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ABSTRACT Background subtraction is a prevailing method for moving object detection in videos with
stationary backgrounds. However, accurate and real-time moving object detection is challenging in the
presence of complex dynamic scenes. This paper presents a novel technique for background subtraction
based on the dynamic autoregressive moving average (ARMA) model. Specifically, we utilize the temporal
and spatial correlation of images in a video sequence to model each pixel to accurately model the background
image’s dynamic characteristics. In addition, we apply an adaptive least mean square (LMS) scheme
to update the parameters of the background model to offset the dramatically dynamic characteristic of
the background. The proposed algorithm is evaluated on two publicly available benchmark datasets with
complex dynamic backgrounds. The experimental results show that this technique is robust and effective
for background subtraction in complex dynamic backgrounds and is a promising moving object detection

scheme for real-time visual surveillance.

INDEX TERMS Background subtraction, image segmentation, ARMA model, moving object detection,

adaptive LMS, real-time visual surveillance.

I. INTRODUCTION

The extensive development of intelligent visual surveillance
systems demands that systems possess powerful and real-time
image processing ability to identify, locate and track moving
objects. Moving object detection is a prerequisite to suc-
cessfully implement the functions of such systems. Back-
ground subtraction, an essential technique in moving object
detection, has been widely studied in various situations,
such as action recognition [1], target tracking [2] and traffic
monitoring [3]. Generally, a background subtraction scheme
consists of the following four aspects: (1) background mod-
eling, which constructs a model to represent the background;
(2) background initializing, which initializes all the param-
eters of the model; (3) background updating, which updates
the model to adapt to the dynamic scenes; and (4) foreground
detecting, which involves the reasonable classification of all
pixels. In recent years, a large variety of techniques developed
for background subtraction [4], [5] have achieved promising
detection results.
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However, several remaining technical difficulties make it
difficult to detect moving objects effectively and robustly:
(1) dynamic backgrounds, e.g., waving trees, illumination
changes, swaying curtains, rippling water, spouting foun-
tains; (2) camera displacements, e.g., camera jitter and tri-
pod motion; (3) camouflage, where foreground targets have
similar color or texture with the background; (4) extremely
bad weather, e.g., heavy snow, rainstorms and dense fog;
and (5) heavy computational cost to obtain an ideal result,
thus greatly influencing the real-time performance. More-
over, most recently proposed algorithms based on deep learn-
ing increasingly rely on expensive hardware resources due
to the demanding training process [6], [7]. Such methods
are not practical for visual surveillance with limited com-
puting resources and strong real-time demands. Inspired by
pixel-based and region-based algorithms, we propose a sim-
ple but robust moving object detection scheme based on a
dynamic ARMA model to overcome these difficulties.

In this paper, a scheme called DARMABS, which incor-
porates the idea of pixel-based and region-based approaches
by utilizing the temporal and spatial correlation of the pix-
els, is developed to model the background image’s dynamic
characteristics. The basis of this scheme is that we consider
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a particular pixel value of the video sequence over time
as a time series, and the ARMA model possesses powerful
modeling capability for time series, which greatly reduces the
computational burden to obtain a robust background model
that can describe the background image’s dynamic charac-
teristics. The parameters of the proposed ARMA scheme
are constantly updated to adapt to the dynamic background,
which distinguishes the model from the conventional ARMA
modeling process. ARMA has been extensively used to model
background noise, such as ocean clutter in radar [8], [9].
Meanwhile, several proposed methods resembling ARMA
adopt temporal information of the pixel values to model the
background [10]-[12]. However, the adoption of ARMA in
background modeling by integrating temporal and spatial
information has not been reported in the literature.

The main contributions of this paper are as follows:
(1) The dynamic ARMA process is initially utilized to model
the background. (2) The temporal and spatial information of
the pixels is combined. (3) The model is robust to the com-
plex dynamic elements in the background. (4) The real-time
performance of moving object detection is enhanced on the
premise of great detection results.

