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ABSTRACT Generative Adversarial Networks (GANs) have achieved remarkable progress in image-to-
image translation tasks. However, these methods have the common problem that lacking the ability to
generate both perceptually realistic and diverse images in the target domain. To tackle the problem, in this
paper, we propose a novel model named Consistent Embedded Generative Adversarial Networks (CEGAN)
for the image-to-image translation task. It aims to learn conditional generation models for generating
perceptually realistic outputs and capture the full distribution of potential multiple modes of results by
enforcing tight connections in both the real image space and latent space. To achieve realism, unlike existing
GANs models that their discriminators attempt to differentiate between real images from the dataset and fake
samples produced by the generator, the discriminator in our model distinguishes the real images and fake
images in the latent space to alleviate the impact of the redundancy and noise in generated images. On the
other hand, we learn a low-dimensional latent code that is distilled from the possible multiple distribution
in the latent space to achieve diversity. By this way, our model avoids the problem of mode collapse and
produces more diverse and realistic results. Extensive experimental results demonstrate the superiority of

the proposed method.

INDEX TERMS Image-to-image translation, GAN, latent space.

I. INTRODUCTION

Nowadays, image-to-image translation tasks have attracted
much attention in many computer vision articles due to its
extraordinary performance [1]-[3]. It aims to learn a map-
ping that can convert an image from a source domain to a
target domain, while preserving the main presentations of
the input images. For instance, networks have been used
to translate real-world scenes into cartoon images [4], add
color to grayscale images [1], [5], [6], and fill missing image
regions [3], [7], [8].

The goal of generative adversarial networks GANs [9]
is to generate samples that can confuse the discriminator
to achieve the purpose of falsehood to be dressed up as
truth. It has achieved impressive success in images edit-
ing [7], super resolution [10], representation learning [11],
and image generation [12], [13]. Particularly, the GANs are
extensively studied in image-to-image translations. [14]—[16]
tackle image-to-image translation by GANs where it used to
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Gray to Color Labels to Facade

FIGURE 1. Many image generation problems involves translating an
input image into a corresponding output image with GANs. Here,

we show the results of image gray to color, labels to facade, night to day
and edges to photo.

ensure the generated images belonging to the target domain
and improve image qualities by minimizing reconstruction
loss.

In recent years, several researchers have devoted to image-
to-image translation with GANs field (see Figure 1) and
excellent algorithms have emerged. The detailed methods
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are mainly divided into two categories. The first issue is
that lots of articles have focused on learning one-to-one
mapping from input to output. For example, pix2pix [3]
actively learns a mapping from given input to output image,
with a reconstruction loss to produce a similar output to the
known paired ground truth image and a adversarial loss to
encourage realism. It has previously been shown to produce
good-quality results for a variety of image-to-image transla-
tion tasks. Similar ideas have been applied to various tasks
such as generating photographs from sketches, attribute and
semantic layouts [17]. However, these algorithms learn the
mapping with paired training examples that are not easily
got in real-world. Zhu et al. [16] tackles the unpaired setting
with cycle consistency loss to retain the main presentations of
image. CoGAN [18] and crossmodal scene networks [19] use
a weight-sharing strategy to learn a common representation
across domains. However, all above methods have focused
on generating a single result conditioned on the input and
these techniques usually assume a deterministic or unimodal
mapping. As a result, they fail to capture the full distribution
of possible outputs. Even if the model is made stochas-
tic by injecting noise, the network usually learns to ignore
it [20].

On the other hand, one way to help address the first issue
is to leverage additional information from other modalities,
so0 many interesting problems are more naturally thought of
as a probabilistic one-to-many mapping. Lin et al. [21] is
the first image-to-image work that decomposes image into
domain-independent features and domain-specific features,
and produces diverse translated images. In recent years, one
of the most outstanding representatives of one-to-many algo-
rithms is BicycleGAN [2], it learns a distribution of possible
outputs and use it as cGANs model setting. Random sampling
the learned ambiguous mapping distribution to produce the
diverse outputs during the test time. The discriminator of

BicycleGAN attempts to differentiate between real images
from the dataset and fake samples produced by the generator,
which is to ensure the generated images more similar to
the groundtruth. Huang et al. [22] assumes that the image
representation can be decomposed into a content code that
is domain-invariant, and a style code that captures domain-
specific properties. It recombines its content code with a
random style code sampled from the style space of the target
domain. These methods all realized the goal of producing
multimodal outputs for a fixed input.

