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ABSTRACT The just noticeable difference (JND) models in pixel domain are generally composed of
luminance adaptation (LA) and contrast masking (CM), which takes edge masking (EM) and texture
masking (TM) into consideration. However, in existing pixel-wise JND models, CM is not evaluated
appropriately since they overestimate the masking effect of regular oriented texture regions and neglect the
visual attention characteristic of human eyes for the real image. In this work, a novel JND model in pixel
domain is proposed, where orderly texture masking (OTM) for regular texture areas (also called orderly
texture regions) and disorderly texture masking (DTM) for complex texture areas (also called disorderly
texture regions) are presented based on the orientation complexity. Meanwhile, the visual saliency is set
as the weighting factor and is incorporated into CM evaluation to enhance JND thresholds. Experimental
results indicate that compared with existing relevant JND profiles, the proposed JND model tolerates more
distortion in the same perceptual quality, and brings better visual perception in the same level of the injected
JND-noise energy.

INDEX TERMS Just noticeable difference, orientation complexity, visual attention.

I. INTRODUCTION
Images/Videos are commonly explored in various multime-
dia services and become an indispensable part in people’s
daily life. To provide a high quality of multimedia experi-
ence, there are many researches devoting to the development
of image/video processing, image/video coding, and robust
transmission technologies. Since human eyes are the ulti-
mate receivers of images/videos in general, how to describe
perceptual characteristics of human vision more precisely
and efficiently has been drawing lots of attentions from both
academic and industrial societies [1]–[4].

The associate editor coordinating the review of this manuscript and
approving it for publication was You Yang.

As is known, an important perceptual characteristic of
human visual system (HVS) is that it presents limited visual
sensitivity to the images/videos, only the pixel changes
above a certain visibility threshold can be observed by
human eyes [1]. To model this perceptual characteristic,
the just noticeable difference (JND) model has been pre-
sented, in which the smallest perceptual visual thresh-
old values of the human eyes for the input image are
obtained [5], [6]. Therefore, the JND models are widely
applied on variable kinds of perceptual-oriented image/video
related tasks, such as perceptual compression [7]–[9], per-
ceptual quality assessment [10], [11], watermarking [12],
display [13], to name a few.

Existing JND models can be roughly classified into
two categories according to the JND threshold calculating

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 132111

https://orcid.org/0000-0002-2802-7745
https://orcid.org/0000-0001-9457-7801
https://orcid.org/0000-0003-2932-5709


Z. Zeng et al.: Visual Attention Guided Pixel-Wise JND Model

domain: the pixel-wise JND models (e.g., [1], [14], [15])
and the subband-based (e.g., DCT or wavelet transform) JND
models (e.g., [16]–[18]). Compared to the subband-domain
JND models, the pixel-wise ones can be calculated directly
and avoid the subband transformation, which would be more
convenient and cost-effective to estimate the JND thresh-
olds. Base on that, the objective of this work is to design
an effective pixel-wise JND model to accurately describe
characteristics of HVS on images. Pixel-wise JND models
commonly take the luminance adaptation (LA) and con-
trast masking (CM) into account. Note that LA reflects
the masking effect of the HVS in respect of the lumi-
nance of the background, while CM reflects the visibility
attenuation of one contrast at the presence of another con-
trast. Some early JND models, like the one developed by
Chou and Li [19] overlooked the interaction between these
two masking effects, resulted in a rough JND estimation.
Based on Chou and Li [19], Yang et al. [20] exploited a
nonlinear additivity model to reduce the overlapping effects
between LA and CM. Since these two methods overestimated
the masking effects in the edge regions, Liu et al. [15] decom-
posed one input image into two images, one is named struc-
tural image and the other is the textural image, followed by
performing edge masking (EM) estimation and texture mask-
ing (TM) estimation, respectively. Considering that the CM
effect is not comprehensively evaluated, Wu et al. [21] pro-
posed the disorderly concealment effect based on free-energy
principle for JND estimation. Motivated by the observation
that the HVS is highly sensitive to the repeated pattern in
visual signal, Wu et al. [1] introduced the concept of pat-
tern complexity to decide the total masking effects. With
image saliency information, Hadizadeh et al. [22] developed
a saliency-guided JND model by the normalized Laplacian
pyramid.