The rest of this paper is organized as follows. A review
of related work on background subtraction is presented in
Section II. Section III details the proposed DARMABS
scheme, including building the pixel model, initializing the
background model, updating the background model and
classifying the current pixel point. Section IV discusses the
experimental results and performance analysis. Finally, con-
clusions are presented in Section V.

Il. RELATED WORK

Generally, background subtraction methods can be based
on pixels [13]-[20], feature [21]-[23], regions [24], [25],
frames [26]-[28], superpixels [29]-[31], or deep learn-
ing [32]-[34].

Pixel-based methods model each pixel to obtain a robust
background. In early work, a single Gaussian model [13] or a
codebook [14] was the most popular way to segment moving
objects. Then, the classic Gaussian mixture model (GMM)
algorithm was proposed in [15]. The algorithm utilizes a mix-
ture of Gaussian distributions to model the background; thus,
the GMM can adapt to dynamic backgrounds. As a further
development, various extended versions of the GMM have
been proposed in [16]—-[18], and more adaptive methods have
been proposed to improve the segmentation performance.
In [19], Droogenbroeck and Barnich introduced a universal
background subtraction algorithm called ViBe for complex
dynamic backgrounds that takes the pixel values from pre-
vious frames of neighboring pixels or the same position as
a pixel sample set. Then, ViBe compares the current pixel
value with the set to classify the pixel and updates the set by
randomly choosing the pixel to be substituted. An improved
derivative of ViBe called PBAS was proposed in [20] as a
nonparametric background subtraction paradigm that extends
two parameters, namely, the decision threshold and learning
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parameters, to dynamic per-pixel state variables to estimate
the background dynamics. These methods are the most pop-
ular due to their simple, efficient and high-speed implemen-
tations, but they are too sensitive to distinguish background
and foreground pixels as the effects of irregular background
changes.

Feature-level background modeling uses local textures
around a pixel to neutralize the complex variations in the
background. A local binary pattern (LBP)-based method for
constructing the background model was proposed in [21].
The method adopts a texture-based feature, namely, the LBP,
which can accurately model the background. Since the
method extracts region-based textures, the moving back-
ground pixels can be labeled as foreground. Zhang et al.
proposed a feature of spatiotemporal LBP (STLBP) [22],
a derivative of LBP, which performs well in natural
dynamic movement and is fast to compute online. The SuB-
SENSE algorithm incorporates local binary similarity pat-
terns descriptors to model the background [23] and is robust
to noise and variation in the background. These feature-
based methods produce good segmentation results compared
to those of pixel-based methods but are not sufficiently
stable for complex frequent variations in the background.
Region-based background modeling uses spatial correlation
to alleviate the complex variations in the background via
region-level foreground shape models [24] or background
models [25]. Frame-based background modeling methods,
such as robust principal component analysis [26]-[28], are
an alternative to pixel-level and region-level modeling. How-
ever, these methods are not practical for real-time surveillance
because they rely on offline or batch processing. Moreover,
frame-based methods consume substantial memory and entail
higher computational cost than traditional methods.

Superpixel-level background modeling methods, such as
those proposed by Chen et al. [29], Fang et al. [30] and Gior-
dano et al. [31], model the background in terms of super-
pixels, which results in lower memory consumption but is
still computationally expensive. Recent methods based on
convolutional neural networks have also been proposed for
moving object detection [32]-[34]. These approaches per-
form well in complex dynamic scenes but require a large
quantity of labeled data for training. By contrast, our pro-
posed DARMABS background subtraction scheme requires
small quantities of labeled data for training and is sufficiently
robust to achieve good segmentation results.

Ill. THE PROPOSED DARMABS SCHEME
The procedures of the proposed scheme are as follows:

(1) Employing ARMA to build the pixel model.

(2) Initializing the background model.

(3) Adopting adaptive LMS to update the background.
(4) Using a distance measure to classify the current pixel.
(5) Updating the set of background pixel samples.

An overview of the DARMABS scheme based on a block dia-
gram is presented in Fig. 1. We detail how the scheme works
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FIGURE 1. Block diagram of DARMABS. The detail of each block is
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vidual pixels by using history information based on ARMA.
In Section III-B, we present how the model’s parameters can
be initialized in an effective way. We introduce the method for
updating the model’s parameters via an adaptive LMS scheme
in Section III-C. Finally, a strategy is proposed to perform the
accurate BG/FG classification of pixels in combination with
the neighborhood pixel information in Section III-D.