As we known, there are two main goals of the multimodal
image generation problem: producing results which are per-
ceptually realistic and diverse, while remaining faithful to the
input. But this multimodal mapping in existing approaches
leads to the common problem of mode collapse [9], where the
generator learns to generate only a small number of unique
outputs. Furthermore, although the above mentioned algo-
rithms could get multimodal outputs conditioned on the same
input, the quality of the generated images is unsatisfactory.
The reason may be that in real-world application, the gen-
erated images by existing GANs always contain noise and
redundancy because they directly discriminate the difference
between generated image and real image in original space.
However, the original images are usually high-dimensional
images that may well contain redundant features, noise and
outlying entries(In this article, we hold that redundant fea-
tures, noise and outlying entries are not only image occlu-
sion or destruction of pixel, but also blurred or unrealistic
images. e.g., marked by red rectangle in Figure 2). The dis-
criminator which identifies in original image space directly
mainly considers the error relationship between the gener-
ated samples and the noisy samples. Low-quality generated
images would seriously affect the function of discriminator.
As a result, the final performance would be deteriorated
greatly.

FIGURE 2. The explanation of noise, redundancy and outlying entries(marked by red rectangle) in original image space and generated
images. Comparison of randomly generated samples from BicycleGAN and our CEGAN on Labels-facades, Map-satellite and Outdoor

night-day image datasets.
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In this work, our focus is to learn conditional genera-
tion models for generating perceptually realistic outputs and
model a distribution of potential multiple modes of results
by enforcing tight connections in both real image space and
latent space. To ensure our produced images become real
enough, unlike existing GANs models that the discriminator
attempts to differentiate between real images from the dataset
and fake samples produced by the generator, the discrimi-
nator in our proposed Consistent Embedded GAN(CEGAN)
distinguishes the real images and fake samples in the latent
space. We learn a low-dimensional latent code that is distilled
from the possible multiple modes in the latent space to solve
the problem of mode collapse and produces more diverse
results. We choose GAN model and latent space learning
due to the following considerations: (1) GAN can ensure that
the generated images well mimic the natural images in the
target domain. (2) Latent space learning model can help to
alleviate the impact of redundance and noise in the generated
images and produce more perceptually realistic and diverse
outputs. The main contributions of our CEGAN model are
summarized as follows:

e We propose a novel image-to-image translation model
by combining GAN and latent space learning, our model can
generate both realistic and diverse images.

e The discriminator in CEGAN distinguishes the real
images and fake samples in the latent space instead of the
real image space.

e We learn a mapping between real image space and latent
space. Random sampling the ambiguity mapping to express
multiple modes in the output.

e Extensive experimental results verify that our model
outperforms the state-of-the-art image-to-image translation
model.

Il. RELATED WORKS

More and more GANs have been used in image-to-image
translation application. We employ GANSs to align the distri-
bution of latent vector for generated images and real images in
this paper. At the first, we will introduce GANs, then image-
to-image translation, and multimodal encoding diversity.

A. GENERATIVE ADVERSARIAL NETWORKS (GANs)

The GANs [9] have achieved remarkable achievements in
image generation field. During the training process, a gen-
erator is trained to fool a discriminator which in turn tries
to distinguish between generated samples and real samples.
In order to improve the quality of generated images, variant
GANSs have been proposed, such as better training objec-
tives [23]-[25], combination with auto-encoders [26], [27]
and multi-stage generation [28]-[30].

B. IMAGE-TO-IMAGE TRANSLATION

The task of image-to-image translation is to convert an image
from a source domain to a target domain while preserving
its certain properties. Mirza and Osindero [31] propose the
first unified model for image-to-image translation based on
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conditional GANs, which has been successfully applied to
many applications. For example, Wang et al. [32] apply it in
generating high-resolution images. Condit ional GANs [31]
demonstrated that both generator and discriminator are con-
ditioned on some extra information to generate the output we
expected. Similarly, conditional VAE [33] aims to translate
the source domain to the target domain by adding random
noise to the given image. Potentially, all of the methods
defined above could be easily conditioned and have shown
promise, while image-to-image conditional GANs have lead
to a substantial boost in the quality of the results [21],
such as pixel values [34], semantic features [35], class
labels [36], or pairwise sample distances [37]. In addition,
Liu et al. [38] propose the UNIT framework, which assumes
a shared latent space such that corresponding images in two
domains are mapped to the same latent code.

