritten as

ui(t) = σiKiC̄1iXi(t)+ σiKiC̄2iXi(tk − τi(tk ))

+ σiKiC2iwi(tk − τi(tk )),

where σi = diag{σui, σri}.
Based on the above analysis, the closed-loop MUSV sys-

tem can be obtained,

Ẋi(t) = (Ai + BiσiKiC̄1i)Xi(t)+ BiσiKiC̄2iXi(tk − τi(tk ))

+BiσiKiC2iwi(tk − τi(tk ))+ Hiwi(t)+ fi(Xi)

+Gidi(t), (7)

Furthermore, define τi(t) = t − tk + τi(tk ), t ∈ [tk , tk+1),
then, we can rewrite (7) as

Ẋi(t) = (Ai + BiσiKiC̄1i)Xi(t)+ BiσiKiC̄2iXi(t − τi(t))

+BiσiKiC2iwi(t−τi(t))+Hiwi(t)+ fi(Xi)+ Gidi(t)

Xi(t) = 8(t), t ∈ [τ̄i, 0) (8)

where 8(t) is the initial function of the MUSV system, and
0 ≤ τi(t) ≤ τ̄ ∗i , τ̄

∗
i = h+ τ̄i.

C. THE OBJECTIVE
The objective in this research is to design a nonlinear robust
control approach for the MUSV to achieve the objectives as
follows,

(i) Robust stability: The state of all vessel in the MUSV
system can be robustly stabilized to the origin, i.e., for
all finite initial condition 8(t) with any initial status 8i(s)
(s ∈ [τ̄i, 0)), there exists a finite number µ(s,8(s)) > 0
such that

lim
t→∞

E{
∫ t

0
‖Xi(t)‖2} ≤ µ(s,8(s))

where E{·} is the mathematical expectation operator.
(ii) Mesh stability: The oscillations will not magnify with

vessel index because of any maneuver of the lead vessel, that

is, ‖G(jw)‖ ≤ 1 for ∀w, where G(s) =
{
axi(s)

/
ax(i−1)(s)

ayi(s)
/
ay(i−1)(s)

with axi(s) and ayi(s) denotes the Laplace transforms of the
acceleration of axi(t) and ayi(t), where axi(t) = ẍi(t) and
ayi(t) = ÿi(t).
Note that the mesh stability discussed in here is similar as

the string stability issues in [8]–[10], which caused by the
dynamic coupling of the MUSV system.

We first give the following definitions and Lemmas, which
will be used in the process of controller design.
Definition 1 [21]: For a given function V (t), defining the

infinitesimal operator 1 as

1V (t) = lim
δ→0+

1
δ
[E{V ((t + δ) |t) } − V (t)].

Lemma 1 [21]: For a given scalar τ > 0, constant matrix
R > 0 and vector function ė : [−h, 0], define the following
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integration as,

−τ

∫ t

t−τ
ẊT (s)RẊ (s)ds

≤ −[X (t)− X (t − τ )]TR[X (t)− X (t − τ )].

Lemma 2 [21]: Given appropriately dimensioned matrices
61, 62 and 63, with 6T

1 = 61. Then

61 +6362 +6
T
2 6

T
3 < 0

holds if for some matrix 60 > 0

61 +636
−1
0 6T

3 +6
T
2 6062 < 0.

III. ROBUST CONTROLLER DESIGN
In this section, we will obtain sufficient condition on the
robust stability of the MUSV system (8), and the controller
is designed by using Lyapunov-Krosovskii method. We first
give the following theorem to guarantee the stability condi-
tions of the MUSV.
Theorem 1: MUSV system with wi(t) = 0 is robustly

stable if there exist matrices Pi > 0, Qi > 0, Ri > 0 and
appropriately dimensioned matrix Ui such that

6i =



6i1 ∗ ∗

Pi −I ∗

6i2 Ui 6i3
Ri 0 0
0 0 0

(PiBiEiKiC2i)T 0 (UiBiEiKiC2i)T

0 0 −UT
i

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−Qi − Ri ∗ ∗ ∗

0 Wi ∗ ∗

0 0 −Wi ∗

0 0 0 (τ̄ ∗i )
2Ri


< 0, (9)

where

6i1 = (Ai + BiEiKiC̄1i)TPi + Pi(Ai + BiEiKiC̄1i)

+Qi − Ri + λmax(Mi),

6i2 = (PiBiEiKiC̄2i)T + Ui(Ai + BiEiKiC̄1i),

6i3 = (UiBiEiKiC̄2i)T + UiBiEiKiC̄2i,

Ei = diag{εui, εri}.