A. BUILDING THE PIXEL MODEL
To properly construct the background model, we analyze the
modeling process and make the following definitions:

Definition 1 (Time Series of Images): We regard the pixel
values of images over time as a “‘pixel process’ [36]. Let the
time series of images be {I(¢)};=;,2,...; then, in the " frame at
position (x, y), the actual pixel value is denoted as I(x, y, t),
and the corresponding predicted background pixel value is
represented as Ippeq (X, y, 1).

Definition 2 (Set of Background Pixel Samples): At posi-
tion (x, y), let the m element set of background pixel sam-
ples (SBPS) be 0 = {lyyn(x,y,D)|I < i < m}. Note
that the elements of the set are chosen from known back-
ground pixels spatially and temporally, which are constantly
updating.

Definition 3 (Binary Differential Image): Let the differen-
tial image obtained from the ™ frame be B(r). The assembly
of all pixel points is B(x, y, t), which denotes the segmenta-
tion result of the proposed scheme.

The central idea of our proposed scheme is to design a
prediction mechanism that can obtain the actual pixel value of
the background based on the historic values. Thus, the pixel
model is given by

p q
Lrea(%,y. 1) = Y ailsamp(x, y, i) = Y _bjerj+er (1)
i=1 j=1

€r—j = |[pred(x’y7t_j)_[(x7y7t_j)| (2)
where p and g are the orders of the process (p > ¢), a;(i =
1,2,...,p), bjj = 1,2,...,q) indicate coefficients of

the autoregressive and moving average parts respectively.
e; ~ N(0,0?) is the deviation between the predicted pixel
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FIGURE 2. Initialization and updating scheme for each pixel’s set of
background pixel samples. This figure shows the updating method of the
sample set over time. The area of the red number denotes the central
pixel. The elements of the set are randomly chosen from the
neighborhood points of the central pixel.

value and the actual value, which satisfies E[lyyeq(x,y, 1) -
e j1=0G=12,...,9).

B. INITIALIZING THE BACKGROUND MODEL

This subsection elaborates the initialization of the back-
ground model, which includes two main aspects, namely, ele-
ment selection for SBPS and value assignment of the model
parameters.

Fig. 2 shows the initialization scheme for SBPS. Due to
the spatial correlation between adjacent pixels, the elements
of the first few frames’ SBPS are randomly selected from the
neighboring pixels to initialize the individual sets.

The model parameters that need to be initialized are the
orders p and ¢, the model coefficients @; and b;, the learning
rate of the parameters awand the threshold of classification
T, t (o, T and 7 will be described in Section III-C through
Section III-D). We restrict p and g to change from O to 6 since
an ARMA model of sixth order is a good trade-off between
mathematical tractability and model fidelity. Table 1 com-
pares the algorithm performance with different p and ¢ values
for the “waving trees” video sequence. The initial values
of a; and b; are selected based on the parameter pretraining
test designed to obtain reasonable values, which selects sev-
eral frames to roughly estimate the parameters. The detailed
parameter setup will be elaborated in Section I'V. The remain-
ing initial parameters for « and T, 7 are given as follows: «
is approximately 0.01 and 7', T depends on the actual true
positive (TP) and false positive (FP) values in the practical
experiment. Detailed parameters will be presented in the next
section.
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C. UPDATING THE BACKGROUND MODEL

The model’s update components include SBPS =
{Ligmx, v, D), ..., Iigm(x,y, m)} and the model parameters
(e.g., a; and b;). The updating strategy of SBPS is to select
the pixel I(x, y, t1) judged as a background pixel more than
a certain number of times, e.g., N, and to replace that ele-
ment in the samples set, which guarantees the reliability and
adaptability of the samples set. The rule is defined as follows:

Usam@, y, 1), oo I,y 1), ooy Lgam (X, y, m)}
if count(I(x,y, 11)) = N
{Ixam(xa yv 1)5 ) Isam(x’ ya m)}

SBPS =
otherwise

3

where count(-) denotes the function that records the number
of times pixel I(x, y, t1) is judged as a background pixel. Note
that if count(I(x,y,t1)) > N, the new pixel I(x, y, t1) will
replace the element of SBPS that has the most similar pixel
value with the new pixel.