C. MULTIMODAL ENCODING DIVERSITY

As we know, a significant limitation of most existing image-
to-image translation methods is insufficient diversity of the
generated images. To tackle this problem, some scholars
proposed a multi-output GAN model which can generating
multiple different images from one input image [39], [40].
The most common way to generate multimodel outputs is
to encode the equivocal samples in latent space which is
conditioned on some mode-related context and input image.
However, these methods can only generate a discrete numer-
ical outputs. Zhu et al. [2] propose a BicycleGAN which
can generate continuous and multimodal outputs. Although
BicycleGAN has successfully generated multimodal outputs,
the reality and diversity of generated image is still far from
we expected. The main reason maybe that the discriminator
discriminates the error relationship of distribution between
the generated data and the noise-containing data. Latent space
learning can effectively avoid the influence of redundant fea-
tures and noise in generated images [41]. Thus, it motivates us
to embed the multimodal encoding vector to the latent space.
By learning a mapping between real image space and latent
space, we random sample the ambiguity mapping to express
multiple modes in the output.

Ill. CONSISTENT EMBEDDED GAN
In this section, we will present the detail of our model
architecture.

A. MOTIVATION

Most existing GAN frameworks usually consist of two Con-
volutional Neural Networks (CNNs). One is the generator
G which is trained to produce output that confuses the dis-
criminator. The other is the discriminator D which classifies
whether the image is from the real target manifold or syn-
thetic. However, in real-world application, the original
images are usually high-dimensional images that may well
contain redundant features or noise. The traditional GAN
structure mainly considers the error relationship between the
generated image and the noisy image, which leads to noise
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FIGURE 3. Modal overview. Our model CEGAN consists of a generator G, a discriminator D and a autoencoder E

(the two E in the picture are essentially the same). First, ground truth X, is encoded into the latent space and obtain a
latent code z. X; combines the latent code z as the input of G. The generator then attempts to map the input image X;
along with the latent code z back into original image X,. We encode the generated sample output X, to be latent
code Z by E, that is to reduce the impact of generated noise and redundancy. We try to reconstruct both the ground
truth’s latent code and image to realize the purpose of generating realistic and diverse images in the target domain.

and redundancy in the generated images. As a result, the qual-
ity of generated images are unsatisfactory. While through
latent space learning, we can transform high-dimensional
image space into low-dimensional potential space and the
obtained latent code can capture the main semantic informa-
tion. The low-dimensional latent code adversarial learning is
more conducive to the network training. So in the following
section, we will introduce our method to alleviate such a
challenging problem in detail.

B. CONSISTENT EMBEDDED GAN NETWORKS

Figure 3 shows an overview of our model. In the training
progress, let x; € X; and x € X, be the images from
two different image domains, which are a dataset of paired
images and are representative of a joint distribution p(xp, x).
We should learn a multi-modal mapping between two image
domains, for example, X; and X, represent edges and ground
truth photographs respectively, and we want to generate a
set of photographs about X, which have different colors
and textures according to the edges of X;. To achieve this,
we train G to translate an input images x; into an output
images x> conditioned on the target domain images’ latent
vector. It is important to note that there could be multiple
plausible paired images x, which would correspond to an
input images x but the training dataset usually contains only
one such pair. However, given a new image X; € X; during
test time, our model CEGAN would be able to generate a
diverse set of output X € Xp, corresponding to different
modes in the distribution p(x> |x1).

We would like to learn the mapping that could sample
the output x; from true conditional distribution given X,
and produce results which are both diversity and realism.
In order to achieve diversity, we learn a low-dimensional
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latent code z that encapsulates the ambiguous aspects of
the output mode which are not present in the input image.
According to the latent code z, we could get different styles
with the same input. We then learn a deterministic mapping
F : (x1,27) = x»2. To enable stochastic sampling, we desire
the latent code to be drawn from some prior distribution
p(2) 2E (x2). On the other hand to achieve realism, unlike the
existing GANs framework that the discriminator D attempts
to differentiate between real samples and generated samples,
the discriminator D in CEGAN distinguish the real images
and fake samples in the latent space. As we all know that
during training process, the generate images always contain
redundancy features, noise and outlying entries, which would
lead to unreliable and inaccurate results. By latent space
learning, we encode this images to the low-dimensional latent
code z to alleviate such a challenging problem. Then discrim-
inator D classifies whether the latent code is from the real tar-
get manifold or synthetic. Furthermore, to further ensure the
quality of the generated images, we use a standard Gaussian
distribution N(0, I) to constraint the latent distribution.

