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ABSTRACT Deep convolutional neural networks have been used extensively in recent image processing
research, exhibiting drastically improved performance. In this study, we apply convolutional neural networks
to color filter array demosaicking, which plays an essential role in single-sensor digital cameras. Contrary to
conventional convolutional neural network-based demosaicking models, the proposed model does not require
any initial interpolation step for mosaicked input images, which increases the computational complexity.
Using a mosaicked image as input, the proposed model is trained in an end-to-end manner to generate
demosaicked images outputs. Many deep neural networks experience vanishing-gradient problem, which
makes models hard to be trained. To solve this problem, we apply residual learning and densely connected
convolutional neural network. Moreover, we apply block-wise convolutional neural networks to consider
local features. Finally, we apply a sub-pixel interpolation layer to generate demosaicked output images more
efficiently and accurately. Experimental results show that our proposed model outperforms conventional
solutions and state-of-the-art models.

INDEX TERMS Demosaicking, color filter array interpolation, deep learning, convolutional neural network.

I. INTRODUCTION Many demosaicking

algorithms have

Digital color image pixels consist of three color components:
red, green, and blue. To obtain exact information of these
components, digital cameras need three sensors, which make
cameras expensive and bulky. For this reason, most digital
cameras use a single-sensor architecture with a color filter
array (CFA). After penetrating the CFA, the sensor of the
camera only takes one color information per pixel, according
to the arrangement of the color in the CFA. There are many
CFA patterns, but the Bayer pattern [1] is the most widely
used. Figure 1 shows an example of the Bayer pattern. The
number of green pixels in the Bayer pattern is twice that of
red or blue pixels. This is because the human eye perceives
spatial details chiefly from luminance information, and the
luminosity function is similar to the CIE 1931 green matching
function [2]. As there is only information of one color per
pixel in single-sensor digital cameras, information of the
other two colors should be interpolated. This interpolation
process, referred to as demosaicking, is CFA interpolation.
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posed [3]-[5]. In the past, demosaicking was implemented
with simple interpolation algorithms: nearest neighbor [6],
bilinear [7], or bicubic interpolation [8]. However, these
simple interpolations resulted in many false color artifacts:
blurring, chromatic aliases, zippering, and purple fring-
ing [9]. To overcome this, Zhang and Wu proposed color
demosaicking via directional linear minimum mean square-
error estimation (DLMMSE) [10]. Dengwen and Xiaoliu
proposed colour demosaicking with directional filtering and
weighting (DDFW) [11]. Pekkucuksen and Altunbasak pro-
posed edge strength filter based demosaicking (ESF) [12] and
multi gradients-based demosaicking (MSG) [13]. Recently,
many demosaicking algorithms using residual interpola-
tion have been proposed. Monno et al. proposed adap-
tive residual interpolation for demosaicking (ARI) [14] and
Kim and Jeong proposed four-direction residual interpolation
for demosaicking (FDRI) [15].

Despite many proposals, there still existed false color
artifacts in the result images of conventional algorithms.
Recently, deep convolutional neural networks (CNNs) have
been applied to many image processing algorithms, including
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FIGURE 1. Example of the Bayer pattern.

classification [16], [17], super resolution [18]-[20], high
dynamic range [21], deblurring [22], denoising [23]-[25],
dehazing [26], and deraining [27], and exhibited signifi-
cantly improved performance. There are also many proposed
demosaicking methods based on CNN architecture [28]-[30].
Tan et al. proposed color image demosaicking via deep resid-
ual learning (DDRL) [31] and Tan et al. proposed image
demosaicking via multiple CNN (DDemo) [32].

Inspired by these CNN-based image processing solutions,
we propose a CFA demosaicking method using a densely
connected residual network (DRDN). Many conventional
demosaicking solutions based on CNN architecture require
substantial pre-processing: initial interpolation, initial demo-
saicking, and training image clustering [32]. Initial interpo-
lation and initial demosaicking are applied by almost every
conventional CNN-based demosaicking solution to equalize
the resolution of the input image with the output image.
Although they allow CNN models to easily generate output
images with the desired resolution, they drastically increase
the computational complexity and the memory use of the
CNN model, as it receives three times more input data with
two times higher resolution. Furthermore, the pre-processing
method itself considerably consumes the computational com-
plexity if conventional demosaicking algorithms are applied
for their initial demosaicking process. The clustering of the
training images also increases the computational complexity,
as it needs to train the CNN model for each cluster, even after
the clustering process.