Simultaneously, to keep the background model reliable in
complex dynamic scenes, we update the parameters in an
online manner:

al*V =a 4205 itxy 1 =) (tzp) (@)
b = b 208 (12 ) )

where o, i(x,y,t — i) and & denote the learning rate,
the normalized zero mean actual pixel value and the
normalized deviation, respectively. Note that a larger «
means that the deviation value and the pixel value strongly
affect the model. ¢; and i(x,y,t — i) are expressed as
follows:

o
g = — 6)
St

1 t—1i

eyt — iy = 2D ™
St
q 14 .
s = Zetz_j—i— le(x,y, t—i) (t>=p)
j=0 i=1

®)
TGyt =iy =10y, t —i)—1 )

where I is the mean value of the actual pixel sequence, which
is used for the de-mean procedure of normalizing the back-
ground pixel sequence. Note that the sequence contains both
the elements of SBPS and the pixels classified as background
pixels.

D. CLASSIFYING THE CURRENT PIXEL POINT

We continue with the classification step of background sub-
traction based on the predicted pixel value in this subsection.
To accurately classify a given pixel I(x, y, t) into either fore-
ground or background, we compare the predicted pixel value
updated online with the current pixel value, as expressed
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FIGURE 3. Pixel classification scheme. “1” denotes that the pixel is
classified as foreground, whereas “0” denotes that the pixel is classified
as background. “matches” means that the pixel matches the background
model, namely, the pixel belongs to the background.

in (10):

] M(Ipred(x»)’at)aI(X,y’t))2T

) (10
0 otherwise

b(x,y, 1) = !
where b(x, y, t) denotes the corresponding pixel point of the
rudimentary segmentation result. b(x, y, ) = I denotes that
the " frame’s pixel at the position (x,y) belongs to the
foreground, whereas b(x, y,t) = 0 denotes that the corre-
sponding pixel is classified as background. T is a threshold
for classification. The measure M (-, -) used in (10), which
adopts Manhattan distance, is defined as follows:

M(Ipred(xa Y, t)vl(-x7 Y, t)) = |Ipred(xa Y, t) —I(.X, Y, t)|
(11)

To improve the classification accuracy, we propose a scheme
using the adjacent pixels based on the spatial correlation of
pixels. Fig. 3 shows the pixel classification scheme. We need
to consider the quantity of background pixels in the neigh-
borhood of a pixel to ultimately determine the category of
the pixel. We select an n x n neighboring pixel subblock
centered on the current pixel to be classified; then, we count
the number of pixels in the subblock classified as back-
ground to classify the current pixel. The rule is defined as
follows:

1 f1=(Y S b(—n,y—n, 0)/Cn+1P<t

i=—nj=—n
n=12,..)
0 otherwise

B(x,y,t)=

(12)

where 7 is the threshold for the pixel classification decision.
Note that this rule cannot be applied to pixels on the edges of
an image, which can be ignored. Algorithm 1 demonstrates
the main procedure of the proposed scheme.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section introduces the datasets for moving object detec-
tion, the parameter setup and the evaluation metrics, also
presents the experimental results and performance analysis.
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Algorithm 1 Background Subtraction Using DARMABS
Input: Video sequences I = {I{, I», ..., Iy}
Output: Binary differential sequences i = {iy, i2, ..., iy}

1 for k < 1 to number of frames do

2 for i < 1 to height of frame do

3 for j <— 1 to width of frame do

4 if (k == 1) then

5 Initialize the background model for each pixel.
6 else

7 Calculate the predicted pixel value as (1).

8 Calculate the deviation value as (2).

9 Compute distance M of the above values as
(11).

10 if (M > T&& “matches” < 7) then

11 The pixel belongs to the foreground.

12 else

13 The pixel belongs to the background.

14 Count the number of times n of the pixel
value.

15 if (n > N) then

16 Update the set of background pixel samples.
17 end if

18 end if

19 Update the background model as (3)-(9).
20 end if

21 end for

22 end for

23  end for

A. EXPERIMENTAL DATASETS AND SETUP

To assess the reliability and accuracy of the proposed
DARMABS scheme, simulations have been conducted on
the CDnet2014 dataset [35] and the Wallflower dataset [36].
Table 2 depicts a comprehensive overview of the two datasets.