C. LOSS FUNCTIONS

Our loss functions comprise an adversarial loss, two recon-
struction losses and a KL loss. GAN adversarial loss drives
the generator network to match the distribution of translated
images to the desired domain image distribution. Reconstruc-
tion loss and KL loss ensure the generated images similar
to the known paired ground truth image. We use a simple
additive form for the loss function:

L* = arg r(r;nl? mDax lgan (G, E, D) + Aimagelim“ge(G, E)

recon
+ Matens 1M (G, E) + Axr Ik (E), (1)
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where the hyper-parameters Auage, Aarens and Agg, control the
importance of each term.

1) ADVERSARIAL LOSS

We employ conditional GANs to realize image-to-image
translation task. In other words, images generated by our
model should be indistinguishable from real images in the
target domain. What’s more, in order to better reflect the role
of discriminator D, our D distinguish the real images and
fake samples in the latent space that can decrease the impact
of redundancy features and noise in the generated images.
We illustrate the adversarial loss below:

lean = Eznp(n)[log(D(2))]
+ Ex~px).polog(l — DE(G(x1, )] (D)

2) RECONSTRUCTION LOSS

To encourage the output of the generator to match the input
as well as stabilize the GANS training, we use an /1 loss to
restrain the output image and the ground truth. Furthermore,
to ensure the generated images’ realism and diversity, we also
reconstruct the output’s latent vertor and the ground truth
image’s latent vector.

Z;Zé,‘:ff = Exl,x2~p(x1,x2),z~p(z)”x2 -G (-xlv Z)”la (3)
et — g o epollz —E (G, ). (@)
3) KL LOSS

To maximize the effectiveness of latent distribution and
sample z at inference, we restrain it with a Gaussian assump-
tion and encourage to restructure with KL dispersion.

Ikt = Exy~poen)[Drr (E (x2) || N (0, I))]. ©)

IV. IMPLEMENTATION
We implemented our CEGAN framework in PyTorch [42].

A. NETWORK CONFIGURATION

CEGAN is constructed with identical network architecture
for G, D and E. For generator, it is configured with equal
number of downsampling and upsampling layers. In addition,
we configure the generator with symmetric skip connec-
tions between downsampling and upsampling layers as in
BicycleGAN, making it a U-Net [43]. Such a design has
been shown to produce strong results in the unimodal image
prediction setting since it enables low-level information to
be shared between input and output pairs. Without the skip
layers, information from all levels has to pass through the bot-
tleneck, typically causing significant loss of high-frequency
information. For discriminator, we employ three fully con-
nected layers, which aims to predict the real or fake latent
code rather than images or overlapping image patches. Such
a configuration is effective in capturing low-dimensional
latent code distribution and it fulfills our needs well. For the
encoder, it includes several strided convolutional layers to
downsample the input, and a few residual blocks to further
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process it, followed by a global average pooling layer and a
fully connected layer.

To stabilize our model training procedure, we build our
model on the Least Squares GANs (LSGANS) variant [24],
which uses a least-squares objective instead of a cross entropy
loss. LSGANSs produces high quality results with stable train-
ing process.

B. HYPERPARAMETERS

We use Adam optimizer [44] to train our networks with an
initial learning rate of 0.0002. The learning rate is decreased
by half every 10000 iterations. In all experiments, we use a
batch size of 1 and set loss weights to Ajnage = 10, Ajgrens = 1
and Agr, = 0.1. We choose the dimension of the latent code to
be 8 across all datasets. Random mirroring is applied during
training.