Proof: Define a Lyapunov-Krosovskii function as

Vi(t) = XTi (t)PiXi(t)+
∫ t

t−τ̄∗i

XTi (s)QiXi(s)ds

+ τ̄ ∗i

∫ 0

−τ̄∗i

∫ t

t+α
ẊTi (s)RiẊi(s)dsdα

+

∫ t

t−τ̄∗i

wTi (s)Wiwi(s)ds

where Pi,Qi, Ri,Wi are positive-definite matrices with appro-
priate dimensions.

Using the infinitesimal operator in Definition 1 for Vi(t),
we get

1Vi(t) = ẊTi (t)PiXi(t)+X
T
i (t)PiẊi(t)+ X

T
i (t)QiXi(t)− X

T
i

× (t − τ̄ ∗i )QiXi(t − τ̄
∗
i )+ (τ̄ ∗i )

2ẊTi (t)RiẊi(t)+ ϒi

+wTi (t)Wiwi(t)− wTi (t − τi(t))Wiwi(t − τi(t)),

where

ϒi = −τ̄i

∫ t

t−τ∗i

ẊTi (s)RiẊi(s)ds. (10)

According to Lemma 1, we get

ϒi ≤ −[Xi(t)− Xi(t − τ̄ ∗i )]
TRi[Xi(t)− Xi(t − τ̄ ∗i )]

From the equation (4), we have

f Ti (t)fi(t)

= v2i cos
2(ϕi)+ v2i−1 cos

2(θi − ϕi)

− 2vivi−1 cos(ϕi) cos(θi − ϕi)+
1

R2i
v2i sin

2(ϕi)

+
1

R2i
v2i−1 sin

2(θi − ϕi)+ 2
1

R2i
vivi−1 sin(ϕi) sin(θi − ϕi)

+ (
mvi
mµi

)2v2i r
2
i + (

mµi
mvi

)2µ2
i r

2
i + (

mµvi
mri

)2µ2
i v

2
i

Furthermore, by using the dynamic characteristics of vessel i
in MUSV, we can get

f Ti (t)fi(t) ≤ 2v2i + (
mvi
mµi

)2v2i + (
mµi
mvi

)2r2i + (
mµvi
mri

)2v2i

= XT
i MiXi ≤ λmax(Mi)XT

i MiXi (11)

where Mi =

[
zero(4) 0
∗ M1i

]
, with

M1i =

 2+ (
mvi
mµi

)2 + (
mµvi
mri

)2 0

∗ (
mµi
mvi

)2

 , λmax(Mi)

denotes the maximum eigenvalue of matrixMi. Define a zero
equation as follows

ηi1 = XTi (t − τi(t))Ui[−Ẋi(t)+ (Ai + BiK̄1iσi)Xi(t)

+BiK̄2iσiXi(t − τi(t))+ BiK2iσiwi(t − τi(t))

+Hiwi(t)+ fi(Xi)]

Then taking the mathematical expectation on both sides of
(10) and from (11), we have that

E{1Vi(t)} ≤ ẊTi (t)PiXi(t)+ X
T
i (t)PiẊi(t)+ X

T
i (t)QiXi(t)

−XTi (t−τ̄
∗
i )QiXi(t−τ̄

∗
i )+ (τ̄ ∗i )

2ẊTi (t)RiẊi(t)

− [Xi(t)− Xi(t − τ̄ ∗i )]
TRi[Xi(t)− Xi(t − τ̄ ∗i )]

+wTi (t)Wiwi(t)− wTi (t−τi(t))Wiwi(t − τi(t))

+ λmax i(Mi)XT
i MiXi − f Ti (t)fi(t)+ ηTi1 + ηi1

= E{9T
i 6i9i} < 0
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where

9i1(t) = [XTi (t) f
T
i (t) XTi (t − τi(t))

XTi (t − τ̄
∗
i ) w

T
i (t) w

T
i (t − τi(t)) Ẋ

T
i (t) ].