1) CDNET2014 DATASET

The CDnet2014 dataset, a popular and publicly available
benchmark dataset for change detection, comprises a wide
range of video sequences with various detection chal-
lenges, which are categorized into eleven types: bad weather,
baseline, camera jitter, intermittent object detection, low
framerate, night videos, pan-tilt-zoom, pedestrian detection,
shadow, thermal, and turbulence. Furthermore, the dataset
provides the ground truth for each frames, which enables an
accurate performance comparison of diverse algorithms for
moving object detection.

2) WALLFLOWER DATASET

The Wallflower dataset, which is composed of 7 video
sequences with a total of 16158 frames, is also a popular
dataset that provides various challenging frames with com-
plex dynamic backgrounds. The canonical dataset is grouped
into seven categories: bootstrapping, camouflage, foreground
aperture, light switch, moved object, time of day, and waving
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TABLE 2. An overview of the Wallflower and CDnet2014 datasets.

Dataset Category Videos Total Frames
bad weather 4 20900
baseline 4 6049
camera jitter 4 6420
pedestrian detection 10 26248
intermittent object detection 6 18650
CDnet2014 low framerate 4 9400
night videos 6 16609
pan-tilt-zoom 4 8630
shadow 6 16949
thermal 5 21100
turbulence 4 15700
bootstrapping 1 3055
camouflage 1 353
foreground aperture 1 2113
Wallflower light switch 1 2715
moved object 1 1745
time of day 1 5890
waving trees 1 287

trees. One shortcoming of the dataset is that the ground truth
is not available for all frames.

To qualitatively validate the robustness of the proposed
algorithm, we select the following representative videos from
the above datasets that cover a large number of challeng-
ing surroundings, as shown in Table 3: (1) “waving trees”
(WT) depicts a scenario with trees shaken by the wind;
(2) “time of day” (TOD) shows a gradual illumination
change; (3) “badminton” (BAD) is recorded in an outdoor
environment with camera jitter; (4) “camouflage” (CAM)
shows a scenario where the color of an object is similar
to the background color; (5) “skating” (SKT) presents the
challenge of poor winter weather conditions; (6) ““pets2006”
(PET) presents a scenario known for intermittent object
motion; and (7) “library” (LIB) is a series of infrared thermal
images. These sequences are taken in environments with
complex dynamic backgrounds, which are the most suitable
for testing the generalization ability and adaptability of the
proposed algorithm.

We set the order of the autoregressive part p = 6, the order
of the moving average part ¢ = 4, the coefficient of the
autoregressive part @; = 1, the coefficient of the moving
average part b; = 0.8, the learning rate = 0.01, the
classification threshold 77 = 10, the decision threshold T =
4/9, and the threshold for a pixel being selected as SBPS
N = 5. The detailed parameter settings are shown in Table 4.

B. EVALUATION METRICS

To quantitatively evaluate the proposed algorithm, we select
seven metrics to compare the performance of different back-
ground subtraction algorithms, namely, Recall, Precision, F-
Measure, False Positive Rate (FPR), False Negative Rate
(FNR), and Percentage of Correct Classification (PCC),
which are defined as follows [35]:

TP
Recall = —— (13)
TP + FN
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TABLE 3. The selected video sequences for moving object detection from the Wallflower and CDnet2014 datasets.