C. INJECTING THE LATENT CODE TO GENERATOR

To realize the diversity of outputs, we encode the possi-
ble multiple outputs in the latent space and combine the
latent code with the given image as the input of the gener-
ator. By learning a mapping between real image space and
latent space, we random sample the ambiguity mapping to
express multiple modes. So how to propagate the information
encoded by latent code to the image generation process is
critical to our applications. There are two common solutions
in existing methods. The most simply strategy is to extend
a Z-dimensional latent code to an H x W x Z spatial ten-
sor and concatenate it with the H x W x 3 input image.
Alternatively, the other method is to add the latent code
to each intermediate layer of the network G. In this paper,
we chose the former because the experiment results are not
much different but the first strategy is easy to implement. The
overview framework of injecting the latent code is shown in
Figure 4.

X

—=

=

T Generator (7

Latent spaceZ

FIGURE 4. Injecting the latent code to generator. We inject the latent
code z into the first input layer in the encoder.

V. EXPERIMENTS

A. DATASETS

Edges—Shoes/Handbags: We use the datasets provided

by [45] and [46], which contain images of shoes and handbags

with binary edge generated by the HED edges detector [47].

All the images are revised to 256 x 256 for our model training.
Map—Satellite: The dataset is provided by [3]. It col-

lects the maps from Google Maps. Similarly, the images are

downsampled such that the shortest side of each image is

256 pixels.
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Outdoor Night—Day Images: The dataset comes from [48].
It contains 8571 images and each of which is 256 x 256.

Labels—Facades: We use the datasets provided by [49].
It is from architectural labels to photo and all the training
images are revised to 256 x 256, trained on CMP
Facades [50].

B. EVALUATION METRICS

AMT Perceptual Study: In order to compare the faithfulness
and realism of translation outputs generated by different
methods, similar to Wang et al. [32], we take human percep-
tual study on Amazon Mechanical Turk (AMT): the Turkers
are presented with a series of trials that pitted an input image
and six translation outputs from different methods. During
each trial, the images appeared 2 seconds and Turkers are
given unlimited time to respond which translation output
looks more accurate. The appeared images are 256 x 256
resolution. We prepare 200 questions and select 100 people
for our test. Each of Turker randomly selects 50 questions to
answer.

LPIPS Distance: LPIPS distance [51] is one of the uni-
versal indicators for measuring image translation diversity.
In our experiment, we compute the average LPIPS distance
between pairs of randomly-sampled translation outputs from
the same input as in Zhu et al. [2]. LPIPS is given by a
weighted L2 distance between deep features of images. The
ImageNet-pretrained AlexNet [52] extracts image feature fast
with best performance, so we choose it as our experiment
deep feature extractor. LPIPS distance has been demonstrated
to correlate well with human perceptual similarity [51]. For
each algorithm, we select 50 input images and every per input
randomly generate 20 outputs. We choose the average LPIPS
distance and standard deviation with the total 1000 pairs as
the final result.

FID Score: FID score [53] is a measure of similarity
between two datasets of images. It is calculated by computing
the Friechet distance between two Gaussians fitted to feature
representations of the Inception network. It was shown to
correlate well with human judgement of visual quality and
was most often used to evaluate the quality of samples of
Generative Adversarial Networks. In this paper, we choose
the 768 pre-aux classifier features of the Inception network
to calculate the FID distance.

C. BASELINES
cVAE-GAN: This method combines a variational auto-
encoder with a generative adversarial network to translate
the images from source domain to target domain. It models
an image as a composition of label and latent attributes in
a probabilistic model. By varying the fine-grained category
label fed into the resulting generative model to realize image
style translation task.

cLR-GAN: This is another approach to capture image mode
in latent space. It starts with arandomly sampled latent encod-
ing, the conditional generator should result into an output
which when given itself as input to the encoder should result
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back into the same latent code, enforcing self-consistency.
This method is to explicitly model the inverse mapping and
could be seen as a conditional formulation of the “latent
regressor’”” model.

BicycleGAN: The method realizes bidirectional mapping
by combining cVAE-GAN and cLR-GAN. It primely learns
the relationship between the latent space and the real image
space. Itis the best existing image-to-image translation model
we are aware of that can generate relative reality and multi-
modal outputs.

