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ABSTRACT olling bearings are crucial components in mechanical, civil and aerospace engineering. The
practical working conditions of rolling bearings are complex and tough, hence fault diagnosis of rolling
bearings under varying operating conditions is very challenging. This paper proposes a robust fault diagnosis
approach of rolling bearings using multivariate intrinsic multiscale entropy analysis and neural network
under varying operating conditions. The proposed approach deals with multivariate signal collected from
multi-sensor acquisition system to capture much dynamical characteristic information. Multivariate intrinsic
multiscale entropy analysis consists of adaptive projection intrinsically transformed multivariate empirical
mode decomposition with adaptive noise (APIT-MEMD-AN) and improved multivariate multiscale sample
entropy (IMMSE) with smoothed coarse graining process. Intrinsic mode functions (IMFs) obtained by
APIT-MEMD-AN depict dynamical properties of multivariate signals. IMMSE of certain orders IMFs are
adopted as input values of back propagation (BP) neural network to achieve fault classification of rolling
bearings. APIT-MEMD-AN and IMMSE endow the proposed approach with the underlying adaptivity and
robustness, making the proposed approach a fully data driven and robust method. Theoretical derivations,
numerical simulations and experimental results verify the effectiveness and superiority of the proposed
approach. The research work demonstrates the proposed approach is promising in fault diagnosis of rotary
machinery under varying operating conditions.

INDEX TERMS Robust fault diagnosis, varying operating conditions, adaptive projection intrinsically
transformed multivariate empirical mode decomposition with adaptive noise (APIT-MEMD-AN), improved
multivariate multiscale sample entropy (IMMSE), smoothed coarse graining, neural network.

I. INTRODUCTION
Rolling bearings are crucial components in mechanical, civil
and aerospace systems, and their working conditions have
great influence on the entire system [1]–[3]. Practical work-
ing conditions of rolling bearings are usually complex and
tough, and rolling bearings usually work under varying
operating conditions, hence rolling bearings are prone to
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failure. Fault diagnosis of rolling bearings under varying
operating conditions is very important but also challenging
in practical applications. The signal processing methods,
such as wavelet transform (WT) [4], [5], local mean decom-
position (LMD) [6], [7] and variational mode decomposi-
tion (VMD) [8], [9], have been widely used in the field of
fault diagnosis of rolling bearings. Apart from those meth-
ods, empirical mode decomposition (EMD) has drawn much
attention in recent years [10]–[12]. It decomposes a non-
linear and nonstationary signal into approximate stationary
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time series representing time scales of the signal, denoting
its frequency components. The obtained modes are intrinsic
mode functions (IMFs), which are complete, adaptive and
orthogonal expressions determined by signal itself instead
of preset basis functions. IMFs arrange from high-to-low
instantaneous frequencies. EMD was then extended to com-
plex domain to deal with complex-valued data [13]. Com-
plex EMD was proposed based on certain inherent properties
of complex signals, including correlation between real and
imaginary parts of complex signals [14]. Rotation invariant
complex EMDwas proposed afterwards by developing a con-
sistent framework to process real and complex signals. The
complex signal is decomposed in complex domain instead of
being divided into two parts, which is achieved by employing
complex splines to conduct all algorithms.

Compared with single sensor acquisition system, multi-
sensor acquisition system collects more information, avoids
data loss and eliminates uncertainty of information [15], [16].
Multi-channel signal improves the accuracy and reliability of
obtained information to fully describe mechanical dynamic
systems. As for multivariate signal processing, EMD needs
to analyze each channel data separately, and data fusion is
then conducted by weighting functions, resulting in different
orders and inconsistent frequency scales among obtained
multiple sets of IMFs. It may cause serious adverse effect
in synchronous correlation analysis of multivariate signals.
Hence, EMD reduces the effectiveness and accuracy of fault
diagnosis of rotary machinery in processing multivariate sig-
nal. Bivariate empirical mode decomposition (BEMD) was
proposed to process binary signal [17]–[19], whose local
means are obtained by projecting in multiple directions.
Then direction vectors are unevenly distributed on complex
plane. The local extremums of projections are interpolated
by using a complex-valued spline function, then local means
are obtained by calculating envelop means. Afterwards,
BEMD was further developed to trivariate empirical mode
decomposition (TEMD) [20], treating trivariate signal as a
pure quaternion, namely super complex. Each component
is considered as a real value time series. After projecting
trivariate signal in multiple directions in the middle of three
dimensions, the extremums of projections are interpolated by
a specific spline function to obtain a three-dimensional pure
quaternion envelope curve. The local means of the trivariate
signal are obtained by calculating the means of quaternion
envelope curves.

BEMD and TEMD have been applied to bivariate and
trivariate signal processing, however they are not applicable
to multivariate signal processing. BEMD and TEMD cannot
analyze multivariate signals under the premise of physical
meaning and lack of theoretical basis. In the follow-up stud-
ies, EMD was extended to multivariate signal processing
by proposing multivariate empirical mode decomposition
(MEMD) [21]. The local means and envelopes are computed
by real-valued projections on hyperspheres along multiple
directions, hence MEMD perfectly solves mode alignment
problem of IMFs. MEMD decomposes multivariate signal

into multiple sets of IMFs, and the same characteristic fre-
quencies appear in the same orders of different sets of IMFs.
This property benefits for mode alignment according to fre-
quency ranges across multiple channels. MEMD deals with
multivariate signal collected by multiple sensors at differ-
ent locations of mechanical systems. It has advantages of
EMD processing nonlinear and nonstationary signals and
successfully solves IMFs disorders among multiple chan-
nels. MEMD has been applied in simultaneous processing of
multivariate signal in the fields of fault diagnosis of rotary
machinery [22], [23], biomedical signal processing [24] and
image processing [25]. Complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) [26], [27]
was proposed by utilizing intrinsic filter bank property to
solve the defect of generating different numbers of IMFs.
Gaussian white noises are added into the signal to obtain
one IMF in each iteration to avoid reconstruction error and
ensure the same amounts of IMFs. Analogously, the property
of MEMD in the presence of Gaussian white noise was
studied [28], and it has been found that MEMD can act
as a dyadic filter bank on each channel of the multivari-
ate signal. The filter banks are used to incorporate down-
sampling to reduce decomposed data in decimated MEMD
filter banks [29]. The undecimated and decimatedMEMDfil-
ter banks were studied [30], and the properties equip MEMD
with down-sampling into any arbitrary tree structure and
provide flexibility in the selection of frequency bands.