Dataset Category Video Total frames Size Characteristics
Wallflower N/A waving trees 287 160x120 pixels dynamic background
Wallflower N/A time of day 5890 160x120 pixels  illumination change
CDnet2014 camera jitter badminton 1150 720x480 pixels ~ camera displacements
Wallflower N/A camouflage 353 160x120 pixels  similar background color or texture
CDnet2014 bad weather skating 3900 540x360 pixels ~ bad weather
CDnet2014 pedestrian detection pets2006 1200 720x576 pixels ~ intermittent object motion
CDnet2014 thermal library 4900 320x240 pixels infrared thermal images
N TP . . .
Precision = (14) TABLE 4. Detailed parameter settings of the proposed algorithm.
TP + FP
Recall x Precision - —
F — Measure = 2 x R Il + Precisi (15) Parameters Specific description Value
ecaill + Precision m the number of elements in SBPS 6
S ecifici _ IN (16) n the size of the subblock for classification 3
P y= TN + FP V4 the order of the autoregressive part 6
FP q the order of the moving average part 4
FPR = ——— (17) T the classification threshold 10
4 the decision threshold 4/9
TN + FP
FN o the learning rate of the background model 0.01
FNR = (18) N the threshold of a pixel being selected as SBPS 5
TP + FN a; the coefficient of the autoregressive part 1
b, the coefficient of the moving average part 0.8
TP + TN j g average p
PCC = 100 x (19) B(x, y. 1) the binary differential image {0,1}

TP+ FN + FP+ 1IN

where TP denotes the number of correctly classified fore-
ground pixels correctly classified. TN denotes true negatives,
that is, the number of correctly classified background pixels.
FP denotes false positives, that is, the number of background
pixels mistakenly labeled as foreground pixels. FN denotes
false negatives, that is, the number of foreground pixels
mistakenly labeled as background pixels. Recall denotes the
proportion all foreground pixels that are correctly detected.
Precision denotes the percentage of foreground pixels cor-
rectly detected among all pixels marked as foreground.
F-Measure is a combined metric used to evaluate the seg-
mentation results. Specificity denotes the proportion of pixels
correctly detected among all the background pixels. FPR
denotes the percentage of pixels mistakenly detected among
all the background pixels. FNR denotes the proportion of
pixels mistakenly detected among all the foreground pixels.
PCC denotes the percentage of pixels correctly classified
among all pixels. Larger Precision, Specificity, Recall, PCC,
andF-Measure and smaller FNR and FPR indicate better
segmentation results.

C. COMPARISON WITH OTHER ALGORITHMS

To assess the effectiveness of the proposed DARMABS
scheme, we compared our proposed algorithm with
GMM [15], ViBe [19], LBP [21], LIBS [37], PBAS [20],
SuBSENSE [23] and PAWCS [38] using the above evaluation
metrics.

1) QUALITATIVE PERFORMANCE

We select the following frames to make a qualitative per-
formance comparison of the segmentation results: the 53™
frame of waving trees, the 18501 frame of time of day,

128664

the 851% frame of badminton, the 248™ frame of camouflage,
the 1957™ frame of skating, the 699™ frame of pets2006,
and the 1234" frame of library. Fig. 4 displays the seg-
mentation results comparison of the abovementioned back-
ground subtraction algorithms. To ensure a fair comparison,
we do not perform any postprocessing of the segmenta-
tion results. In Fig. 4, the input images and ground truths
are presented in the 1% column and 21 columns, respec-
tively. The foreground segmentation results of various algo-
rithms are shown from the 3 column to the 10™ column,
namely, GMM, ViBe, LBP, LIBS, PBAS, SuBSENSE and
PAWCS.

We can clearly infer that the DARMABS algorithm per-
forms well in detecting moving objects with high robust-
ness and accuracy for complex dynamic background video
sequences. In the sequence waving trees, which contains a
complex dynamic background, the output of DARMABS
is closest to the ground truth. In the sequence time of day
with gradual illumination variation, our proposed algorithm
performs well compared with the other methods. Due to
the camera jitter, the sequence badminton includes repetitive
motion of background objects; however, our method can
accurately detect the moving objects. Most of the methods
incorrectly mark foreground pixels as background pixels. The
sequencecamouflage shows a man walking towards a work-
ing computer whose coveralls resemble the background in
terms of color and texture; thus, the moving object is difficult
to segment perfectly. FNs are avoided in our technique. The
sequence skating provides a scene in which snow is falling.
The challenge with this sequence is the noisy and irregu-
lar background. Although the result of our method includes
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LBP