D. RESULTS

First, we qualitatively compare CEGAN with the three base-
lines above respectively. We test the performance of these
methods with the same input and under the same training
process. Figure 5 presents their translation results on Edges-
shoes dataset. From Figure 5, we obtain the following obser-
vations:

e cLR-GAN indeed produces a relatively realistic output
but the result shows less variation. Particularly, it sometimes
suffers from mode collapse, e.g., the 2-th row and 6-th row
blue rectangle outputs.

e On the other hand, cVAE-GAN adds variation to the
output, as the latent space is encouraged to encode informa-
tion about ground truth. However, the diversity of generated
images comes at the cost of output’s quality(e.g., marked by
red rectangle).

e BicycleGAN sometimes achieves relatively more real-
istic and diverse transition than cVAE-GAN and cLR-GAN.
However, the image quality of BicycleGAN is still unsatis-
factory. This reason may be that it mainly considers the error
relationship between generated data and noisy data.

e Images produced by our CEGAN model are both diverse
and realistic. It has the best performance among all the com-
pared methods, since CEGAN transforms high-dimensional
image space into low-dimensional potential space, distin-
guishing the real and fake samples in the latent space.
It enforces tight connections in both the real image space and
latent space.

More results of CEGAN are shown on Figure 6. Quantita-
tive evaluations confirm the qualitative observations above.
We can obtain similar conclusions on Edges—handbags,
Map—satellite and Night—day datasets which are shown
in Table 1. Under the same training process on Edges-
shoes dataset, we respectively use AMT perceptual scores
to measure quality and LPIPS distance to evaluate diversity.
As presented in the Table 1, cVAE-GAN and cLR-GAN
get lower AMT perceptual scores than BicycleGAN and
CEGAN. Moreover, cLR-GAN produces very little diversity
according to LPIPS distance. Especially on Outdoor night—
day image dataset, its LPIPS distance is around 12% below
our model. Images which are produced by cVAE-GAN are
more diverse than cLR-GAN and BicycleGAN based on the
LPIPS distance. However, it is at the expense of quality.
Our CEGAN model obtains significantly better quality and
diversity compared to the baselines. Through the learned
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FIGURE 5. Qualitative comparison results. Comparison of randomly generated samples from different methods on the Edges—shoes dataset. Under
the situation of the same input, the outputs of cVAE-GAN are diverse but not realistic(marked by red rectangle). The cLR-GAN produces realistic
images while it is at the expense of diversity(marked by blue rectangle). BicycleGAN generates better outputs than the two methods, but the results
from our CEGAN show the most realistic and diversest results.

TABLE 1. Quantitative evaluation metrics. Results of each method on the Edges—shoes/handbags, Map—satellite datasets and Outdoor night—day
images datasets. For both metrics, the higher the better.

Edges-shoes Edges-handbags Map-satellite Night-day
Methods | AMT Fooling LPIPS AMT Fooling LPIPS AMT Fooling LPIPS AMT Fooling LPIPS
% Distance % Distance % Distance % Distance

cVAE-GAN | 22.56+2.85 | 0.171£0.021 | 28.69£2.07 | 0.227+0.058 | 27.134+2.58 | 0.155£0.037 | 31.34+1.96 | 0.308+0.075
cLR-GAN | 39.274+1.97 | 0.121+0.014 | 32.15+2.58 | 0.142+0.028 | 41.66+4.34 | 0.0944+0.009 | 44.61+2.38 | 0.198+0.036
BicycleGAN | 51.62£3.26 | 0.1594+0.025 | 42.18+2.14 | 0.195+£0.035 | 46.85+2.29 | 0.164+0.024 | 47.38£3.14 | 0.294+0.055
CEGAN 55.124+2.34 | 0.178+0.032 | 48.25+1.84 | 0.234+0.039 | 42.174+3.27 | 0.169+0.028 | 58.15+1.24 | 0.327+0.062

latent space, we can makes full use of latent code that is E. ANALYSIS OF LATENT SPACE ADVERSARIAL LEARNING
distilled from the possible multiple outputs and hence obtains In order to demonstrate the benefits of distinguishing real
the multiple modes of diversity in the experiments, relatively. images and fake images in latent space, we have conducted
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FIGURE 6. Example Results. We show example results of our model CEGAN on Edges—handbags, Map—satellite and Outdoor night—day
images datasets. The left column shows the input. The second shows the ground truth column. The final five columns show randomly

generated samples of our modal.

TABLE 2. Quantitative evaluation metrics. Results of each method on the Edges-shoes/handbags, Map-satellite, Outdoor night-day and Labels-facades

datasets. Lower FID values mean better image quality and diversity.