According to the research of cognitive psychology and
neuroscience, HVS is usually motivated to fetch the visual
regularities for perception and understanding [23], [24]. And
in the local receptive field of the image, the visual cortex
displays distinct orientation selectivity mechanism for visual
content representation and extraction [25], [26], which also
indicates that orientation regularity (also called low orien-
tation complexity) plays a significant role in the process
of visual perception. Inspired by these, in our JND model,
the textural image proposed by Liu et al. [15] is further
decomposed into two portions according to the regularity of
the texture. For regular texture regions, an orderly texture
masking (OTM) is exploited; for disorderly textural portions,
the disorderly texture masking (DTM) is used. Furthermore,
based on the visual attentionmechanism, the higher the visual
saliency the higher priority of being processed by HVS,
and people’s eyes will focus on the saliency areas for a
relatively long time. Therefore, the visual saliency regarded
as the adjustment factor is incorporated into the proposed
CM estimation. Combined with luminance adaptation (LA),
the proposed JND model is established. Experimental results
show that the proposed JNDmodel is well correlated with the

FIGURE 1. The framework of the proposed JND model.

HVS perception and outperforms the relevant pixel-wise JND
methods.

The remaining sections of this paper are arranged as fol-
lows. In Section II, the proposed JND model is presented
in detail. Section III provides the experimental results and
analyses. The conclusion is summarized in Section IV.

II. PROPOSED JND MODEL
As illustrated in Fig. 1, the main body of the proposed
pixel-wise JND model consists of three modules, namely LA,
CMs and NAMM , where LA and NAMM modules are referred
to [14], while CMs module encircled with the red dashed line
is the contribution of this work. In order to predict contrast
masking (CM) precisely, we estimate edge masking (EM),
orderly texture masking (OTM) and disorderly texture mask-
ing (DTM) from structural image u, orderly textural image
vo and disorderly textural image vd , respectively, instead of
obtaining CM estimation from the whole image f at first
hand. Meanwhile, for the sake of visual attention mechanism
of HVS [27], [28], the bottom-up saliency model [29] for
non-local spatial redundancy is treated as the weight coef-
ficient to adjust the CM values perceptually.

A. THE CONTRAST MASKING MODEL BASED
ON VISUAL ATTENTION
As [30] denotes, contrast masking represents the visibil-
ity reduction of one visual component at the presence of
another. Based on the visual attention of image/video content,
the sensitivity of HVS is diverse in different image areas
for CM evaluation. The CM presented by Liu et al. [15]
is composed of edge masking (EM) for edge regions
and texture masking (TM) for textural areas, respectively.
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However, TM overestimates the masking effect of homoge-
neous textural regions. More precise estimation is needed
adapting to regular oriented texture region and homogeneous
one. Therefore, there are two textural masking estimation in
the proposed CM module. One is for regular oriented texture
region, named orderly texture masking (OTM); the other is
for complex texture region, named disorderly texture mask-
ing (DTM). With OTM and DTM, the TM can be estimated
more accurately. Moreover, a saliency adjustment factor us is
introduced concerning about the visual attention of HVS to
adjust the CM module.

1) THE RTV MODEL FOR EM MEASUREMENT
It is known that an original image f can be represented by a
structural image u (containing large-scale subjects like piece-
wise smooth and sharp edge) and a textural one v (containing
fine-scale details which usually have periodicity and oscilla-
tion). That is f = u + v. The relative total variation (RTV)
model is exploited to effectively obtain the structural and
textural information of the image [31]. The RTV model is
defined as:

argmin
u

∑
p

(
up − fp

)2
+ λ ·

(
Mx(p)