Due to the fast and wide developments of multi-sensor
acquisition system, multivariate signal processing has drawn
much attention. Since multiple sensors are placed at different
locations on rotary machinery, power imbalances inevitably
exist among multiple channels of the multivariate signal.
It requires multivariate signal processing methods to alleviate
adverse effect caused by power imbalances among multiple
channels. Nonuniformly sampled bivariate empirical mode
decomposition (NS-BEMD) [19], [31], nonuniformly sam-
pled trivariate empirical mode decomposition (NS-TEMD)
[32] were proposed to alleviate adverse effect power
imbalances among bivariate and trivariate signal process-
ing. Adaptive projection intrinsically transformed multi-
variate empirical mode decomposition (APIT-MEMD) [33]
was afterwards proposed to deal with multivariate signals.
APIT-MEMD mitigates mode-mixing problem by obtaining
more accurate IMFs and alleviates adverse effect of power
imbalances. The algorithm adopts the strategy to relocate
n-dimensional uniform vectors on n-dimensional ellipsoid
by finding the first principal component to conduct adaptive
projections.

Approximate entropy [34] was proposed to measure the
complexity and statistical quantification of time series and
has been applied in physiological time series analysis. After-
wards, sample entropy (SE) was proposed [35], [36] as a
refined version of approximate entropy, which obtains sta-
ble entropy values from short data and has proper anti-
noise ability. SE compares the data in time series within
itself as self-matching and measures new information of
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the obtained time series, but it results in false information
occasionally. Multiscale sample entropy (MSE) [37] was
then proposed to analyze the complexity and regularity of
time series on multiple scales, where coarse graining pro-
cess is conducted to analyze multiscale time series at each
scale. MSE better reflects dynamical characteristics of time
series and greatly enrich the meaning of SE. The greater
the probability of generating new patterns is, the more com-
plex the time series is, and the larger entropy value is, and
vice versa. MSE has been adopted as condition indicators in
biomedical signal processing [38], [39] and fault diagnosis of
rotary machinery [40], [41]. Multivariate multiscale sample
entropy (MMSE) was proposed afterwards to compute MSE
of multivariate signal and has been used to detect charac-
teristic evolution of multivariate signals [42]–[45]. In the
authors’ previous studies [46], improved multivariate multi-
scale sample entropy (IMMSE) was proposed with introduc-
ing smoothed coarse graining process. IMMSE was adopted
in health degradation monitoring of rotary machinery, and its
effectiveness and superiority have been validated.

The adaptivity of APIT-MEMD in decomposition and the
verified robustness of IMMSE in measuring the complexity
and regularity of multivariate signals are very beneficial for
fault diagnosis of rotary machinery. This paper proposes
a novel robust fault diagnosis approach of rotary machin-
ery under varying operating conditions, using multivariate
intrinsic multiscale entropy analysis and neural network.
Multivariate intrinsic multiscale entropy analysis consists
of adaptive projection intrinsically transformed multivari-
ate empirical mode decomposition with adaptive noise
(APIT-MEMD-AN) and IMMSE. APIT-MEMD-AN can
alleviate adverse effect of power imbalances among mul-
tiple channels of the collected multivariate signal and uti-
lize its underlying filter bank property. IMMSE employs
smoothed coarse graining process, and IMMSE values are
used as condition indicators and taken as input values of
back propagation (BP) neural network to achieve fault diag-
nosis of rolling bearings. The rest of the paper is as follows:
Section II introduces themethodologies of APIT-MEMD-AN
and IMMSE. Section III elaborates the proposed robust fault
diagnosis approach of rolling bearings under varying oper-
ating conditions. Section IV presents numerical simulations
of APIT-MEMD-AN and IMMSE, and comparative studies.
Section V gives experimental verification, analysis and dis-
cussions. Section VI concludes the paper with major findings
of research work, necessary discussions and future plans.

II. METHODOLOGIES
A. ADAPTIVE PROJECTION INTRINSICALLY
TRANSFORMED MEMD WITH ADAPTIVE
NOISE (APIT-MEMD-AN)
MEMD is the multivariate extension of EMD, and it can
decompose a multivariate signal into multiple sets of IMFs,
which are arranged in the order of high-to-low instantaneous
frequencies [21]. Each IMF set has the same number of IMFs,
and IMFs denoting the same frequencies locate in identical

orders. The algorithm of MEMD has been elaborated in the
authors’ previous studies [47], [48]. To better illustrate the
principle of APIT-MEMD, the principles of NS-BEMD [19],
[31] and NS-TEMD [32] are introduced here. NS-BEMD
algorithm adopts the elliptic statistical method to optimize
BEMD algorithm by considering the relationship between
the second order statistical structure and elliptic parameters
of the bivariate signal represented by the circular quotient.
The sampled vectors are mainly projected along the direction
of principal component. It is important to determine direction
vectors of the highest curvatures of the trivariate signal in
three dimensions in NS-TEMD. Nonuniform samples may
not align with the highest curvature directions to determine
global nonuniformly sampled projections, which could result
in suboptimal estimations of local means of the trivariate
signal. Hence, a combination of uniformly and nonuniformly
sampling strategies is employed. The highest curvature direc-
tion that is not captured by the nonuniform samples can
be captured by uniform samples, and both samples can be
adopted for the projections of the trivariate signal, thereby
accurate local mean estimations can be performed.

For global nonuniform sampling strategy of the trivariate
signal, the principal direction needs to be determined initially.
The principal direction is determined based on the power
imbalances and the correlation across multiple channels. For
the trivariate signal x (t), the covariance matrix is C =
E
{
xT (t) x (t)

}
, whereE {·} is the statistical expectation oper-

ator, and (·)T is the transpose operator. The principal direction
is obtained by eigenvalue decomposition of the covariance
matrix C = V3VT. Elements on the diagonal matrix 3
correspond to eigenvalues, and the eigenvalue matrix V
correspond to eigenvectors of the covariance matrix C.
The eigenvalue matrix characterizes the principal direction
of x (t), and eigenvalues characterize the relative power of
the generated vectors.

