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ABSTRACT 3D point cloud simplification is an important pretreatment in surface reconstruction for sparing
computer resources and improving reconstruction speed. However, existing methods often sacrifice the
simplification precision to improve the simplification speed, or sacrifice the speed to improve precision.
A proper balance between the simplification speed and the simplification accuracy is still a challenge. In this
paper, we propose a new simplification method based on the importance of point. Named as detail feature
points simplified algorithm (DFPSA), this algorithm has distinct processes to achieve improvements in three
aspects. First, a rule of k neighborhood search is set to ensure the points found are the closest to the sample
point. In this way, the accuracy of calculated normal vector of the point cloud is significantly improved,
and the search speed is largely increased. Second, a formula that considers multiple characteristics for
measuring the importance of point is proposed. Thereupon, the main detail features of the point cloud are
preserved. Finally, an octree structure is employed to simplify the remaining points, through which holes in
reconstructing point cloud are obviously reduced. The DFPSA is applied to four different data sets, and the
corresponding results are comparedwith those of other five algorithms. The experimental results demonstrate
that the DFPSA brings better simplification effects than existing counterparts, and the DFPSA not only can
simplify point cloud but also has good effect in simplifying subject’s narrow contours.

INDEX TERMS 3D geometric point cloud simplification, detail feature point, k neighborhood search rule,
the importance of point.

I. INTRODUCTION
With the development of sensor technology [1], point cloud,
a data form collected by sensors, is gaining increasing atten-
tion. Point cloud data have been used in many fields, such as
monitor structural behavior [2], road curb detection [3], build-
ing information modelling [4], agricultural application [5].
However, sensors often collect large amounts of point infor-
mation without clear association among points, this situation
causes heavy workload in point cloud processing. Hence,
point cloud simplification is one of the most important
pretreatment steps in point cloud processing.

A lot of researches have been done about point cloud
simplification, and existing methods for point cloud simplifi-
cation are divided into two kinds: mesh-based simplification
and direct simplification.

The mesh-based simplification methods build irregular
meshes based on point cloud, and then remove redundant
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meshes by a given rule to achieve the goal of simplification.
Luebke [6] used mesh compression to simplify point cloud.
Hur et al. [7] used Delaunay triangulation to remove extra
point data. Medial meshes is used by Sun et al. [8]. The mesh-
based simplification can effectively preserve the structure of
point cloud, but the overhead of building meshes on computer
is substantive, especially when point cloud data are huge,
in which case the calculation cost could be particularly high.

Direct simplification, on the other hand, aims to simplify
point cloud according to the characteristics of points. Clus-
tering is a direct simplification algorithm. Shi et al. [9] pro-
posed an adaptive simplification of point cloud using k-means
clustering. Chang et al. [10] used k-means clustering based
on boundary reservation to reduce point cloud. Additionally,
Song and Feng [11] used a global clustering to simplify point
cloud. Of the direct simplification methods, spatial index is
an important method to process point cloud. Shi et al. [12]
used kd-tree to obtain spurious trails and updated point cloud
map. Goswami et al. [13] used kd-tree to process points.
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Spatial index is also used to directly simplify point cloud.
Shao and Xi [14] and Song et al. [15] used octree to simplify
point cloud. Li et al. [16] put forward a uniform simplification
method based on space bounding box. There are also other
direct simplification algorithms. Xuan et al. [17] constructed
normal angle local entropy to assess point, and simplified
point cloud in a gradual way. Zang et al. [18] presented a
multi-level method for retaining geometric features of dif-
ferent sizes. Han et al. [19] proposed a simplified algorithm
based on edge-preserving. Yuanet al. [20] used a conformal
geometric algebra approach to reduce point. Wei et al. [21]
simplified point cloud based on curvature co-occurrence his-
tograms. Abzal et al. [22] developed a simplification mask
for multi-shot optical scanners to reduce point during the data
acquisition phase. Although the direct simplification method
can reduce the calculation overhead, retaining features of
what becomes a significant challenge.