PBAS

SuBSENSE PAWCS DARMABS

LIBS

FIGURE 4. Foreground segmentation results of the video sequences: waving trees (Row 1), time of day (Row 2), badminton (Row 3), camouflage (Row 4),
skating (Row 5), pets2006 (Row 6), and library (Row 7). Input images (Column 1), ground truths (Column 2), GMM [15] outputs (Column 3), ViBe [19]
outputs (Column 4), LBP [21] outputs (Column 5), LIBS [37] outputs (Column 6), PBAS [20] outputs (Column 7), SUBSENSE [23] outputs (Column 8),

PAWCS [38] outputs (Column 9), and DARMABS outputs (Column 10).

TABLE 5. Average results of Recall, Precision, F-Measure, Specificity, FPR, FNR and PCC on the CDnet2014 dataset.

Algorithm Recall Precision F-Measure Specificity FPR FNR PCC
GMM [15] 0.5253 0.8376 0.6094 0.9122 0.0878 0.4747 70.74
ViBe [19] 0.8236 0.8382 0.8254 0.9101 0.0899 0.1764 86.15
LBP [21] 0.8724 0.8311 0.8461 0.8846 0.1155 0.1276 85.32
LIBS [37] 0.8804 0.7880 0.8278 0.8652 0.1349 0.1196 85.97
PBAS [20] 0.8717 0.8948 0.8831 0.9475 0.0525 0.1283 90.27
SuBSENSE [23] 0.8726 0.9000 0.8843 0.9528 0.0472 0.1274 88.27
PAWCS [38] 0.8883 0.8478 0.8664 0.9178 0.0822 0.1117 89.71
DARMABS 0.9157 0.8742 0.8940 0.9316 0.0684 0.0843 92.08

tiny gaps and is divided into several parts, our detection
result is more reasonable than that of the other methods.
In the sequence pets2006, there exist challenging intermit-
tent object motions, but the segmentation results show that
the proposed method is robust to the intractable scene. The
sequence library is obtained from thermal videos and consists
of infrared thermal images whose pixel values are distributed
in a narrow range. The detection results indicate that our
algorithm accurately segments the moving objects. These
results further verify the effectiveness of the DARMABS
scheme in complex dynamic scenes.

2) QUANTITATIVE PERFORMANCE

As a qualitative evaluation of the proposed method, we cal-
culate the abovementioned evaluation metrics on the afore-
mentioned datasets. Fig. 5 presents the detailed scores of the
seven evaluation metrics on the selected video sequences.
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In the sequences waving trees, time of day and camouflage,
DARMABS has the best F-Measure and PCC. DARMABS
also performs well in the remaining sequences; therefore, our
scheme is an effective means of robust background subtrac-
tion for moving object detection.

Table 5 and Table 6 list the average results of Recall,
Precision, F-Measure, Specificity, FPR, FNR and PCC on
the CDnet2014 dataset and Wallflower dataset, respectively.
The top three of the segmentation results are emphasized
in bold red, bold blue and bold green, respectively. On the
CDnet2014 dataset, the proposed algorithm yields an average
Recall, Precision, F-Measure, Specificity, FPR, FNR and
PCC of 0.9157, 0.8742, 0.8940, 0.9316, 0.0684, 0.0843 and
92.08%, respectively. On the Wallflower dataset, DARMABS
yields average results of 0.9229, 0.9445, 0.9333, 0.9297,
0.0703, 0.0771 and 91.12%. The F-Measure is the most
important metric to assess the segmentation results of back-
ground subtraction algorithms. DARMABS has the best
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FIGURE 5. Scores of the evaluation metrics (Recall, Precision, F-Measure, Specificity, FPR, FNR and PCC) for the algorithms (GMM [15], ViBe [19], LBP [21],
LIBS [37], PBAS [20], SuBSENSE [23], PAWCS [38] and DARMABS) based on the selected video sequences: waving trees (Row 1), time of day (Row 2),
badminton (Row 3), camouflage (Row 4), skating (Row 5), pets2006 (Row 6), and library (Row 7).
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TABLE 6. Average results of Recall, Precision, F-Measure, Specificity, FPR, FNR and PCC on the Wallflower dataset.