Methods Edges-shoes Edges-handbags | Map-satellite Night-day Labels-facades
cVAE-GAN 0.678 0.768 1.097 2.074 1.204
cLR-GAN 0.724 0.895 1.186 1.957 1.157
BicycleGAN 0.412 0.457 1.073 1.429 0.924
CEGAN 0.397 0.552 0.895 1.322 0.854

more compared experiments with BicycleGAN method.
Figure 7 shows the qualitative comparison results with
BicycleGAN on Map-satellite, Labels-facades and Outdoor
night-day datasets. Table 2 presents the quantitative FID
evaluations results.
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Both the quantitative and qualitative compared result veri-
fied the importance of distinguishing the real images and fake
images in the latent space. As shown in Figure 7, the images
generated by BicycleGAN are relatively blurred and smooth.
The same phenomenon on Labels-facades dataset, we can

VOLUME 7, 2019



F. Xiong et al.: CEGAN for Image-to-Image Translation

IEEE Access
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FIGURE 7. More qualitative comparison results. Comparison of randomly generated samples from BicycleGAN and our CEGAN on
Map-satellite, Labels-facades and Outdoor night-day image datasets.

Original

No-image-rec

.
i

No-latent-rec

ry.

CEGAN

£y Yy,

FIGURE 8. Ablation studies results. Samples from the model No-image-rec and No-latent-rec.

see that BicycleGAN produces images with destruction of
pixel, redundancy and noise. The reason may be that it mainly
considers the error relationship between the generated image
and the noisy image. While through latent space learning,
we can transform high-dimensional image space into low-
dimensional potential space. The obtained latent code can
capture the main semantic information and alleviate the
impact of noise and redundancy features to some extend.

VOLUME 7, 2019

The low-dimensional latent code adversarial learning is more
conducive to the network training. So the generative image
can be more realistic.

F. ABLATION STUDY
In this experiment, in order to understand the necessity of
each individual model component to the overall performance,
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we take the ablation studies by comparing the generated
image quality on Edges—shoes and Map—satellite datasets.
As shown in Figure 8, we mainly measure the effect of recon-
struction loss to the model performance. If not mentioned
otherwise, the hyper-parameters are the same in the below
models.

No-Image-Rec: The loss function of this model becomes:
lgan+1 ﬂ?éf,’,’l’ +Ik1 . Note that other techniques proposed in this
paper are still employed. The architecture is described as the
same as Figure 3, but trained without /; image reconstruction
loss.

No-Latent-Rec: The loss function of this model becomes:
loaN + Loe8¢ 4 Ixr. Same architecture as Figure 3, but omits
the /1 latent reconstruction loss.

Compared the generated samples, we conclude that both
the image reconstruction loss and the latent reconstruction
loss are important to the overall performance. The model
with no-image-rec generates images which are worse qual-
ity. There are many blurs and ghosts(e.g., the first row).
Again, due to /] loss constrains the relationship between
image pixels, it makes the generated images more realistic.
Without latent-rec loss, the reconstruction quality of gener-
ated samples still drops. The image texture details have been
neglected. While adding the image-rec loss, the quality has
improved significantly.

Table 3 shows the FID scores of each method, lower FID
values mean better image quality and diversity. Both no-
image-rec and no-latent-rec methods produce very worse
image quality according to FID values. In general, the
experiment results confirm that [/4¢" 4 [7987 offers some
advantages to the final performance.

TABLE 3. Ablation studies quantitative evaluation metrics. Results of
each method on the Edges—shoes and Map—satellite datasets. Lower
FID values mean better image quality and diversity.

Data sets Edges-shoes Map-satellite
No-image-rec 0.954 1.115
No-latent-rec 0.587 0.994

CEGAN 0.397 0.895

VI. CONCLUSION

In this paper, a novel image-to-image translation model
named Consistent Embedded Generative Adversarial Net-
works (CEGAN) is proposed to generate both realistic and
diversity images. This method captures the full distribution
of potential multiple modes of results by enforcing tight con-
nections between the latent space and the real image space.
Particularly, to alleviate the impact of the redundancy and
noise in generated images, unlike other GANSs, the dis-
criminator in our model distinguish the real images and
fake images in the latent space. Empirical experimental
results showed our method is significantly better than several
well-established image generation approaches.
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