To overcome these issues, our proposed model is trained
in an end-to-end manner, which does not require any initial
interpolation or demosaicking process to generate demo-
saicked output images with the desired resolution. Instead
of the initial interpolation or demosaicking process, the pro-
posed model divides the mosaicked image into four color
layers, which are a quarter of the mosaicked image for the
input of the proposed network. The layers consist of one red
layer, one blue layer, and two green layers. There are twice
as many green layers as red or blue layers, because the Bayer
pattern [1] has twice as many green pixels as red or blue
pixels. This input data modification enables our proposed net-
work to consume less computational complexity and memory
than conventional demosaicking networks. Then, we train
our proposed CNN model to generate demosaicked images
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with the same size as the original mosaicked image. To gen-
erate demosaicked images more accurately and efficiently,
we apply a sub-pixel interpolation layer [33] that learns to
generate demosaicked images with desired resolution while
our proposed CNN model is trained. Moreover, our proposed
DRDN applies the residual learning [17] on the densely
connected CNN [16] to avoid the vanishing-gradient prob-
lem, and block-wise CNN to consider local features. Finally,
we apply a self-ensemble method [19], [34]. It enables our
proposed network to exhibit better performance by applying
an ensemble method without additional training or clustering
processes.

The rest of this paper is organized as follows. Section II
briefly describes the conventional networks that inspired us,
and summarizes our contributions. Section III describes our
proposed CNN model in detail. Section IV shows how we
trained our proposed model and present the experimental
results. Finally, section V outlines the conclusion of this
study.

Il. RELATED WORKS

A. CONVENTIONAL DEMOSAICKING NETWORKS

A lot of effort has been made to apply the CNN architecture
to demosaicking. Tan et al. proposed the DDRL, which esti-
mates the intermediate green channel to use it as a guidance
for the reconstruction of the red and blue channels. However,
the DDRL interpolates the input CFA image by bilinear
interpolation [7] to make the resolution of the input image
same with the desired output image resolution. This causes
their network to consume more memory and computational
complexity than they need, as they force their network to
handle larger resolution feature maps. Tan et al. proposed
the DDemo, which uses initial demosaicking and clustering
methods for their network. As mentioned above, the initial
demosaicking method itself consumes a lot of computational
complexity. Besides, it also makes their network more com-
putationally complex, and consumes more memory. More-
over, the clustering of the training images makes their method
even more complex, because they need to train a model for
each image cluster while clustering itself also consumes com-
putational complexity. To reduce the unnecessary computa-
tional complexity, we modify the input mosaicked image into
four color layers, which are a quarter the size of the original
image. Because there are twice as many green pixels than
red or blue pixels, we generate two green layers, one red layer,
and one blue layer. Owing to the reduction of the input images
resolution due to the input image modification, our proposed
network can use memory efficiently, and considerably reduce
the computational complexity.

B. RESIDUAL DENSE NETWORK FOR IMAGE
RESTORATION

He et al. proposed deep residual learning for image recog-
nition (ResNet) [17]. As CNN architectures became deeper,
many models experienced the vanishing-gradient problem.
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ResNet solves this problem by applying a skip connec-
tion that enables the network to learn residual functions
with reference to the input layers. In the following year,
Huang ef al. proposed densely connected convolutional net-
works (DenseNet) [16]. They connected each layer to every
other layer in a feed-forward fashion to solve the vanishing-
gradient problem and induce the network to reuse the infor-
mation of the previous layers. Recently, Zhang et al. proposed
residual dense network for image restoration (RDN) [20],
which combines the idea of ResNet and DenseNet. They
applied global residual learning to the DenseNet and local
residual learning to the dense block to solve the vanishing-
gradient problem. Inspired by these models, we propose the
DRDN, which is optimized for demosaicking.

C. SUB-PIXEL INTERPOLATION

Shi et al. proposed super resolution using efficient sub-pixel
convolutional neural network (ESPCN) [33]. Their proposed
sub-pixel interpolation layer learns an upscaling filters to
upscale their final output. This enables their network to
reduce the computational complexity, as the input of their
network is an original low resolution image instead of an
interpolated high resolution image, owing to the sub-pixel
interpolation layer. Inspired by this model, we apply their
sub-pixel interpolation layer to reduce the computational
complexity and increase accuracy of the interpolation.

D. SELF-ENSEMBLE METHOD

The self-ensemble method was introduced in [19] and [34].
In the conventional methods, they use a multi-model structure
to apply the ensemble method [32]. However, the multi-
model structure costs a lot of time and computational com-
plexity, as it needs to train additional networks. On the other
hand, the self-ensemble method, which averages the outputs
of the transformed input images, only needs one trained net-
work. By applying the self-ensemble method, we can increase
the performance of our proposed network without training
additional networks.