Nx(p)+ ε
+

My(p)
Ny(p)+ ε

)
(1)

where f and u represent the input image and the output
structural image, respectively. p denotes the index for 2-D
image pixel. λ is a weighting factor and ε is a small positive
value to avoid zero denominator. Mx(p) and My(p) mean
windowed total variations in the x and y directions, which
are expressed as:

Mx(p) =
∑
q∈R(p)

wp,q ·
∣∣(∂xu)q∣∣

My(p) =
∑
q∈R(p)

wp,q ·
∣∣∣(∂yu)q∣∣∣ (2)

Nx(p) and Ny(p) denote the overall spatial variation in the x
and y directions, which are defined as:

Nx(p) =

∣∣∣∣∣∣
∑
q∈R(p)

wp,q · (∂xu)q

∣∣∣∣∣∣
Ny(p) =

∣∣∣∣∣∣
∑
q∈R(p)

wp,q ·
(
∂yu
)
q

∣∣∣∣∣∣ (3)

where q belongs to R(p), the rectangular region centered at
pixel p. wp,q is a weighting function, which is written as:

wp,q ∝ exp

(
−

(
xp − xq

)2
+
(
yp − yq

)2
2σ 2

)
(4)

where σ adjusts the spatial scale of the window, which affects
M (p) and N (p) directly.

The parameters λ and σ are adjusted to extract the struc-
ture image from the original image [31]. The value ranges

FIGURE 2. (a) Structural image u of Lena, (b) Textural image v of Lena.

of λ and σ are set as [0.01, 0.03] and (0, 8], respectively.
When λ is larger, the structural image will be fuzzier and the
texture details can be retained completely. And the parameter
σ plays an opposite role compared to λ. When σ is greater,
it can make the structural image keep more fine-scale details
and suppress the texture. In this paper, λ and σ are set as
0.01 and 3, respectively, referring to [31]. From Fig. 2a and
Fig. 2b, the structural image u and textural image v can be
achieved by RTV model.

Therefore, EM estimation for structural image u is calcu-
lated as follows,

EMu(x, y) = Cu
s (5)

where Cu
s indicates the spatial contrast of u, and Cs denotes

the maximum luminance difference within the 5×5 neighbor-
hood of u [19].

2) THE ORIENTATION COMPLEXITY FOR
OTM AND DTM ESTIMATION
Based on the analyses above, the orientation complexity is
used to split textural image v obtained by RTV into orderly
textural image vo for OTM estimation and disorderly textural
image vd for DTM estimation, respectivley.

As analysed by [32], the orientation selectivity based pat-
tern can be described as the organization of neighbor pix-
els. The local perceptive region ψ (3×3) is related to the
interactions among the orientation θ (x) of pixels in ψ . The
similarities of pixels preferred orientation is calculated. More
specific, if the orientation similarity of region ψ is high,
it may be a region with regular orientation. On the contrary,
if the similarity of region ψ is low, it may be an irregular
orientation region. It has been revealed that dissimilar orienta-
tions cause strongmasking effect, the higher the dissimilarity,
the stronger the masking effect. When orientation difference
is larger than a certain threshold, the masking effect is obvi-
ously improved.

Thus, the complexity PC (x) of orientation selectivity based
pattern of a local region ψ (3×3) is calculated with the
histogramHm(x) of orientations θ̂(x) by quantifying θ (x) with
the interval T = 12◦ [1], [33],

PC (x) =
M∑
m=1

||Hm(x)||0 (6)
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FIGURE 3. (a) Orderly textural image vo of Lena, (b) Disorderly textural
image vd of Lena.

where || · ||0 represents the L0 norm and M indicates the
limit number of θ̂ (x), and the histogram Hm(x) is defined as
follows:

Hm(x) =
∑

x∈ψ(x)

δ(θ̂ (x),m) (7)

where δ(·) represents the pulse function, and for which

δ( ˆθ (x),m) =

{
1, if θ̂ (x) = m
0, if θ̂ (x) 6= m

(8)

The results shown in [1] illustrated that the orientation com-
plexity PC (x) of regular region is low, and for the irregular
region, the corresponding complexity PC (x) is high.
To split the textural image v properly, value ‘‘1’’ is regarded

as the threshold of PC (x) to obtain orderly textural image vo
and disorderly textural image vd .{

vo, if PC (x) = 1
vd , if PC (x) 6= 1

(9)

When PC (x) equals to ‘‘1’’, each pixel in the local region
ψ (3×3) has similar θ̂(x), which illustrates that the orderly
textural image has the homogeneous pattern complexity. The
orderly textural image vo and the disorderly textural image vd
are shown in Fig. 3a and Fig. 3b.