To perform nonuniform sampling based on the statisti-
cal characteristics of the trivariate signal, an ellipsoid of
a Cartesian coordinate system is generated as follows:

x = a cos θ sinφ

y = b sin θ cosφ

z = c cos θ (1)

where θ is the tilt angle, φ is the azimuth angle, and a, b, c
are the relevant parameters of the ellipsoid. The Hammer-
sley sequence is adopted to uniformly sample the ellip-
soid and determine the azimuth angle φH and the tilt angle
θH . The Hammersley projection is used to determine the
coordinate system of the uniformly sampled sphere, so that
the ellipsoid is sampled along the direction of the largest
curvature.

As for multivariate signals, APIT-MEMD basically adopts
analogous strategy which relocates n-dimensional uniform
vectors on n-dimensional ellipsoid. In APIT-MEMD, the first
principal component adaptively denotes the direction of
maximum power imbalance and determines the correlation
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FIGURE 1. Adaptive projection vectors by adopting the proposed strategy
(α = 0,1).

across multiple channels. For multivariate signal x (t), its
covariance matrix is C = E

{
xT (t) x (t)

}
, where E {·} and

(·)T denote statistical expectation operator and transpose
operator, respectively. The first principal component direc-
tion is determined by eigenvalue decomposition of the covari-
ance matrix C = 636T, where 6 = [61, 62, · · · , 6n]
denotes the eigenvector matrix, and all values on the diagonal
matrix 3 = diag {λ1,λ2, · · · ,λn} are eigenvalues of the
covariance matrix C. The largest eigenvalue λ1 of 3 corre-
sponds to eigenvector 61 of the first principal component
direction which characterizes maximum power imbalance.
61 is used to construct another vector 6o1 which is along
its opposite direction, 6o1 = −61. Then 61 and 6o1 are
used to reset the direction vectors obtained from uniform
projection strategy. During the iteration process, x (t) is iter-
ated along these adaptive projection vectors, and local means
are obtained by MEMD. APIT-MEMD alleviates adverse
effect of power imbalances among multiple channels by large
amounts of adaptive projection vectors. The adaptive projec-
tion strategy is illustrated in Fig. 1, where α = 0 denotes that
there are no considerable power imbalances, while α = 1
denote high power imbalances among multiple channels.

Furthermore, to utilize the filter bank property of
APIT-MEMD in the presence of Gaussian white noise,
the key idea of CEEMDAN [26], [27] is adopted here.
APIT-MEMD-AN is proposed in this paper. The main steps
of APIT-MEMD-AN are as follows:

1) Add n2 channels Gaussian white noise to original n1
channels multivariate signal x (t) to form the multivari-
ate signal s (t) in each iteration. The Gaussian white
noise is εkstd (rk), where εk is usually set as 0.02
and rk is the signal to be decomposed in each itera-
tion. In first iteration, rk = x (t). In the subsequent
iterations, rk denotes the signal after subtracting the
obtained IMF, thus only one IMF set is generated in
each iteration.

2) Perform eigenvalue decomposition of the covariance
matrix of the multivariate signal s (t), C = 636T,
where 6 is the eigenvector matrix, 3 is the eigen-
value matrix. The largest eigenvalue λ1 corresponds
to eigenvector 61, namely first principal component
denotes the direction of maximum power imbalance.
Then construct another vector 6o1 along the opposite
direction of 61.

3) Adopt Hammersley sequence to uniformly sample on
the (n − 1) dimensional sphere to obtain K uni-
form projection vectors

{
xθk
}K
k=1. Afterwards, calcu-

late Euclidean distance between each direction vector
and 61.

4) Reset uniform projection vectors xθk61
on the half ellip-

soid where 61 is located, according to:

x̂θk61
=

xθk61
+ α61∣∣∣xθk61
+ α61

∣∣∣ (2)

Reset uniform projection vectors xθk6o1 on another half
of ellipsoid where 6o1 is located, according to:

x̂θk6o1
=

xθk6o1
+ α6o1∣∣∣xθk6o1
+ α6o1

∣∣∣ (3)

where α is determined by the degree of power imbal-
ances among multiple channels of the multivariate
signal.

5) Use adaptive projection direction vectors xθk61
and xθk6o1

to conduct iterative decomposition, and local mean
estimation is achieved based on MEMD, then obtain
(n1 + n2) sets of IMFs of s (t).

6) Discard n2 sets of IMFs, corresponding to added Gaus-
sian white noise, from the resulting (n1 + n2) sets of
IMFs. Then n1 sets of IMFs of x (t) are obtained.

MEMD-derived methods solve mode alignment problem
across multiple channels, which is beneficial for synchronous
correlation analysis and has been illustrated in the author’s
previous studies [47], [48]. Multivariate signals are decom-
posed into multiple sets of IMFs arranging from high-to-low
instantaneous frequencies adaptively. Multiple sets of IMFs
are aligned to the same frequency ranges, and the same char-
acteristics frequencies locate in the same orders of IMF sets.
In addition, APIT-MEMD and APIT-MEMD-AN alleviate
adverse effect of power imbalances among multiple channels
by large amounts of adaptive projection vectors. Based on
theoretical derivations, the advantages of APIT-MEMD-AN
against APIT-MEMD in fault diagnosis of rotary machinery
lie in two aspects as follows:

1) APIT-MEMD-AN utilizes the intrinsic filter bank
property in the presence of Gaussian white noise with
frequency uniformly distribution property to allevi-
ate mode mixing problem. The extra noise channels
serve as references to enable more stable and accurate
IMFs depicting dynamical characteristic information.