Then one has

E{1Vi(t)} < −βi1 ‖9i(t)‖2 < 0,

where βi1 = λmin(−6i) > 0 denotes the minimum eigen-
value of matrix −6i.
According yo Dynkin’s formula, one can get

E{Vi(t)} − Vi(0) = E{
∫ t

0
1Vi(s)ds}

< −βi1E{
∫ t

0
‖9i(s)‖2ds}

< −βi1E{
∫ t

0
‖xi(s)‖2ds}.

Meanwhile, we have

E{Vi(t)} > βi2E{‖Xi(t)‖2},

where βi2 = λmin(Pi) > 0. Combining the above two
inequalities, t is obvious that

E{‖Xi(t)‖2}<−βi1β
−1
i2 E{

∫ t

0
‖Xi(s)‖2ds} + β

−1
i2 Vi(0,8(0)).

By using Gronwall-Bellman lemma in [n], we get

E{‖Xi(t)‖2} < −β
−1
i2 e−βi1β

−1
i2 tVi(0),

which after integration equals to

E{
∫ t

0
‖Xi(s)‖2ds} < −β

−1
i1 (1− e−βi1β

−1
i2 t )Vi(0,8(0)).

as t →∞, we can get

lim
t→∞

E{
∫ t

0
‖Xi(s)‖2 ds} < −β

−1
i1 Vi(0,8(0)).

Note that Vi(0,8(0)) > 0, and according to Defini-
tion 1, we can prove that the MUSV system (8) is robustly
stable.

Theorem 1 supplies a sufficient condition for the MUSV to
achieve robustly stable, implying that each individual vessel
can trackingwell. Nowwe continue to give the designmethod
of the controller.
Theorem 2: The MUSVs in (8) with di(t) = 0 is robustly

stabilized, if there exist matrices Pi > 0, Qi > 0, Ri > 0,
6i0 > 0 and appropriately dimensioned matrix Ui, Li such
that the following linear matrix inequality6i2 ∗ ∗

6T
i3 6i0 ∗

6i4 0 6i0

 < 0 (12)

holds and the controller gains can be given by

Ki = 6
−1
i0 Li.

where

6i1 = (Ai + BiEiKiC̄1i)TPi + Pi(Ai + BiEiKiC̄1i)

+Qi − Ri + λmax(Mi),

6i3 = [ (PiBi)T 0 (UiBi)T 0 0 0 0 ]T ,

6i4 =

[
C̄T
i1L

T
i E

T
i 0 C̄T

i2L
T
i E

T
i 0 0 CT

i2L
T
i E

T
i 0

]
,

Ei = diag{εui, εri},

6i2 =



6i1 ∗ ∗

Pi −I ∗

UiAi Ui 0
Ri 0 0
0 0 0
0 0 0
0 0 −UT

i

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−Qi − Ri ∗ ∗ ∗

0 Wi ∗ ∗

0 0 −Wi ∗

0 0 0 (τ̄ ∗i )
2Ri


Proof:According to Theorem 1, the MUSV system (12)

is robustly stable if

6i = 6i2 +6i36̄i4 + 6̄
T
i46

T
i3 < 0,

where

6̄i4 =
[
C̄T
i1K

T
i E

T
i 0 C̄T

i2K
T
i E

T
i 0 0 CT

i2K
T
i E

T
i 0

]
.

According to Lemma 2 the above inequality holds if the
following inequality holds for some matrix 6i0 > 0

6i2 +6i36
−1
i0 6

T
i3 + 6̄

T
i46i06̄i4 < 0,

which by Schur complement, is equivalent to (12) with
Ki = 6

−1
i0 Li. This completes the proof.