Hence, OTM and DTM evaluation can be computed as
follows: {

OTM vo (x, y) = Cvo
s ,

DTM vd (x, y) = Cvd
s ,

(10)

where Cvo
s indicates the spatial contrast for orderly textural

image vo, and C
vd
s denotes the spatial contrast for disorderly

textural image vd .

3) THE SALIENCY ADJUSTMENT FACTOR ESTIMATION
In order to estimate CM values more accurately, visual
saliency, which is the perceptual characteristic of HVS,
is added to adjust the proposed CM measurement.

The saliency model [29] is adopted to determine the
saliency by removing redundant contents instead of measur-
ing the significance.

FIGURE 4. (a) Original Lena image, (b) The saliency map Ŝ(x) of Lena
image.

The visual saliency model is evaluated by:

S(x) =
J∑
j=1

K∑
k=1

wjk Ĥjk (x) (11)

where J and K denote the number of pyramid levels and the
number of image channels, respectively. wjk is the normal-
izing coefficients for each channel and scale, which is set
as wjk = 1/maxxĤjk (x). As for Ĥjk , it refers to saliency
estimation provided by the redundancy reduction as follows,

Ĥjk = (1− %(x))H (x) (12)

where %(x) represents the redundancy coefficient of pixel x,
and H (x) refers to the entropy of pixel x.

In this paper, S(x) is normalized as Ŝ(x)∈ [0,1] to get the
final saliency map [34]. As shown in Fig. 4b, the brighter
the region of Ŝ(x) is, the closer the pixel value of Ŝ(x)
to value ‘‘1’’, and the higher degree of saliency is. Then,
a threshold is set as 0.5 to binarize the final saliency map Ŝ(x)
into ‘‘saliency’’ area and ‘‘non-saliency’’ area. Since HVS
is more sensitive to changes in the ‘‘saliency’’ area, we use
the saliency factor uS to adjust the CM value adaptively
in ‘‘saliency’’ area and ‘‘non-saliency’’ area. The saliency
adjustment factor uS is defined as follows.

uS =

{
1− Ŝ(x), Ŝ(x) ≥ 0.5
1, Ŝ(x) < 0.5

(13)

4) THE PROPOSED CM MODEL
As aforementioned analyses, the preliminary CM evaluation
is calculated as:

CM (x, y) = EMu(x, y)+OTM vo (x, y)+DTM vd (x, y) (14)

where 
EMu(x, y) = Cu

s ·We,

OTM vo (x, y) = Cvo
s ·Wvo ,

DTM vd (x, y) = Cvd
s ·Wvd

(15)

Note that to distinguish the effect of EM, OTM and DTM to
the contrast masking, We, Wvo and Wvd are regarded as the
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FIGURE 5. (a) JND map of Liu’s model [15], (b) JND map of Wu’s model [21], (c) JND map of Our proposed model, (d) Original
Baboon image, (e) The saliency map of Baboon image.

weight coefficients of the estimation, which are set to 1, 2,
and 3, respectively [35].

Combined with the saliency adjustment factor considering
the visual attention, the final CM estimation is established as
follows:

CMs(x, y) = CM (x, y) · uS (16)

B. LUMINANCE ADAPTATION
It is well known that the human eyes is less sensitive to the
distortion of darkness.With the increase luminance, the sensi-
tivity of HVS to image changes may be improved. Therefore,
a luminance adaptation (LA) model [20] is designed to adapt
to the HVS.