E. CONTRIBUTIONS

In this paper, we propose an input data modification method
that enables our proposed network to avoid using ini-
tial interpolation or demosaicking processes, and reduce
the computational complexity and memory consumption.
Next, we propose a demosaicking network that combines
the idea of ResNet [17] and DenseNet [16] to solve the
vanishing-gradient problem while successfully interpolat-
ing the missing pixels of the mosaicked image. Moreover,
our network applies the idea of the sub-pixel interpolation
layer [33] to demosaicking solution, which enables our pro-
posed network to generate demosaicked images more effi-
ciently and accurately. Finally, we apply the self-ensemble
method, which shows significant performance enhance-
ment without additional time or computational complexity
consumptions.

128078

Ee ~

FIGURE 2. Data flow of the proposed demosaicking solution.

Input Initial Refined Output
Image Demosaicking Demosaicking Image
(@

Input Input Data Proposed Output
Image Modification Network Image

(b)

FIGURE 3. Demosaicking process of conventional methods and the
proposed method: (a) conventional methods and (b) the proposed
method.

lll. PROPOSED METHOD

Conventional demosaicking solutions that apply CNN
architectures consist of two steps: initial interpolation or
demosaicking and a CNN network that refines the result
of the initial demosaicking. However, the initial interpo-
lation or demosaicking of the input image not only con-
sumes considerable computational complexity itself, but also
increases the computational complexity and memory use of
the CNN network. To solve this critical problem, we propose
an input data modification method that enables our proposed
network to avoid applying initial interpolation or demosaick-
ing process. The proposed input data modification process
is discussed in subsection A. After the modification of the
input data, our proposed CNN model generates demosaicked
images. The details of our proposed network will be discussed
in subsection B. Figure 2 shows a data flow of the proposed
demosaicking solution, and Figure 3 shows a comparison of
the process between the conventional demosaicking solutions
and the proposed method.

A. INPUT DATA MODIFICATION

As shown in Figure 1, mosaicked images with the Bayer
pattern have information of one color channel per pixel, and
there are twice as many green pixels as red or blue pixels.
By reordering these pixels, we generate four color layers that
have a quarter of the size of the original mosaicked image.
Accordingly, our input data modification process generates
two green layers, one red layer, and one blue layer. Using
this input data modification, we can reduce the computational
complexity and memory consumption of our demosaicking
solution in two ways. First, our proposed demosaicking solu-
tion can avoid applying initial interpolation or demosaicking
process, which considerably consumes computational com-
plexity. Because our input data modification only needs a
simple reordering process, we can achieve a drastic com-
putational complexity reduction compared with conventional
demosaicking methods. Second, because our input data modi-
fication makes our input image into a quarter of the size of the
original image, our CNN model can reduce its computational

VOLUME 7, 2019



B. Park, J. Jeong: Color Filter Array Demosaicking Using Densely Connected Residual Network

IEEE Access

Initial
Convolution

Convolution

Final

- —— >

Conv1
Co;v3
DRE 1
DRB N

Conv1
Sub-
pixel

Global Residual Learning

FIGURE 4. Structure of the proposed network. Conv1 denotes 1 x 1 convolution layer and conv3 denotes 3 x 3 convolution layer.
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FIGURE 5. Structure of the proposed densely connected residual block. Red, blue, and green arrows indicate the dense connectivity.

complexity and memory consumption. Because the resolu-
tion of the input image is reduced, the size of the feature maps
is also reduced, which results in a reduction of the memory
consumption for storing the information of the feature maps.
Moreover, the number of convolution operations also reduces,
which determines the computational complexity and training
time of the network. Therefore, we can reduce the computa-
tional complexity and memory consumption of our proposed
network.

B. NETWORK STRUCTURE

Inspired by [16], [17], and [20], our proposed DRDN consists
of four parts: initial convolution block, densely connected
residual blocks (DRBs), final convolution layer, and sub-
pixel interpolation layer. Figure 4 shows the structure of our
proposed DRDN, where convl indicates 1 x 1 convolution
layers and conv3 indicates 3 x 3 convolution layers. Note that
there exist activation functions after every convolution layer.
The initial convolution block consists of two convolution lay-
ers: a 1 x 1 convolution layer and a 3 x 3 convolution layer. The
1 x 1 convolution layer generates 12 feature maps to apply
global residual learning before the sub-pixel interpolation
layer. Then, the 3 x 3 convolution layer generates 64 feature

VOLUME 7, 2019

maps for DRB. After the convolution operations of the initial
convolution block, our proposed DRDN proceeds N DRBs.
The structure of the DRB will be discussed in subsection C.
Next, our proposed network proceeds to the final convolution
layer, which produces the output of the DRBs into 12 feature
maps for the sub-pixel interpolation layer. Finally, the sub-
pixel interpolation layer generates demosaicked images with
the desired resolution.