In the following, the robust controller design produce is
investigated by considering a disturbance di(t) ∈ L2[0,∞)
in (8).
Theorem 3: The closed-loop MUSV system with any dis-

turbance di(t) ∈ L2[0,∞) is robustly stable with disturbance
attention level γi > 0, if there exist matrices Pi > 0, Qi > 0,
Ri > 0, 5i0 > 0 and appropriately dimensioned matrix
Ui, Li such that the following linear matrix inequality5i1 ∗ ∗

5T
i2 5i0 ∗

5i3 0 5i0

 < 0,

holds and the controller gains can be given by

Ki = 5
−1
i0 Li.

where, is obtained by the equation as shown at the top of
next page.
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5i1 = (Ai + BiEiKiC̄1i)TPi + Pi(Ai + BiEiKiC̄1i)+ CT
i1Ci1 + Qi − Ri + λmax(Mi),

5i2 = [ (PiBi)T 0 (UiBi)T 0 0 0 0 ]T ,

5i4 =
[
C̄T
i1L

T
i E

T
i 0 C̄T

i2L
T
i E

T
i 0 0 CT

i2L
T
i E

T
i 0

]
,

5i2 =



5i1 ∗ ∗

Pi −I ∗

UiAi Ui 0 ∗

Ri 0 0 −Qi − Ri
CT
i2Ci1 0 0 0 Wi + CT

i2Ci2
0 0 0 0 0 −Wi
0 0 −UT

i 0 0 0 −(τ̄ ∗i )
2Ri

GTi Pi 0 UT
i G

T
i 0 0 0 0 −γ 2

i I


.

Proof: Define a free equation as follows,

ηi2 = XTi (t − τi(t))Ui[−Ẋi(t)+ (Ai + BiK̄1iσi)Xi(t)

+BiK̄2iσiXi(t − τi(t))+ BiK2iσiwi(t − τi(t))

+Hiwi(t)+ fi(Xi)]+ Gidi(t)

and define

9i2(t) = [XTi (t) f
T
i (t) XTi (t − τi(t)) X

T
i (t − τ̄

∗
i )

wTi (t) w
T
i (t − τi(t)) Ẋ

T
i (t) di(t) ].

Then, using a proof similar to Theorem 1, we can get

Ji = E{
∫
∞

0
[Y Ti (t)Yi(t)− γ

2dTi (t)di(t)]dt}

= E{
∫
∞

0
[Y Ti (t)Yi(t)− γ

2dTi (t)di(t)+1Vi(t)]dt}

−E{V (∞)}

≤ E{
∫
∞

0
[Y Ti (t)Yi(t)− γ

2
i d

T
i (t)di(t)+1Vi(t)]dt}

=

∫
∞

0
9T
i2(t)5i9i2(t)dt,

where, is obtained by the equation as shown at the bottom of
the next page.
Therefore, if 5i < 0, we have Ji < 0, it’s clear that the
MUSV system is robustly stable and has an H∞ disturbance
attention level γi. Next, we use proof methods similar to
theorems 1 and 2.

IV. MESH STABILITY
In this section, we will discuss the mesh stability of MUSV
systems related to the objectives in 2.3 (ii). The analysis
process is based on the proposed controller.
Considering that each following vessel in the MUSV oper-

ates under the designed controller, and bring (6) into (1) with

controller gain Ki =
[
kR kϕ kθ kµ kv kr
kR kϕ kθ kµ kv kr

]
, then, we have,

axi

= (
dui
mui

µi−
mvi
mµi

viri − [σuikµµi(t)+σuikvvi(t)+ σuikr (ri(t)

+ ri−1(t))+ σuikRRi(t − τi(t))+ σuikRRi(t − τi(t))

+ σuikθθi(t − τi(t))]) sinϕi + (
mµi
mvi

µiri +
dvi
mvi

vi) cosϕi

ayi

= (−
dui
mui

µi+
mvi
mµi

viri+[σuikµµi(t)+σuikvvi(t)+ σuikr (ri(t)