LA(x, y)

=

{
17× (1−

√
f (x, y)/127)+ 3, if f (x, y) ≤ 127

3× (f (x, y)− 127)/128+ 3, otherwise

(17)

where (x, y) is the coordinate in the image.

C. THE PROPOSED JND MODEL
Since LA and CM are usually integrated into the pixel-wise
JND model for overall JND estimation via the nonlinear
additivity model for masking (NAMM) [20], the proposed

JND model is established by:

JND = LA+ CMs − Clc ×min{LA,CMs} (18)

whereClc is used to settle the overlapping impact between LA
and CMs. As for Clc, it is set as 0.3, same as that in [20].
For illustration purpose, the JND maps for Liu et al. [15],

Wu et al. [21] and the proposed model are displayed
in Fig. 5a, Fig. 5b, and Fig. 5c, respectively. From these JND
maps, it’s obvious that Liu’s model overvalued the visual
masking in some regions around the baboon’s nose with
low orientation complexity, and although Wu’s model con-
siders the concealment effect in disorderly textural regions,
its model still underestimates the visual redundancy in some
areas with high orientation complexity, such as the baboon’s
fur. By contrast, our model shown in Fig. 5c estimates visual
redundancy more accurately based on orientation complexity
and visual attention of HVS.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETTING
1) TEST IMAGE
In our experiments, twelve commonly-used test images are
adopted to comprehensively evaluate the performance of var-
ious JND models [1], [15], [36]. These images are of the
resolution 512×512 and contain a variety of visual content
and spatial complexity, as shown in Fig. 6.
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FIGURE 6. The test images. From left to right, [First row: I1, I2, I3, I4],
[Second row: I5, I6, I7, I8], [Third row: I9, I10, I11, I12].

2) EVALUATION PROCEDURE
Intuitively, an ideal JND model should be able to tell how to
conceal the noise in the image as much as possible with the
acceptable image quality. In other words, to inject the noise
with the same energy, a better JNDmodel will put more noise
into the regions with higher visual redundancy while less
noise into the regions with lower perceptual redundancy for
achieving the better perceptual quality. According to various
pixel-wise JNDmodels, we add the JNDnoise to each pixel of
the test images I for measuring its performance as suggested
in [21]:

Î (x, y) = I (x, y)+ η · ξ · JND(x, y) (19)

where (x, y) means the spatial coordinate of the pixel in
image, Î (x, y) denotes the contaminated image by injecting
the JND guided noise, the parameter η ∈ {−1,+1} is ran-
domly decided to avoid the occurrence of noise change in
fixed pattern, and ξ is used to adjust the JND noise injection
energy to ensure the noised images contaminated by different
JND models at the same level of noise energy.

The contaminated test images resulted from various JND
models are compared with the original test images in terms
of PSNR and through the subjective quality assessment to
evaluate the performances of various JND models. Note
that with the same perceived quality (measured by SSIM),
the higher the injected-JND-noise energy (measured by
PSNR) is, the more reliable the JND model is.

B. PERFORMANCE COMPARISON
1) OBJECTIVE QUALITY COMPARISON
Table 1 shows the objective quality comparison of the pro-
posed JND model and two existing pixel-wise JND mod-
els [15], [21] in terms of PSNR. It can be easily seen that the
proposed JNDmodel is able to, on average, achieve the lowest
PSNR and also the lowest PSNR for all the test images. Com-
pared with Liu et al. [15] and Wu et al. [21], the additional
redundancy yielded by the proposed JND model is 0.86 dB

TABLE 1. Objective quality comparison of the proposed model and two
pixel-wise JND models in terms of PSNR (dB).

FIGURE 7. A screenshot of the user interface for conducting subjective
evaluation.

and 1.19 dB, respectively. This study shows the superiority of
the proposed JNDmodel, which can tolerate more distortions
and exploit the visual redundancy more accurately.