C. DENSELY CONNECTED RESIDUAL BLOCK

Inspired by [16], [17], and [20], our proposed DRB con-
sists of two parts: convolution blocks and a transition layer.
Figure 5 shows the structure of our proposed DRB. Note that
there exist activation functions after every convolution layer.
The convolution blocks consist of two convolution layers,
which are the same as the initial convolution block of the pro-
posed network structure. However, in the convolution block,
the number of filters of the convolution layers is different.
According to [16], the 3 x 3 and 1 x 1 convolution layers
generate k and 4k feature maps, respectively, where k denotes
the growth rate of the DRB. In our proposed DRB, there
exist three convolution blocks, whose outputs are connected
by dense connectivity. After extracting the feature maps by
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TABLE 1. Size of the convolution layers of the proposed network.

Layers Size
. . Convl 1x1x12
Initial Convolution Conv3 3% 3 X 64
Convolution Convl 1x1 X 4k
DRB Conv3 3x3xk
Transition Convl 1x1X64
Final Convolution Convl 1x1x12

the convolution blocks, the transition layer generates 64 fea-
ture maps to apply the local residual learning in the DRB.
Table 1 summarizes the size of the convolution layers of our
proposed DRDN. Finally, the output of the previous DRB is
used for the input of the next DRB.

IV. EXPERIMENTS

A. TRAINING DETAILS

As many image processing solutions that apply CNN archi-
tecture have been proposed, many datasets have been used
for training networks. Recently, Agustsson et al. released the
DIV2K training and validation datasets [35], which include
high quality images. The DIV2K training dataset consists

of 800 images where the resolution of each image is similar
to the FHD resolution (1920 x 1080). The DIV2K valida-
tion dataset consists of 100 images, where the resolution
of each image is similar to the training dataset. Given the
high quality of the images in the DIV2K, many state-of-
the-art image processing methods use this dataset and show
improved performance. Thus, we train our proposed network
with the DIV2K training and validation sets. When training
our network, we use patches that is extracted from the training
dataset where the width and height of the patches are set
to 64 pixels. To augment the training patches, we randomly
rotate and flip the input patches before entering the proposed
network. We set the batch size of the training patches to 64,
and train our proposed network for 300 epochs. We use the
Adam optimizer [36] with an initial learning rate of 107,
and divided it by 10 for every 100 epochs. For the activation
function, we used the leaky rectified linear unit (leaky ReLLU),
where « is set to 0.1. We use the mean square error for the
loss function. We set the number of DRB (N) to 15 and the
growth rate (k) to 32. For the test sets, we use the Kodak [37]
and McMaster [38] dataset, which are widely used as test
sets for demosaicking solutions. The Kodak dataset consists
of 24 images where the resolution of each image is 768 x 512.

TABLE 2. CPSNR (dB) and SSIM results of the conventional demosaicking methods and the proposed method for the Kodak dataset.

1 2 3 4 5 6 7 8
CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM | CPSNR | SSIM
DLMMSE| 38.52 |0.9865| 42.61 [0.9843| 40.09 [0.9859| 43.53 [0.9851| 34.81 |0.9809| 37.03 |0.9847| 39.87 [0.9765| 43.83 [0.9890
DDFW | 39.72 |0.9904| 42.89 [0.9872| 40.81 [0.9888| 44.29 |0.9889| 35.79 |0.9854| 37.74 [0.9872| 40.09 |0.9791| 44.43 |0.9912
ESF 39.91 [0.9902] 42.60 [0.9869| 40.69 10.9891| 43.80 [0.9884| 36.11 [0.9859| 36.11 |0.9843| 39.27 [0.9767| 44.77 [0.9914
MSG 39.79 [0.9905| 43.30 |0.9879| 41.23 10.9897| 44.32 [0.9890| 35.96 [0.9862| 37.77 |0.9874| 40.22 [0.9797| 44.58 [0.9913
ARI 38.81 [0.9863] 41.62 |0.9812] 39.62 10.9837| 43.18 [0.9863| 35.20 [0.9806| 37.54 |0.9839| 38.59 [0.9700| 43.24 [0.9888
FDRI 34.75 [0.9689| 40.80 |0.9764| 37.13 |0.9767| 41.44 [0.9797| 30.43 [0.9517| 36.18 |0.9754| 37.90 [0.9652| 39.79 [0.9793
DDRL | 41.44 10.9892]| 43.92 [0.9811| 41.99 [0.9845| 45.12 [0.9855| 37.22 10.9840| 39.94 [0.9848| 41.92 10.9820| 45.20 |0.9863
DDemo | 41.96 |0.9931| 43.75 [0.9869| 42.22 [0.9899| 45.26 |0.9894| 37.66 [0.9903| 40.26 [0.9904| 42.08 |0.9842| 45.43 |0.9917
DRDN | 42.70 [0.9942| 44.52 10.9888| 42.64 |0.9912| 45.54 [0.9904| 37.83 [0.9908| 40.69 ]0.9915] 42.80 [0.9859| 45.73 [0.9924
DRDN+ | 42.86 [0.9943| 44.64 [0.9889| 42.79 10.9914| 45.68 |0.9906| 38.02 |0.9911| 40.82 [0.9918| 42.88 ]0.9863| 45.91 10.9927