+ ri−1(t))+ σuikRRi(t − τi(t))+ σuikRϕi(t − τi(t))

+ σuikθθi(t − τi(t))]) cosϕi + (
mµi
mvi

µiri +
dvi
mvi

vi) sinϕi

In order to simplify the analysis process, we considered
that the entire MUSV running on (xoy) plane, and the raw
angle ϕi set to π/4, which means axi = ayi, then we can get,

ȧi = −
dui
mui

µ̇i +

√
2
2

(σuikµµ̇i(t)+ σuikRṘi(t − τi(t))) (13)

where ai = axi = ayi and equation (13) does not include the
sway velocity and the raw velocity.

Taking Laplace transformation to the equation (13), and set
ai(0) = 0, we have

ai(s) = −
dui
mui

µi(s)+

√
2
2

(σuikµµi(s)+ σuikRRi(s)e−τis)

According to (1) and (3), we haveµi(s) =
√
2ai(s)

Ri(s) =

√
2(µi−1(s)− µi(s))

2s
=
ai−1(s)− ai(s)

s
.

(14)

Substituting (14) into (13), we obtain:

ai(s) = (σuikµ −

√
2 dui
mui

− σuikR

√
2

2s
e−τis)ai(s)

+ σuikR

√
2

2s
e−τisai−1(s)

Then, we get:

G(s) =
ai(s)
ai−1(s)

=
σuikRe−τis

√
2(1+

√
2dui
mui
− σuikµ)s+ σuikRe−τis

(15)

According to (15), the theorem for the MUSV to achieve
mesh stability can be derived as follows,
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Theorem 4: For the MUSV system (13),∣∣ai(jw)/ai−1(jw)∣∣ ≤ 1 holds for any w > 0, if the following
conditions are satisfied:

σuikR > 0 (16a)

kµ ≤ (1+

√
2 dui
mui

)

/
σui (16b)

Proof: First,
∣∣ai(jw)/ai−1(jw)∣∣ can be written as:

G(jw) =

∣∣∣∣ ai(jw)ai−1(jw)

∣∣∣∣ = σuikR
√
σuikR + b

Since σuikR > 0, if b ≥ 0, then
∣∣ai(jw)/ai−1(jw)∣∣ ≤ 1 holds

true, i.e., the MUSV system is mesh stable, and from (16b),
we have

b =
√
2(1+

√
2 dui
mui

− σuikµ)w2.

According to the condition (16), one can get b ≥ 0. This
completes the proof.

Finally, the proposed method used in the MUSV control
can be described as,
Algorithm: The sampled-data MUSV control algorithm
1). The controller gains can be obtained by utilizing stan-

dard linear matrix inequality (LMI) tool based on Theorem 2
or Theorem 3.

2). By using the Theorem 4 to constraint the derived
controller gain kR and kµ. If this is feasible, the obtained
controller can be used for MUSV control. Otherwise, reset
matrices the related parameters and return to step 1).

V. SIMULATIONS
In this section, a simulation study is conducted to show
how to apply the proposed robust controller to a MUSV
(composed by five vessels), which is operated in virtual
environment established by using MATLAB/Simulink. The
proposed methods and controller in [15] are compared. The
actuator faults state are simulated by a Bernoulli sequence
between interval [0, 50s], as shown in Fig. 2, the faults status
0 < σui = σri < 1 with probability 0.02 and the normal
operation status σui = σri = 1 with probability 0.98.
Two cases are tested in here. The first case is validation

performance when the five vessels are required to running on
a straight lane. The second case is to show that the desired
following angle, in which the angle between the heading

FIGURE 2. Actuator fault status.