2) By adding specific noise to each residue in each iter-
ation of APIT-MEMD-AN, one IMF set is obtained
each time, thus the same amounts of IMFs are gener-
ated under different ensemble times, which benefits for
subsequent analysis of adopting certain orders IMFs.
If different orders IMFs were generated in different
decompositions, then it could cause confusion if certain
orders IMFs were adopted in subsequent analysis.
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B. IMPROVED MULTIVARIATE MULTISCALE SAMPLE
ENTROPY (IMMSE)
MMSE was proposed based on MSE which was elaborated
in the authors’ previous studies [46]. MMSE algorithm is
given here directly. Coarse graining process of p-variate time
series

{
xk,i
}N
i=1 is conducted for scale factor ϕ, where k =

1, 2, · · · , p, i = 1, 2, · · · ,N , N is the number of points. The
coarse-grainedmultivariate time series is obtained as follows:

yϕk,j =
1
ϕ

jϕ∑
i=(j−1)ϕ+1

xk,i (4)

where 1 ≤ j ≤ N
/
ϕ. Then, calculate multivariate sample

entropy (Multi-SE) of each coarse-grained multivariate yϕk,j,
and plot Multi-SE as a function of the scale factor ϕ,
namely MMSE. The main steps of Multi-SE are as follows:

1) The multivariate embedded reconstruction of a
p-variate time series

{
xk,i
}N
i=1 is based on composite

delay vectors:

Xm(i) = [x1,i, x1,i+τ1 , · · · , x1,i+(m1−1)τ1 , x2,i, x2,i+τ2 ,

· · · , x2,i+(m2−1)τ2 , · · · xp,i,

xp,i+τp , · · · , xp,i+(mp−1)τp ] (5)

where M =
[
m1,m2, · · · ,mp

]
and τ =[

τ1, τ2, · · · , τ p
]
are the embedded vector and the time

delay vector, respectively, in multivariate embedding
reconstruction [49], [50].

2) Define the distance between any two vectorsXm (i) and
Xm (j) as maximum criterion:

D[Xm(i),Xm(j)]

= max
l=1,2,··· ,m

{|x(i+ l − 1)− x(j+ l − 1)|} (6)

3) Determine the number of vector pair of the com-
posite delay vector Xm (i) as Pi and threshold is r .
D [Xm (i) ,Xm(j)] ≤ r . The occurrence frequency
Bmi (r) = Pi

/
(N − n− 1), and n = max {M} ×

max {τ }.
4) Compute the average of all Bmi (r):

Bm(r) =
1

N − n

N−n∑
i=1

Bmi (r) (7)

5) Extend the multivariate delay vector tom+1, and other
data channels remain unchanged, so the general embed-
ding dimension of multivariate time series increases
to m+ 1.

6) Repeat steps of (2)-(5) to calculate all Bmk+1i (r) and
mean value Bm+1i (r) upon k , then its mean value
Bm+1(r) upon i is denoted as:

Bm+1(r) =
1

p(N − n)

p(N−n)∑
i=1

Bm+1i (r) (8)

whereBm (r) denotes the possibility of similarity of any
two composite delay vectors in m dimensional phase
space.

FIGURE 2. Illustration of traditional coarse graining process.

FIGURE 3. Illustration of the proposed smoothed coarse graining process.

7) Multi-SE can be denoted as:

Multi-SE(M, τ , r,N ) = InBm(r)− InBm+1(r) (9)

During the coarse graining process, when scale factor
ϕ = 3, traditional coarse graining process is illustrated
in Fig. 2. Fig. 2 shows that the time series is compressed by
traditional coarse graining process according to scale factor.
When the scale increases, the length of coarse-grained time
series decreases, hence traditional coarse graining process
cannot guarantee the same length of coarse-grained time
series. When the length of the time series is not an integer
multiple of scale factor, there will be data loss during coarse
graining process. These twomain drawbacks inevitably affect
the accuracy and effectiveness of MMSE algorithm. To solve
these drawbacks, IMMSE was proposed by using proposed
smoothed coarse graining process in the authors’ previous
studies [46], which adopts a sliding average during coarse
graining process. When scale factor ϕ = 3, the proposed
smoothed coarse graining process is illustrated in Fig. 3,
which guarantees the same length of coarse-grained time
series and avoids data loss.

III. THE PROPOSED FAULT DIAGNOSIS OF ROLLING
BEARINGS BASED ON MULTIVARIATE INTRINSIC
MULTISCALE ENTROPY ANALYSIS UNDER
VARYING OPERATING CONDITIONS
When different kinds of faults occur to rolling bearings,
the complexities of structural dynamical responses are differ-
ent. Recognition of structural dynamical responses achieves
fault diagnosis of rolling bearings. Studies on EMD-derived
methods indicate that IMFs depict signal dynamics and
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the underlying properties of decoupling frequency infor-
mation [51]–[55]. Using multiple sensors to collect mul-
tivariate signals avoids the loss of local information and
ensures to capture maximum dynamical information. The fil-
ter bank property of APIT-MEMD is studied in this paper, and
APIT-MEMD-AN is proposed to process multivariate signals
of rolling bearings. The IMFs depict intrinsic dynamical
properties of multivariate vibration signals of different kinds
of faulty rolling bearings. Certain orders IMFs can be used to
extract fault characteristic information. Since IMMSE values
measure the complexity and regularity of vibration signals.
Here, IMMSE values are adopted as condition indicators
to measure the complexity and regularity of multivariate
vibration signals of rotary machinery under varying operating
conditions [46].

This paper proposes a novel robust fault diagnosis
approach of rolling bearings under varying operating con-
ditions using multivariate intrinsic multiscale entropy anal-
ysis and neural network. Multivariate intrinsic multiscale
entropy analysis consists of APIT-MEMD-AN and IMMSE.
APIT-MEMD-AN decomposes multivariate signals into mul-
tiple sets of IMFs, arranging from high-to-low instantaneous
frequencies. Certain orders IMFs are selected and used to
depict dynamical properties of multivariate vibration sig-
nals. IMMSE of certain orders IMFs are taken as condition
indicators and adopted as input values of BP neural net-
work to achieve fault diagnosis of rolling bearings. IMMSE
measures the complexity of multivariate vibration signals,
instead of energy or frequency amplitudes. Different kinds of
faulty rolling bearings are classified by intrinsic dynamical
properties. Hence the results of the proposed fault diagnosis
approach won’t be affected by varying operating conditions.
BP neural network is a multi-layer feedforward neural net-
work, with advantages of forward propagation of signals
and backward propagation of errors. When output values
differ from expected values, it would start to propagate back-
wards and optimize its topology and network weight by self-
learning and self-adjustment [56], [57]. BP neural network
can serve as a nonlinear function, where the input values An
are condition indicators, and the predicted output values Cn
are dependent variables. The topology of BP neural network
is shown in Fig. 4. The output values C1, C2 and C3 denote
three kinds of defect types, which are inner race, ball and
outer race defects, respectively. The schematic diagram of the
proposed approach in this paper is illustrated in Fig. 5.