9 10 11 12 13 14 15 16
CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM | CPSNR | SSIM
DLMMSE| 41.85 10.9884| 37.45 [0.9753| 40.90 [0.9816| 40.93 [0.9659| 41.27 10.9731| 39.17 |0.9755| 38.46 |0.9715| 43.30 [0.9737
DDFW | 42.10 |0.9893| 37.95 [0.9799| 41.40 [0.9854| 41.15 |0.9768| 41.76 [0.9760| 39.69 [0.9809| 38.54 |0.9751| 43.49 |0.9802
ESF 41.95 10.9890| 37.72 |0.9800| 41.49 [0.9863| 40.82 [0.9764| 41.52 ]0.9783| 40.30 |0.9843| 38.41 [0.9762| 42.45 |0.9835
MSG 42.46 10.9899| 38.22 |0.9830| 41.99 [0.9876| 41.59 [0.9791| 42.13 ]0.9792] 40.26 |0.9850| 39.00 [0.9786| 43.89 |0.9859
ARI 41.25 10.9866| 36.90 |0.9751| 40.61 [0.9818| 39.67 [0.9693| 40.86 |0.9759| 39.24 |0.9747| 38.05 [0.9730| 43.16 [0.9813
FDRI 39.26 [0.9798| 34.46 |0.9664| 38.06 |0.9711| 39.03 [0.9663| 39.30 [0.9705| 36.40 |0.9694| 37.18 [0.9689| 42.47 [0.9799
DDRL | 42.77 10.9850| 38.92 [0.9815| 42.41 [0.9834| 41.95 [0.9753]| 42.96 |0.9738| 41.30 [0.9797| 40.17 |0.9778| 44.91 |0.9820
DDemo | 42.76 |0.9887| 39.04 [0.9847| 42.55 [0.9880| 42.15 |0.9799| 42.96 [0.9810| 41.50 [0.9853| 39.95 10.9821| 44.96 |0.9872
DRDN | 43.17 [0.9904| 39.45 10.9859] 42.89 |0.9888| 42.64 [0.9829| 43.27 |0.9813| 41.65 |0.9838] 40.69 [0.9845| 45.42 [0.9886
DRDN+ | 43.32 [0.9903| 39.43 [0.9860| 43.04 [0.9890| 42.68 |0.9832| 43.37 |0.9814| 41.81 [0.9846| 40.85 ]0.9849| 45.48 10.9887

17 18 19 20 21 22 23 24
CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM | CPSNR | SSIM |CPSNR | SSIM |CPSNR | SSIM
DLMMSE| 35.52 10.9838| 42.75 |0.9859| 41.09 [0.9776| 38.10 [0.9876| 40.27 10.9867| 42.39 |0.9866| 36.08 |0.9852| 42.86 |[0.9852
DDFW | 35.44 |0.9858| 43.57 [0.9896| 41.29 [0.9831| 38.85 |0.9905| 40.95 [0.9900| 43.23 [0.9906| 37.15 |0.9886| 43.45 |0.9868
ESF 35.34 [0.9858| 42.55 |0.9885| 40.45 10.9814| 37.55 [0.9878| 41.22 [0.9904| 42.15 |0.9893| 37.19 [0.9879| 42.96 [0.9859
MSG 35.72 [0.9872| 43.63 |0.9898| 41.42 10.9838| 38.94 [0.9906| 41.15 [0.9903| 43.39 10.9908| 37.39 |0.9891| 43.71 [0.9871
ARI 35.36 [0.9843] 42.67 |0.9869| 40.61 10.9798| 38.26 [0.9887| 40.51 |0.9878| 42.67 |0.9881| 34.97 [0.9800| 41.89 [0.9716
FDRI 33.00 [0.9760| 41.09 [0.9810| 39.74 10.9731| 36.24 [0.9842| 36.24 [0.9757| 41.92 10.9869| 33.24 [0.9715| 40.43 [0.9662
DDRL | 37.03 |0.9841| 45.02 [0.9853| 42.85 [0.9820| 40.57 [0.9886| 42.17 10.9864| 44.89 [0.9867| 38.60 [0.9853| 44.03 |0.9807
DDemo | 36.59 |0.9889| 44.82 [0.9899| 42.84 [0.9864| 40.55 |0.9931| 42.46 |0.9914| 44.89 [0.9916] 38.10 |0.9902| 44.08 |0.9856
DRDN | 37.87 [0.9905| 45.26 10.9912] 43.81 |0.9890| 41.24 [0.9938| 42.88 [0.9921| 42.03 ]0.9903| 39.12 [0.9911| 44.40 [0.9850
DRDN+ | 38.10 [0.9908| 45.44 [0.9915] 43.89 |0.9892| 41.44 10.9940| 43.09 |0.9924| 44.19 [0.9921| 39.34 10.9914| 44.66 |0.9866
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FIGURE 6. Result images of the conventional demosaicking methods and the proposed method for the Kodak dataset: (a) Original image, (b) red block of
the original image, (c) DLMMSE, (d) DDFW, (e) ESF, (f) MSG, (g) ARI, (h) FDRI, (i) DDRL, (j) DDemo, (k) DRDN, and (I) DRDN+.