Algorithm Recall Precision F-Measure Specificity FPR FNR PCC
GMM [15] 0.7286 0.8992 0.7984 0.9531 0.0469 0.2714 77.77
ViBe [19] 0.6648 0.8089 0.7008 0.8001 0.1999 0.3352 59.92
LBP [21] 0.7797 0.8847 0.8235 0.9275 0.0725 0.2203 79.32
LIBS [37] 0.8751 0.8176 0.8319 0.8321 0.1679 0.1249 76.67
PBAS [20] 0.8069 0.9133 0.8529 0.9464 0.0536 0.1931 82.00
SuBSENSE [23] 0.8026 0.9597 0.8726 0.9595 0.0405 0.1974 81.27
PAWCS [38] 0.8267 0.9365 0.8774 0.9328 0.0672 0.1733 83.62
DARMABS 0.9229 0.9445 0.9333 0.9297 0.0703 0.0771 91.12

LiBS

PBAS

Name of method

SuBSENSE

PAWCS

DARMABS

0 20 40 60 80 100 120 140

Number of processed frames per second

FIGURE 6. FPS of eight background subtraction algorithms for a
320 x 240 pixel image.

average F-Measure on both datasets, thereby demonstrating
the superiority of the proposed scheme. In terms of FNR,
Recall and PCC, DARMABS obtains the lowest, highest and
highest values, respectively, which suggests that its detection
results are exceedingly accurate. The scores of the remaining
metrics are slightly inferior to that of SUBSENSE. However,
it can be inferred from the next subsection that DARMABS
performs well in terms of real-time performance compared
with SuBSENSE. Thus, DARMABS shows considerably
good performance in terms of the evaluation metrics.

3) RUNTIME ANALYSIS

Furthermore, to compare the time complexity of our algo-
rithm with that of the other algorithms, we define the frames
per second (FPS) as (20) to evaluate the processing speed.
We do not compare DARMABS with the deep learning-based
methods [6], [7], [33] since the latter consume substantial
time and resources to train and are not a good choice for
real-time visual surveillance applications. We run the pro-
posed method on a 64-bit Windows 10 platform with an
Intel Core i7-7700HQ CPU, 16 GB RAM and 2.8 GHz.
The average processing speed of the proposed scheme is
approximately 50 FPS. Fig. 6 shows the FPS of the back-
ground subtraction algorithms. Our algorithm is faster than
LBP, LIBS, PBAS, SuBSENSE, and PAWCS and slower
than GMM and ViBe. However, GMM and ViBe yield poor
segmentation performance compared with our algorithm.
Thus, our algorithm demonstrates great performance in pro-
cessing speed and is suitable for applications requiring high
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real-time performance.

FPS — Number of I?roce‘ssecg frames 20)
Total computation time(in seconds)

V. CONCLUSION
In this paper, we propose a simple but robust background
subtraction technique called DARMABS for moving object
detection in real-time visual surveillance systems. The basic
idea is to adopt the ARMA process to model each pixel of
an image and implement an adaptive LMS scheme to update
the parameters to establish a robust and dynamic background
model. The proposed algorithm does not require expensive
hardware resources to perform the heavy computational task,
in contrast to most of the recently proposed algorithms.
Various video sequences with complex dynamic back-
grounds from the CDnet2014 and Wallflower datasets are
used to test the generalization ability and adaptability of the
proposed scheme. This technique shows good performance
for moving objects detection compared to other mainstream
techniques (i.e., GMM, ViBe, LBP, LIBS, PBAS, SuBSENSE
and PAWCS). Based on the above experimental results,
we believe that the proposed scheme can provide a robust
and real-time moving object detection method for video
sequences with complex dynamic backgrounds. In future
work, we will further study the mixture of ARMA models
to model the background to improve the detection results.
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