IV. NUMERICAL SIMULATIONS
To validate the effectiveness and superiorities of the proposed
APIT-MEMD-AN and IMMSE, numerical simulations are
given here. The same simulated multivariate signal is adopted
in simulation researches of APIT-MEMD-AN and IMMSE
for the consistency of numerical simulations, due to the
strategy of multivariate intrinsic multiscale entropy analysis.
Under practical conditions, apart from fault characteristic
frequency of faulty rolling bearing, there are also structural
intrinsic frequencies and modulation frequencies. Hence,

FIGURE 4. Illustration of BP neural network topology.

different frequency components are adopted to construct the
simulatedmultivariate signal. Three original signals are given
as follows:

x1(t) = cos(2π f1t) [1+ sin(2π f2t)]

x2(t) = sin(2π f3t)

x3(t) = sin(2π f4t) [1+ cos(2π f5t)] (10)

where f1, f2, f3, f4, f5 are 50 Hz, 10 Hz, 90 Hz, 140 Hz,
20 Hz, respectively. The sampling frequency is 4096 Hz, and
the sampling point is 4096. Under practical conditions, three
original signals are collected by each sensor simultaneously
in multi-sensor acquisition system of rolling bearing. Sim-
ulated collected multivariate signal amplitudes are set as 1,
2 and 4 for 1st, 2nd and 3rd channels, respectively, to simulate
power imbalances among multiple channels of multivariate
signal. s denotes background noise, simulated by Gaussian
white noise with variance of 0.4 andmean of 0. The simulated
collected multivariate signal is given as follows:

S1(t) = x1(t)+ x2(t)+ x3(t)+ s

S2(t) = 2x1(t)+ 2x2(t)+ 2x3(t)+ 2s

S3(t) = 4x1(t)+ 4x2(t)+ 4x3(t)+ 4s (11)

A. SIMULATION RESEARCH OF APIT-MEMD-AN
APIT-MEMD-AN is proposed here by adopting its filter bank
property in the presence of Gaussian white noise, and specific
noise is added to each residue in each iteration during the
decomposition to generate one IMF set each time. To ver-
ify the effectiveness and superiority of APIT-MEMD-AN
over APIT-MEMD, numerical simulations are conducted
here. The α is determined by the degree of power imbal-
ances among three channels signal in APIT-MEMD-AN. The
α values of 0 and 1 respectively denote the case without
power imbalances and the case with high power imbalance.
Under practical conditions, power imbalances inevitably exist
among multiple channels of the multivariate signal, however
its degree is hard to define. Hence, α is set as 0.5 to capture
direction of highest power imbalance as a compromising
solution. Two channels Gaussian white noise are added to
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FIGURE 5. The schematic diagram of the proposed robust fault diagnosis approach using multivariate intrinsic
multiscale entropy analysis and neural network under varying operating conditions.

multivariate signal to adopt its filter bank property, with
variance of 0.4 and average of 0. In APIT-MEMD-AN, two
channels Gaussian white noise are added to the signal in
each iteration. In the first iteration of APIT-MEMD-AN,
rk denotes the simulated multivariate signal. In subsequent
iterations, rk denotes multivariate signal after subtracting
one IMF set. Time domain plots of IMFs obtained by
APIT-MEMD and APIT-MEMD-AN of the multivariate sig-
nal are shown in Fig. 6 and Fig. 7, respectively.

Fig. 6 and Fig. 7 show that 8 orders IMFs are
obtained by APIT-MEMD, and 8 orders IMFs are obtained
by APIT-MEMD-AN. The residue of the decomposition is
not shown in each figure. From time domain plots of IMFs
obtained by APIT-MEMD and APIT-MEMD-AN, it can be
seen that the same characteristic frequencies locate in the
same orders of IMFs with different amplitudes. To measure
the superiority of APIT-MEMD-AN over APIT-MEMD in
alleviating mode mixing problem to extract characteristic
frequencies of the simulated multivariate signal, fault corre-
lation factor (FCF) analysis [47] is conducted to determine
effective IMFs. During FCF analysis, the 3rd, 4th and
5th orders IMFs obtained by APIT-MEMD are determined

as effective, and frequency domain plots of effective IMFs are
shown in Fig. 8. The 2nd, 3rd and 4th orders IMFs obtained by
APIT-MEMD-AN are determined as effective, and frequency
domain plots of effective IMFs are shown in Fig. 9.

It can be seen from Fig. 8 that in effective IMFs obtained
by APIT-MEMD, characteristic frequencies f4 and f4 ± f5 of
x3(t) appear in the 3rd order IMFs, characteristic frequency f3
of x2(t) appears in the 3rd and 4th orders IMFs, and charac-
teristic frequencies f1 and f1 ± f2 of x1(t) appear in the 4th
and 5th orders IMFs. The analysis shows that there are mode
mixing problems existing in IMFs obtained by APIT-MEMD.
While Fig. 9 shows that in effective IMFs obtained
by APIT-MEMD-AN, characteristic frequencies f4 and f4 ±
f5 of x3(t) appear in the 2nd order IMFs, characteristic
frequency f3 of x2(t) appears in the 3rd order IMFs, and
characteristic frequencies f1 and f1 ± f2 of x1(t) appear
in the 4th order IMFs. The frequency analysis indicates
that there is no mode mixing problem existing in IMFs
obtained by APIT-MEMD-AN. Different characteristic fre-
quencies locate exactly in different orders IMFs obtained by
APIT-MEMD-AN. Further, it can be seen from Fig. 8 and
Fig. 9 that IMFs obtained by APIT-MEMD-AN show less
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FIGURE 6. Time domain plots of IMFs obtained by APIT-MEMD of the
multivariate signal.