The McMaster dataset consists of 18 images where each
image is extracted from high resolution images with a size
of 500 x 500.

B. PERFORMANCE COMPARISON

We compare the performance of our proposed network
with six non-CNN-based algorithms (DLMMSE [10],
DDFW [11], ESF [12], MSG [13], ARI [14], and FDRI [15])
and two state-of-the-art CNN-based demosaicking models
(DDRL [31] and DDemo [32]). For the objective com-
parison, we calculate the color peak signal to noise ratio
(CPSNR) [39] and structural similarity (SSIM) [40] of the
result images. When calculating the CPSNR, we remove
10 pixels around the borders of the resulting images and
ground truth images to avoid boundary artifacts. Table 2 and 3
show the objective comparison results of the Kodak dataset,
and Table 4 and 5 show the objective comparison results
of the McMaster dataset. Note that DRDN+ denotes the
result of the proposed network which employed the self-
ensemble method [19], [34]. In the tables, we highlighted
the highest value with red, and the second highest value
with blue. As expected, the CNN-based demosaicking models
show better performances for most of the sequences than
the non-CNN based algorithms when comparing CPSNR
and SSIM.
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For the Kodak dataset in Table 2, the proposed meth-
ods with and without the self-ensemble method show the
highest and second highest results for most of the sequences.
However, it is interesting to note that the non-CNN-based
conventional methods show good performance on the SSIM
for some sequences. This implies that there is room for
further development of demosaicking methods that employ
deep neural networks. From the average performances com-
parison in Table 3, it can be seen that the proposed method
outperforms the conventional methods by up to 4.66 dB in
terms of CPSNR results, and by up to 0.0156 in terms of
SSIM results. The proposed method achieves even better
performance when it applies the self-ensemble method. The
proposed method shows improved CPSNR and SSIM results
up to 4.89 dB and 0.0160, respectively. For the McMas-
ter dataset in Table 4, the proposed method and the pro-
posed method with the self-ensemble method achieves the
highest and the second highest performance for the most
of the sequences. The DDRL, which applies deep neural
networks for demosaicking shows good performance on the
CPSNR for some sequences; however, overall, the proposed
method exhibits a superior performance than the conventional
methods. The proposed method outperforms the conventional
methods by up to 5.05 dB in terms of average CPSNR, and by
up to 0.0464 in terms of average SSIM as shown in Table 5.
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FIGURE 7. Result images of the conventional demosaicking methods and the proposed method for the McMaster dataset: (a) Original image, (b) red
block of the original image, (c) DLMMSE, (d) DDFW, (e) ESF, (f) MSG, (g) ARI, (h) FDRI, (i) DDRL, (j) DDemo, (k) DRDN, and (I) DRDN+.

TABLE 3. Average CPSNR (dB) and SSIM results of the conventional demosaicking methods and the proposed method for the Kodak dataset.

DLMMSE DDFW ESF MSG ARI
CPSNR 40.11 40.66 40.31 40.92 39.77
SSIM 0.9815 0.9853 0.9852 0.9866 0.9811
FDRI DDRL DDemo DRDN DRDN+
CPSNR 37.71 41.97 42.03 42.43 42.66
SSIM 0.9733 0.9831 0.9879 0.9889 0.9893

When the self-ensemble method is employed, the proposed
method exhibits improved average CPSNR and SSIM up to
5.19 dB and 0.0471, respectively. These results show that
our proposed method outperforms the conventional methods
significantly, and exhibits even more enhanced performance
by applying the self-ensemble method.