direction of a vessel and the vessel-to-vessel connection line
is not zero:
Scenario 1 (Five Vessels Running on a Straight Line): In

the scenario, all the following vessels are tracking the lead
vessel with the desired surge velocity and the yaw velocity
given by µ1 = 2m/s, r1 = 0. The desired profile of

lead vessel is specified as

 x1(t) = t · s
y1(t) = 1 · m/s
r1(t) = 0 · rad/s

. The initial

condition was set as

[R1 ϕ1 θ1 µ1 v1 r1 ]T

= [0. 14 0.1 0 0 0 0 ]T ,

[R2 ϕ2 θ2 µ2 v2 r2 ]T

= [ 0.28 0.2 0 0 0 0 ]T ,

[R3 ϕ3 θ3 µ3 v3 r3 ]T

= [ 0.36 0.15 0 0 0 0 ]T ,

[R4 ϕ4 θ4 µ4 v4 r4 ]T

= [ 0.26 −0.2 0 0 0 0 ]T .

According to Theorem 2 and 4, the controller gains can
be derived as kR = 0.5, kϕ = 2.3, kθ = 0.82, kµ =
1.56, kv = 0.85, kr = 1.35, respectively. Then, Fig. 3 and
Fig. 4 are obtained, which shows the obvious advantages
compared with that given in [15]. Themaximum control input
uui is 8.9N , and uri is −0.5N.m as shown in Fig. 3, which is
smaller than Fig. 4. The following vessel can track the desired
trajectory with high accuracy, while the entire MUSV can
achieve mesh stable.
Scenario 2 (Five Vessels Running on a Curvilinear Lane):

By using Theorem 3 and 4, the controller gains can be derived

5i =



5i1 ∗ ∗

Pi −I ∗

6i2 Ui 6i3
Ri 0 0

CT
i2Ci1 0 0

(PiBiEiKiC2i)T 0 (UiBiEiKiC2i)T

0 0 −UT
i

GTi Pi 0 UT
i G

T
i

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

−Qi − Ri ∗ ∗ ∗ ∗

0 Wi + CT
i2Ci2 ∗ ∗ ∗

0 0 −Wi ∗ ∗

0 0 0 −(τ̄ ∗i )
2Ri ∗

0 0 0 0 −γ 2
i I


.
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FIGURE 3. Five vessels running on the straight line with the proposed
controller: (a) Surge direction uui ; (b) Yaw direction uri ; (c) The position
in xoy plane; (d) The tracking velocities.

FIGURE 4. Five vessels running on the straight line under in [15]:
(a) Surge direction uui ; (b) Yaw direction uri ; (c) The position in xoy
plane; (d) The tracking velocities.
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FIGURE 5. Five vessels running on an eight-shape trajectory with the
proposed controller: (a) Surge direction uui ; (b) Yaw direction uri ; (c) The
position in xoy plane; (d) The tracking velocities.

FIGURE 6. Five vessels running on an eight-shape trajectory under in [15]:
(a) Surge direction uui ; (b) Yaw direction uri ; (c) The position in xoy
plane; (d) The tracking velocities.
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as kR = 0.62, kϕ = 1.86, kθ = 0.62, kµ = 1.35, kv = 0.58,
kr = 0.96. The following vessels tracking the lead vessel with
the desired surge velocity and the yaw velocity asµ1 = 2m/s,
r1 = 1 · rad/s. The desired profile of lead vessel is specified

as

 x1(t) = −1.5 sin(0.5π t/15) · m
y1(t) = 1.5 sin(0.25π t/15) · m
r1(t) = t · rad/s

.

The proposed robust control approach shown better supe-
riority than the controller in [15], as shown in Fig. 5 and 6,
respectively. The maximum control input uui and uri is 1.4N ,
and 2.2N.m, respectively, which is bigger than [15], but the
proposed control can well tracking the desired profile shown
in Fig 5 (a) and (b).

VI. CONCLUSION
In this research, a robust nonlinear control approach based
on Lyapunov-Krosovskii functional is designed to meet the
special performance requirements of MUSV with minimal
negative communication delays and actuator fault effects. The
simulations show that the proposed method is more superior-
ity than the existing one.

In future research, the combination of packet loss, quanti-
zation and delay in MUSV system will be considered, which
will lead to a variety of open issues worthy of investiga-
tion. One possibility is to apply the algorithm in Wang and
Yue [23] and Qi [24] to MUSV control system.
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