FIGURE 7. Time domain plots of IMFs obtained by APIT-MEMD-AN of the
multivariate signal.

redundant noise frequency components, and more accurate
characteristic frequency components than IMFs obtained
by APIT-MEMD.

The comparative analysis of frequency domain plots
shows that characteristic frequencies of multivariate signal
can be extracted in IMFs obtained by APIT-MEMD and
APIT-MEMD-AN, meaning adverse effect of power

FIGURE 8. Frequency domain plots of effective IMFs obtained by
APIT-MEMD, where red circles denote f4 and its side frequencies
f4 ± f5, green circles denote f3, and blue circles denote f1 and its side
frequencies f1 ± f2.

FIGURE 9. Frequency domain plots of effective IMFs obtained by
APIT-MEMD-AN, where red circles denote f4 and its side frequencies
f4 ± f5, green circles denote f3, and blue circles denote f1 and its side
frequencies f1 ± f2.

imbalances is alleviated. In addition, APIT-MEMD-AN
shows superiority over APIT-MEMD in alleviating mode
mixing problem to generate more accurate IMFs depicting
dynamical properties of multivariate signal. Hence, from the
above simulation research and comparative analysis, advan-
tages of APIT-MEMD-AN against APIT-MEMD have been
validated.

B. SIMULATION RESEARCH OF IMMSE
To verify the effectiveness and superiority of IMMSE
over MMSE, numerical simulation and comparisons are
given here. MMSE is improved by smoothed coarse grain-
ing process. For consistency of numerical simulations, due
to the strategy of multivariate intrinsic multiscale entropy
analysis, IMMSE and MMSE of the simulated multivari-
ate signal in Equation (11) are computed here. Embedding
dimensionm and delay time τ are set as 5 and 1, respectively.
Based on theoretical derivation in methodologies, a larger
scale factor leads to clearer presentation of signal’s complex-
ity, however results in more computational load, meaning
less computation efficiency. Taking presentation of signal’s
complexity and computation efficiency into account, the scale
factor ϕ is selected as 20 in simulation research of IMMSE
after several experimental trials.
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FIGURE 10. 1st experimental trial using 1 to 2048 points of multivariate
signal: (a) MMSE values, (b) IMMSE values.

FIGURE 11. 2nd experimental trial using 2049 to 4096 points of
multivariate signal: (a) MMSE values, (b) IMMSE values.

To validate the effectiveness and superiority of IMMSE
over MMSE, multivariate signals from different starting
points are analyzed. The length of the original multivari-
ate signal is 4096, and multivariate signals with the length
of 2048 points are adopted in two experimental trials, from
1 to 2048 (1st trial) and 2049 to 4096 (2nd trial), respectively.
MMSE and IMMSE values of two experimental trials are
shown in Fig. 10 and Fig. 11, respectively.

It can be seen from Fig. 10 and Fig. 11 that MMSE
and IMMSE values of multivariate signal monotonically
decrease. MMSE values, adopting traditional coarse graining
process, show fluctuations along with the increase of scale
factor. It can be seen from Fig. 10 (a) and Fig. 11 (a) that
when scale factors are 2 and 3, MMSE values show fluctu-
ations in overall variation trend. In Fig. 10 (a), when scale
factors are 10 and 15, and in Fig. 11 (a), when scale factors
are 9 and 16, MMSE values show fluctuations in overall
variation trend. While IMMSE values, adopting smoothed
coarse graining process, show robustness with the increase
of scale factor in Fig. 10 (b) and Fig. 11 (b). The com-
parative analysis shows that IMMSE achieves more stable
entropy values on multiple scales to reflect the complexity
and regularity of multivariate signals. In addition, the com-
parisons between MMSE and IMMSE in two experimental
trials verify the superiority of the proposed IMMSE over
MMSE in reflecting the complexity and regularity of mul-
tivariate signals. Smoothed coarse graining process allevi-
ates adverse effect of background noise. Hence, IMMSE
can be applied in the field of fault diagnosis of rolling
bearings.

FIGURE 12. (a) The schematic of experimental apparatus,1-Motor,
2-Torque transducer/encoder, 3-Dynamometer, 4-Base plate.
(b) A picture of experimental apparatus.

V. EXPERIMENTAL VERIFICATION
The theoretical derivations and numerical simulations indi-
cate that the proposed approach can be applied to fault
diagnosis of rotary machinery. To validate the effectiveness
and superiority of the proposed approach, practical exper-
iments need to be conducted. Considering the authority of
data sets used for practical experiments, faulty bearing data
from Case Western Reserve University Bearing Database are
used to verify the superiority of the proposed approach [58].
6205-2RS JEM SKF rolling bearings were used in experi-
ments. The electro discharge machining is adopted to cause
defects on different parts of rolling bearing, to generate differ-
ent types of faulty rolling bearings, including inner race, ball
and outer race defects of rolling bearings. Three sensors were
placed at different locations of the experimental apparatus,
at the 12 o’clock positions of drive and fan ends of the motor
housing, and motor supporting base plate. The sampling fre-
quency in signal acquisition is 12 kHz. The schematic dia-
gram of the experimental apparatus and a picture are shown
in Fig. 12.

Faulty rolling bearings of different severities were used in
the experiment, including defect diameters of 0.007, 0.014,
and 0.021 inch. Motor loads are 0, 1, 2, 3 Hp and motor
speeds are 1730, 1750, 1772, 1797 rpm. Rolling bearing of
each kind of severity has 4 operating conditions, namely there
are 12 operating conditions of faulty rolling bearings, which
denotes varying operating conditions in this paper. To ver-
ify the validity and superiority of the proposed robust fault
diagnosis approach of rotary machinery under varying oper-
ating conditions, the data sets of defect diameters of 0.007,
0.014 and 0.021 inch are both chosen to be analyzed to extract
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TABLE 1. Illustrations of faulty rolling bearing data sets under varying
operating conditions.

indicators for training sets and testing sets. For 12 operat-
ing patterns, 10 samples with the length of 8192 points of
each defect are acquired from collected vibration signals.
To achieve fault diagnosis of rolling bearings under varying
operating conditions, 90 samples are randomly selected as
training sets, and the remaining 30 samples are testing sets.
The analyzed faulty rolling bearing data sets under varying
operating conditions are illustrated in Table 1.