2) SUBJECTIVE QUALITY COMPARISON
In addition, subjective quality comparison is also performed
to demonstrate the effectiveness of our proposed JND model.
The subjective quality assessment tests are conducted by
exploring the adjectival categorical judgment method and
strictly following the ITU-R BT.500-11 standard [37]. The
evaluation platform is the desktop PC, which is equippedwith
a 23-inch LED monitor (with a resolution of 1920×1080),
8 GB RAM, and 64-bit Windows operating system. The
evaluation process is conducted indoors, under a normal
lighting condition. In each test, two contaminated images by
two JND models under comparison presented to the assessor
will be judged as one of seven opinion levels, as shown
in Fig. 7. These two contaminated images will include the
one contaminated by the proposed JND model and the one
contaminated by other JND models under comparison, and
they will be randomly posed as the left or the right images
at the same time. Seven discrete scales from −3 to +3 will
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TABLE 2. Subjective quality comparison of the proposed model and two
pixel-wise JND models.

FIGURE 8. The bar graph of the subjective scores of 12 test images and
their average scores.

be used to reflect the degree of difference of the subjective
quality between the left and right images according to their
corresponding definitions in Fig. 7. Twenty assessors were
invited to evaluate the subjective quality of all the image pairs,
and the assessor is allowed to response after observing the
images at least 4 seconds [36].

Table 2 shows the subjective quality comparison of the
proposed JND model and two existing pixel-wise JND mod-
els [15], [21], where m denotes the mean value of the subjec-
tive scores and SDmeans their standard deviation. Moreover,
the bar graph is also shown in Fig. 8 to have a clearer

illustration. Note that a larger negative (or positive) subjective
score demonstrates that the image processed by our proposed
JND model has much better (or worse) perceived quality
than that processed by other JND models under comparison.
Firstly, we can see from Table 2 that the standard devia-
tions of the subjective scores are quite small (i.e., nearly 1),
showing that the subjective evaluation results from twenty
assessors are stable and reliable. Then, as shown in Table 2
and Fig. 8, the average mean values of two groups of compar-
ison tests are all negative, i.e., −0.245 and −0.094, respec-
tively, meaning that the contaminated images resulted from
the proposed method have overall better subjective quality
than that of other JND models [15], [21]. In other words,
the proposed JNDmodel consistently outperforms other JND
models [15], [21].

Moreover, we further take I9 as an example to show the
corresponding contaminated images resulted from different
JND models, as displayed in Fig. 9. Note that the same noise
energy is injected into the original I9 with different kinds
of JND noise. It can be observed that the proposed model
achieves better subjective quality.

For the areas encircled with green ellipse to which human
eyes are sensitive, the visual effect in Fig. 9 (c) is obvi-
ously better than Fig. 9a and Fig. 9b. Tracing it to its cause,
for the image in Fig. 9a dealt with Liu et al.’s model,
although it maintains fairly good edge information, the func-
tion of the texture regions to tolerate much distortion is
highlighted, actually only the unpredicted texture regions can
hide much noise. While for the image in Fig. 9b processed by
Wu et al.’s model, it emphasizes the masking effect of dis-
orderly regions according to free energy principle. However,
for the areas circled by green ellipse, the visual redundancy
of the numbers, which are relatively sensitive to HVS and
given more attention, are overvalued. And for the regions
encircled with red ellipses which are dark and insensitive to
human eyes, there seems similar among them. Thus it can
be seen that our JND model is superior to Liu’s and Wu’s
models.

FIGURE 9. The subjective comparison of JND noise-injected images resulted from different JND models (Taking I9 as an example): (a) Liu [15];
(b) Wu [21]; and (c) Proposed.
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IV. CONCLUSION
In this work, a novel pixel-wise JND model was proposed
based on elaborate image decomposition and the saliency.
By means of RTV model and orientation complexity, a real
image is split into three portions, namely, structural image,
orderly textural image and disorderly textural image for EM,
OTM and DTM estimation, respectively. Considering visual
attention of HVS, we proposed CMs for contrast masking
estimation combining based on the saliency. From the results
of PSNR comparison test and subjective quality comparison,
our proposed model is better than the related existing JND
models. Furthermore, with the advantage of our model, it will
have effective improvement in video coding, image quality
evaluation, image watermarking and so on.
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