Figure 6 and 7 present the result images of the Kodak and
McMaster datasets, respectively, for the subjective compari-
son. When comparing the performances of the demosaicking
methods, it is important to compare whether there exist any
artifacts such as zippering or false color artifacts. In Figure 6,
we compare the result images of the Kodak dataset. As shown
in the figure, the conventional demosaicking methods show
false color artifacts, both with and without the CNN archi-
tecture. However, the proposed method interpolates the
pixel values accurately and does not present any artifacts.
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Figure 7 presents the resulting images of the McMaster
dataset. As shown in the figure, the conventional methods
produce false color artifacts in the form of black dots. How-
ever, the proposed method does not exhibit any false color
artifacts, which establishes its excellent performance.

C. ABLATION STUDY

To exhibit the effect of global residual learning (GR), local
residual learning (LR), and dense connectivity (CONC),
we performed an ablation study. Table 6 shows the results
of the ablation study. When we removed all the compo-
nents from our proposed network, it was unable to train the
network. This exhibits that the vanishing-gradient problem
hindered our network from training the parameters without
the components. When we applied one of the three compo-
nents, our network could overcome the vanishing-gradient
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TABLE 4. CPSNR (dB) and SSIM results of the conventional demosaicking methods and the proposed method for the McMaster dataset.

1 2 3 4 5 6
CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM
DLMMSE | 26.98 0.8544 36.34 0.9355 37.25 0.9254 | 36.60 0.9272 38.78 0.9213 37.23 0.9247
DDFW 27.14 0.8613 36.93 0.9443 37.50 | 0.9342 36.83 0.9377 38.64 | 09300 | 37.14 0.9314
ESF 26.07 0.8531 35.57 0.9458 36.44 | 0.9328 35.89 0.9471 38.28 0.9414 | 36.66 0.9386
MSG 27.05 0.8695 36.47 0.9509 37.28 0.9396 | 36.80 0.9499 38.83 0.9420 | 37.13 0.9409
ARI 29.63 0.9245 39.24 0.9719 | 40.20 | 0.9726 | 40.02 0.9642 | 40.59 0.9500 | 39.02 0.9568
FDRI 29.38 0.9188 38.99 0.9715 39.98 0.9723 39.92 0.9671 40.97 0.9561 39.29 0.9585
DDRL 31.05 0.9292 | 40.90 0.9732 | 4l.61 0.9728 41.40 0.9605 42.23 0.9515 40.17 0.9588
DDemo 29.26 0.9133 39.66 0.9726 | 40.86 | 0.9728 39.38 0.9663 41.50 | 0.9590 39.09 0.9581
DRDN 31.13 0.9371 40.69 0.9761 41.69 0.9762 | 41.07 0.9669 | 41.78 0.9566 | 40.11 0.9616
DRDN+ 31.26 0.9387 | 40.83 0.9765 41.77 0.9766 | 41.19 0.9674 | 41.88 0.9575 40.19 0.9623

7 8 9 10 11 12
CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM
DLMMSE | 37.27 0.9176 30.46 0.8736 29.31 0.8642 33.92 0.9282 33.68 0.9082 32.59 0.9550
DDFW 37.32 0.9225 30.05 0.8813 29.79 | 0.8730 | 33.81 0.9324 33.54 | 0.9093 32.63 0.9560
ESF 36.70 0.9306 | 28.98 0.8700 28.35 0.8556 | 33.49 0.9362 33.07 09171 32.31 0.9549
MSG 37.19 0.9329 30.18 0.8866 29.30 | 0.8730 | 34.10 0.9409 33.67 0.9206 32.93 0.9584
ARI 39.38 0.9590 35.64 0.9670 34.69 | 0.9620 | 36.43 0.9657 35.21 0.9454 | 34.63 0.9725
FDRI 39.42 0.9599 3541 0.9650 33.75 0.9553 36.19 0.9638 35.14 | 0.9456 33.53 0.9687
DDRL 40.37 0.9561 36.50 0.9635 36.24 | 0.9669 | 37.93 0.9656 36.11 0.9491 36.23 0.9715
DDemo 39.47 0.9571 34.99 0.9527 3430 | 0.9548 35.70 0.9542 34.94 | 0.9429 34.94 0.9730
DRDN 40.38 0.9627 37.01 0.9710 36.08 0.9688 38.03 0.9706 36.00 0.9500 36.30 0.9784
DRDN+ 40.46 0.9631 37.11 0.9718 36.31 0.9704 38.19 0.9715 36.15 0.9514 36.45 0.9790