APIT-MEMD-AN is conducted to decompose one set mul-
tivariate signal of faulty rolling bearing, and time domain
plots of the generated IMFs are shown in Fig. 13.

It can be seen from Fig. 13 that 11 orders IMFs are gener-
ated by APIT-MEMD-AN, and the residue of the decompo-
sition is not shown in the figure. It should be noted that the
effectiveness of the proposed method using different orders
IMFs are different. Then IMMSE values of certain orders
IMFs are computed and adopted as input values of BP neural
network. IMMSE of one order IMFs are computed as a trial
and shown in Fig. 14.

Fig. 14 shows that IMMSE values monotonically decrease
along with the increase of scale factor. It has been illustrated
in the authors’ previous studies [46] that if IMMSE values
of a multivariate signal monotonically decrease, and it means
the multivariate signal has low self-similarity and contains
most information at the smallest scale. Hence, IMMSE value
of smallest scale is adopted as the condition indicator during
fault diagnosis of rolling bearings.

The parameters of BP neural network are given as follows,
and it has 2 hidden layers, apart from input and output layers.
The detailed structure of BP neural network adopted in this
paper, including training and learning function settings, and
numbers of layers and neurons, is given in Table 2. The
number of input neurons are selected as 7 denoting IMMSE
values of 7 orders IMFs are computed and adopted as input
of BP neural network, which will be illustrated hereinafter.
The output layer has 3 neurons, denoting three defect types
of rolling bearings. The training iterations, namely training
times, is taken as 1000. The output neurons of BP neural
network are shown in Table 3.

FIGURE 13. Time domain plots of IMFs obtained by APIT-MEMD-AN of
multivariate signal.

FIGURE 14. IMMSE values of one order IMFs adopting smoothed coarse
graining process.

TABLE 2. The detailed structure of BP neural network.

To verify the superiority of multivariate signal processing
over single channel signal processing, the results of neural
network adopting SE of the first 7 orders IMFs obtained by
EMD, are shown in Fig. 15. The abscissas of Fig. 15 denote
the data sets, and the ordinates 1, 2, 3 denote inner race, ball
and outer race defects, respectively, based on the setting of
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FIGURE 15. BP neural network results by utilizing 7 orders IMFs of EMD and SE: (a) Training sets, (b) Testing sets.

FIGURE 16. BP neural network results by utilizing 4 orders IMFs of APIT-MEMD-AN and IMMSE: (a) Training sets,
(b) Testing sets.

FIGURE 17. BP neural network results by utilizing 7 orders IMFs of MEMD and IMMSE: (a) Training sets, (b) Testing sets.

the output layer neurons in Table 3, and the same applies
hereinafter.

Fig. 15 shows that fault classification accuracies in
testing sets of BP neural network is far from good.

Fault classification accuracies of inner race, ball, and outer
race defects of rolling bearings in testing process of BP neural
network are 80%, 70% and 76.67%. The results infer that SE
of IMFs obtained by EMD of single-channel signal cannot

130814 VOLUME 7, 2019



R. Yuan et al.: Robust Fault Diagnosis of Rolling Bearings

FIGURE 18. BP neural network results by utilizing 7 orders IMFs of APIT-MEMD and MMSE: (a) Training sets, (b) Testing
sets.

TABLE 3. The output layer neurons of BP neural network.

be taken as effective condition indicators in fault diagnosis of
rolling bearings. Thus, the proposed approach with process-
ing multivariate signals is conducted to achieve fault classifi-
cation of rolling bearings. To explore the appropriate order of
the adopted IMFs and use IMMSE of them as input values
of BP neural network, the first 4 orders IMFs are adopted
in the proposed approach as a trial. The results of neu-
ral network adopting IMMSE of the first 4 orders IMFs,
obtained by APIT-MEMD-AN of multivariate signals of
faulty rolling bearings under varying operating conditions,
are shown in Fig. 16.

Fig. 16 shows that fault classification accuracies of testing
sets are not good. The inner race defect of rolling bearings is
classified accurately, and ball and outer race defects of rolling
bearings are not classified properly. Fault classification accu-
racies of ball and outer race defects of rolling bearings in
testing process of BP neural network are 66.7% and 80%,
respectively. The unsatisfactory results are most likely caused
by insufficient orders IMFs adopted for IMMSE, namely
insufficient effective input values of BP neural network. The
reason of bad performance of fault classification of rolling
bearings here is that insufficient orders IMFs do not contain
enough dynamical response information of different kinds of
faulty rolling bearings. After the trial of adopting the first
4 orders IMFs, multiple experiments are conducted adopting
different numbers of IMFs afterwards. The first 7 orders IMFs
are determined as optimal orders for IMMSE computing after
repeated experimental validation and regarded as proper input
values of BP neural network.

To verify the superiority of the proposed approach in this
paper, comparisons of approaches adopting similar strategies
are given here. The results of BP neural network adopting
IMMSE of the first 7 orders IMFs, obtained by MEMD of
multivariate signals, are shown in Fig. 17. The results of
BP neural network adopting MMSE of the first 7 orders
IMFs, obtained by APIT-MEMD of multivariate signals, are
shown in Fig. 18. The results of BP neural network adopting
IMMSE of the first 7 orders IMFs, obtained by APIT-MEMD
of multivariate signals, are shown in Fig. 19.