Generally, the point cloud data collected by sensor only
contain the three-dimensional coordinates of point without
topological information. In order to determine the geometric
information of the given point, it is necessary to collect
neighborhood information. Usually, k neighborhood is used
to calculate neighborhood relationship [23]. The k points with
the shortest distance from the sample point in the spatial
Cartesian coordinate system are treated as the k neighborhood
of the sample point. In this process, the commonly used
methods to find neighborhood are space bounding box [24]
and kd-tree [25]. According to the neighborhood informa-
tion of point cloud, the normal vector of each point can be
calculated, and then the geometric information of each point
is obtained. To calculate the normal vector, PCA (Principal
Component Analysis) and MLS (Moving Least Square) are
often used [26]. Of twomethods, PCA is efficient, but it is not
easy to calculate the normal vector precisely when there are
large errors in neighborhood information. In contrast, MLS is
accurate, whereas it sacrifices efficiency.

Overall, the aforementioned methods of point cloud sim-
plification see room for improvement in the following
aspects. First, most ways to find k neighborhood use fixed
direction, which sometimes result in generating inaccurate
neighborhood of the sample and may produce large devia-
tions of the calculation of normal vector. Whereas normal
vector is an important indicator for evaluating point cloud,
an inaccurate calculation of normal vector directly leads to an
inaccurate evaluation of the importance of the point. Second,
the methods of point evaluation are often simple. For exam-
ple, only the normal vector of point is considered, whereas
other information such as curvature at point is not considered.
This may lead to an inaccurate evaluation of the importance
of point andmay subsequently compromise the simplification
effect. Third, the same simplification method is often used for
entire point cloud without considering the difference between
feature areas and non-feature areas, which results in either an
elongated simplification time or poor results.

In order to solve the above problems, a new algorithm,
named as detail feature points simplified algorithm (DFPSA),

is proposed and trialed. First, a space bounding box is
constructed to find the neighborhood of the sample quickly.
In order to ensure the identified k neighborhood is the nearest
k points apart from the sample, a method for finding k neigh-
borhood based on distance and density is proposed. Second,
four characteristic operators are calculated to describe the
importance of point: the difference between the normal vector
of the sample and every normal vector of the sample’s neigh-
bor (the normal vector difference), the projection distance
from the neighbor point to the tangent plane of the sample (the
projection distance), the spatial distance between the sample
and every neighborhood (the spatial distance), the difference
between the curvature at the sample and the curvature at
every sample’s neighborhood (the curvature difference). The
larger the normal vector difference is, the greater the degree
of mutation of the sample is. Also, the larger the projection
distance is, the greater the curvature changed. Likewise, the
greater the spatial distance is, the farther apart of two points
are. Moreover, the greater the curvature difference is, the
sharper the sample point is. Based on the four formulas
above, the importance of the sample is high. In other words,
the sample is a detail feature point. Therefore, these four char-
acteristic operators are added up to determine the importance
of the sample. Third, the DFPSA uses octree to simplify non-
feature points. In each octree leaf node, the DFPSA saves one
most representative point and deletes the others. Given the
straightforward structure of octree is simple, simplifying the
non-feature points is easy. In summary, the DFPSA not only
guarantees the simplification speed, but also saves the detail
feature points. Thus, theDFPSA ensures the accuracy of point
cloud simplification.

In the following sections, the related work is introduced
in section II. Key steps of the proposed algorithm, which
include the k neighborhood search rule based on distance and
density, the evaluation of feature point, and the simplifica-
tion of non-feature points are elaborated in section III. The
whole procedure of the DFPSA is introduced in section IV.
The experimental results about this paper and the contrasts
with other related methods are provided in section V. The
conclusion is in section VI.