13 14 15 16 17 18
CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM | CPSNR | SSIM
DLMMSE | 34.32 0.9825 31.27 0.9091 33.84 | 09122 38.64 0.9737 37.45 0.9660 | 34.41 0.9270
DDFW 34.72 0.9832 31.11 0.9117 33.75 0.9186 | 38.98 0.9750 37.33 0.9670 | 34.78 0.9334
ESF 34.66 0.9837 30.30 0.9097 32.10 | 0.9039 | 38.80 0.9751 37.31 0.9667 33.95 0.9349
MSG 35.49 0.9852 31.12 0.9168 33.56 | 0.9195 39.17 0.9761 37.61 0.9669 34.69 0.9388
ARI 37.89 0.9892 35.42 0.9628 39.75 0.9724 | 39.70 0.9791 39.51 09784 | 37.88 0.9631
FDRI 38.03 0.9894 34.82 0.9591 38.88 0.9693 35.83 0.9603 38.14 | 0.9759 37.52 0.9639
DDRL 40.41 0.9775 36.66 0.9600 | 40.67 | 0.9678 | 41.34 0.9790 | 41.00 0.9774 | 40.17 0.9660
DDemo 38.69 0.9901 35.09 0.9561 39.40 | 0.9689 | 40.81 0.9821 40.39 0.9797 38.64 0.9657
DRDN 40.09 0.9917 36.44 0.9656 40.77 0.9753 41.44 0.9836 | 40.91 0.9795 39.95 0.9689
DRDN+ 40.35 0.9919 36.54 0.9663 40.94 0.9759 41.52 0.9838 41.21 0.9803 40.08 0.9697

TABLE 5. Average CPSNR (dB) and SSIM results of the conventional demosaicking methods and the proposed method for the McMaster dataset.

DLMMSE DDFW ESF MSG ARI
CPSNR 34.46 34.56 33.83 34.59 37.49
SSIM 0.9225 0.9279 0.9276 0.9338 0.9643
FDRI DDRL DDemo DRDN DRDN+
CPSNR 36.96 38.94 37.62 38.88 39.02
SSIM 0.9623 0.9637 0.9622 0.9689 0.9697
TABLE 6. Ablation study results of the GR, LR, and CONC (CPSNR (dB) / SSIM).
GR X (0] X X o o X o
LR X X (6] X (0] X o o
CONC X X X 0 X (6] (0] (0]
Kodak 15.31/0.3045 | 27.03/0.8223 | 42.12/0.9882 | 42.39/0.9885 | 38.65/0.9764 | 42.03/0.988 42.42/0.9888 | 42.43/0.9889
McMaster | 12.87/0.2114 | 27.58/0.8524 | 38.63/0.9676 | 38.75/0.9682 | 37.39/0.9615 | 38.57/0.9675 | 38.80/0.9686 | 38.88/0.9689

problem except for the case when we only applied GR.
This indicates that GR could reduce the vanishing-gradient
problem to some extent. The most successful component
for solving the vanishing-gradient problem was the CONC
followed by LR. They showed powerful performance com-
pletely solving the vanishing-gradient problem. When we
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applied two of the three components, our proposed net-
work could be trained in every condition, and the CONC
was found to be the most effective for the performance
of our network. When we applied all the components,
our proposed network could achieve the most powerful
performance.
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D. DIFFERENCE TO RDN

Although the network architecture of our proposed method
is similar to that of RDN [20], there are three major differ-
ences: First, the architecture of the blocks is different. Unlike
RDN, that uses six 3 x 3 convolution layers in its blocks,
our DRDN uses three sets of 1 x 1 and 3 x 3 convolution
layers; our experimental analysis indicates that using 1 x 1
convolution layer achieves better demosaicking performance.
Second, RDN concatenates the output information of every
block at the end of the network, thereby consuming a lot
of memory, producing only a slight increase in the demo-
saicking performance. On the contrary, our DRDN does not
use the output information of every block at the end of the
network. Finally, we applied a different number of the blocks
and growth rates, which are optimized for demosaicking and
memory consumption.

V. CONCLUSION

In this paper, we proposed a densely connected residual
demosaicking network which successfully applied dense con-
nectivity and residual learning on the demosaicking solution.
Conventional demosaicking methods applied initial interpo-
lation or demosaicking process, which made their method
computationally complex. To solve this problem, our pro-
posed network was trained in an end-to-end manner without
any pre-processes. Moreover, our proposed network gen-
erated four color layers with a quarter of the size of the
original mosaicked image by input data modification. This
enabled our network to reduce the computational complex-
ity and memory consumptions. Next, we trained our pro-
posed network, which applied residual learning on densely
connected CNN to avoid the vanishing-gradient problem.
Additionally, our proposed network applied the sub-pixel
interpolation layer which learns to generate demosaicked
images with desired resolution while our proposed CNN
model is trained. This enabled our network to generate the
demosaicked images more efficiently and accurately. Finally,
we applied the self-ensemble method, which enabled our pro-
posed network to achieve even better performances without
additional training or clustering process. The experimental
results exhibited that our proposed network outperforms the
conventional demosaicking methods for both objective and
subjective comparisons.
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