Fig. 17, Fig. 18 and Fig. 19 show that the abovemen-
tioned approaches adopting similar strategies to multivariate
intrinsic multiscale entropy analysis and BP neural network
achieve different effects in fault diagnosis results of rolling
bearings under varying operating conditions. In Fig. 17,
Fig. 18 and Fig. 19, fault classification accuracies of inner
race defect of rolling bearings in testing process of BP neural
network are 100%. Fig. 17 shows that fault classification
accuracies of ball and outer race defects of rolling bearings
in testing process of BP neural network are 83.3% and 90%,
respectively. Fig. 18 shows that fault classification accuracies
of ball and outer race defects of rolling bearings in testing
process of BP neural network are 83.3% and 90%, respec-
tively. Fig. 19 shows that fault classification accuracies of
ball and outer race defects of rolling bearings in testing pro-
cess of BP neural network are respectively 93.3% and 90%.
The comparative analysis of classification results between
Fig. 17 and Fig. 19 verifies the superiority of APIT-MEMD.
The comparative analysis of classification results between
Fig. 18 and Fig. 19 illustrates the superiority of the proposed
IMMSE. The above analysis of classification results verifies
the superiority of APIT-MEMD and IMMSE. The above
analysis illustrates that the proposed strategy in this paper is
effective in classifying different kinds of defects of rolling
bearings under varying operating conditions.

The proposed fault diagnosis approach of rolling bearings
under varying operating conditions in this paper employs
multivariate intrinsic multiscale entropy analysis consisting
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FIGURE 19. BP neural network results by utilizing 7 orders IMFs of APIT-MEMD and IMMSE: (a) Training sets, (b) Testing
sets.

FIGURE 20. BP neural network results by utilizing 7 orders IMFs of APIT-MEMD-AN and IMMSE: (a) Training sets,
(b) Testing sets.

of APIT-MEMD-AN and IMMSE, combined with
BP neural network. The results of BP neural network adopt-
ing IMMSE values of the first 7 orders IMFs, obtained by
APIT-MEMD-AN of multivariate signals, are shown
in Fig. 20.

Fig. 20 shows that the proposed approach using multi-
variate intrinsic multiscale entropy analysis consisting of
APIT-MEMD-AN and IMMSE, combined with BP neural
network achieves perfect fault diagnosis results. Fault clas-
sification accuracies of inner race, ball and outer race defects
of rolling bearings in testing processing of BP neural network
are 100%. The comparative analysis of classification results
between Fig. 19 and Fig. 20 illustrates the superiority of
the proposed APIT-MEMD-AN. Classification results indi-
cate that the proposed approach using APIT-MEMD-AN and
IMMSE achieves optimal fault diagnosis results.

The above analysis shows the effectiveness and superiority
of our proposed approach. Further, to verify the superiority of
the proposed approach, 30 times of experiments employing
abovementioned strategies are conducted to get the averages

TABLE 4. The fault classification accuracies of rolling bearings of the
results of BP neural network under varying operating conditions using
different strategies (adopting 7 orders IMFs).

of fault classification accuracies. The results of BP neural
network of fault classification accuracies adopting different
strategies are shown in Table 4.

It can be seen from the Table 4 that the proposed
approach achieves best classification accuracies compared
to strategies adopting other methods involving APIT-MEMD
and MMSE. The results validate the superiority of our pro-
posed novel methods: APIT-MEMD-AN, IMMSE and the

130816 VOLUME 7, 2019



R. Yuan et al.: Robust Fault Diagnosis of Rolling Bearings

proposed approach of fault diagnosis under varying operating
conditions.

VI. DISCUSSION AND CONCLUSION
The proposed robust fault diagnosis approach provides a
novel approach to achieve fault diagnosis of rotary machin-
ery under varying operating conditions. Multivariate intrinsic
multiscale entropy analysis consists of APIT-MEMD-AN and
IMMSE. APIT-MEMD-AN has fully data driven intrinsic
characteristic and IMMSE has the underlying robust char-
acteristic, making the proposed approach a fully data driven
and robust approach. Multivariate signals are decomposed by
APIT-MEMD-AN to get multiple sets of IMFs, and IMMSE
of certain IMFs are adopted as input values of BP neural
network to achieve fault diagnosis of rolling bearings. The
validity and superiority of the proposed approach are verified
by theoretical derivations, numerical simulations and experi-
mental verification. The research work demonstrates that the
proposed approach is promising in fault diagnosis of rolling
bearing under varying operating conditions. In future work,
multivariate intrinsic multiscale entropy analysis combined
with neural network will be adopted in related fields of
structural health monitoring, and other new fields. Different
classifiers will be considered to assist multivariate intrinsic
multiscale entropy analysis in extracting dynamical proper-
ties of different kinds of systems. The major findings of the
proposed approach are summarized as follows:

1) The way of processing multivariate signals caters to the
fast and wide developments of multi-sensor acquisition
system. By using multiple sensors to collect multivari-
ate signals of rolling bearings, it captures more dynam-
ical information than single sensor. Inaccurate results
of fault diagnosis are avoided by cross-information
between multiple channels.

2) MEMD-derived methods have advantages, including
mode alignment across multiple channels, adaptive
arrangement of high-to-low instantaneous frequencies,
same locations of characteristic frequencies in IMFs.
Further, APIT-MEMD and APIT-MEMD-AN alleviate
adverse effect of power imbalances among multiple
channels by adaptive projection vectors. In addition,
APIT-MEMD-AN has two advantages against
APIT-MEMD. It utilizes filter bank property in the
presence of Gaussian white noise with frequency uni-
formly distribution property to alleviate mode mixing
problem. By adding specific noise to each residue
in each iteration to obtain one IMF set each time,
the same amounts of IMFs are obtained under different
ensemble times, which benefits for subsequent analysis
of adopting certain orders IMFs.

3) The proposed IMMSE algorithm measures the com-
plexity and regularity of multivariate vibration sig-
nals of faulty rolling bearings. The proposed smoothed
coarse graining process improves MMSE algorithm.
IMMSE measures intrinsic properties of multivariate

signals instead of energy or frequency amplitudes,
and it won’t be affected by defect diameter, motor
load or speed, which endows the proposed approach
with the intrinsic robustness. Hence the proposed
approach can be well applied in the fault diagnosis of
rolling bearings under varying operating conditions.

4) The actual output of BP neural network is consistent
with the theoretical output during the training and
testing process of the proposed approach. It has the
advantage of simple network structure and convenient
parameter adjustment. The results demonstrate that
BP neural network can be effectively adopted to fault
diagnosis of rolling bearings. It helps to demonstrate
the effectiveness and superiority of multivariate intrin-
sic multiscale entropy analysis proposed in this paper.
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