II. RELATED WORK
In this section, we briefly introduce the previous studies on
which the DFPSA depends.

A. CONSTRUCTING SPACE BOUNDING BOX
The purpose of using space bounding box is to find the
neighborhood of points more easily. Huang et al. [27] used
space bounding box to divide point cloud space, and then
constructed a space bounding sphere to find k neighborhood
of each point. Xiong et al. [24] proposed a fast search algo-
rithm for k-neighborhood. When calculating the edge length
of a cube, it not only considered the size of data set, but
also introduced the number of neighborhood. This algorithm
has strong generality and adaptability. Li et al. [16] created
a k neighborhood three-dimensional voxel grid, and then
combined space bounding box to find k neighborhood.
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The steps to construct a space bounding box [24] are
as follows. First, based on the maximum and minimum of
point cloud coordinate information, the biggest bounding
box, which surrounds all the points is constructed. Second,
the large bounding box is divided into several small cubes
evenly and the side length of each cube is calculated. Small
cubes may include many points or even empty. The side
length of cube is L.

L

=
3
√
ω× 3

√
(k/n)×(xmax−xmin)×(ymax−ymin)×(zmax−zmin)

(1)

k is the number of neighborhood points which are looked
for. n is the total number of the point cloud. xmax, xmin,
ymax, ymin, zmax, zmin are maximum and minimum coordinate
values of the point cloud respectively. ω is a constant.

B. BUILDING THE RELATIONSHIP
Based on space bounding box, steps are followed in building
the relationship between the cube and the point cloud. First,
the resolution of the minimum cuboid space in the x, y, and
z directions are respectively calculated with the following
formulas [24]:

Nx = ceil((xmax − xmin)/L) (2)

Ny = ceil((ymax − ymin)/L) (3)

Nz = ceil((zmax − zmin)/L) (4)

Nx , Ny and Nz are resolution. Therefore, the number of
small cubes Ncube is shown in (5).

Ncube = Nx × Ny × Nz (5)

Then, drawing on the vertex information of each cube
and coordinate information of each point, the relationship
mapping between the point and the index of cube that contains
this point is established.

C. CALCULATING THE NORMAL VECTOR
Normal vector is important geometric information of point
cloud. Many studies simplify point cloud based on normal
vector. Xuan et al. [17] used PCA to calculate the normal
vector of each point, and then calculated normal angle local
entropy to evaluate the importance of point. They deleted the
least important point based on the importance and updated
the normal vector to simplify the point cloud recursively.
Han et al. [19] used the topological relationship between
points and normal vectors to extract edge points and sim-
plify point cloud. There are many ways to calculate normal
vector. OuYang and Feng [28] proposed a calculating normal
vector method based on fitted directional tangent vector.
Li et al. [29] presented an algorithm for directly calculating
normal vector of point cloudwith sharp features. In this paper,
we use PCA to calculate the normal vector.

First, k neighborhood about the sample p is gotten,
the neighborhood of p and the sample p constitute the
point set parea. And then the geometric center p of the

parea and the covariance matrix C are calculated. pp is a
point in parea.

p = (1/k)×
∑

pp∈parea

parea (6)

C =
∑

pp∈parea

(pp − p)(pp − p)T /k (7)

Through the covariance matrix C , the eigenvalues λj(j =
0, 1, 2) of C and the corresponding eigenvectors vj(j =
0, 1, 2) are calculated. Among them, the smallest eigenvec-
tors v0 is the normal vector np of the sample p.
In addition, Pauly et al. [26] proved that surface change

σn(p) is equal to curvature cup. Hence, the curvature cup is
calculated as shown in (8).

cup = σn(p) = λ0/(λ0 + λ1 + λ2) (8)

D. BUILDING OCTREE
Octree is a way to simplify point cloud. Shao and Xi [14] used
octree to divide point cloud space and retained one point in
each leaf node. Shao and Xi [14] suggested that the simpli-
fication method based on octree considers space as a whole
and has a good effect. Since point cloud is partitioned in space
before simplification, the algorithm is simple and efficient.
That is to say the octree can simplify point cloud clearly
and quickly. Song et al. [15] proposed a robust simplified
algorithm based on octree. Yu et al. [30] presented a simpli-
fication method based on point saliency. They determined an
octree subdivision criterion and then constructed an octree to
simplify point cloud.

FIGURE 1. Schematic diagram of an octree structure.

In this paper, we use octree to simplify non-feature points.
A simple schematic diagram of an octree structure [31] is
shown in Fig. 1. On the left side in Fig. 1, cube a is the small-
est outer cube that surrounds the point cloud. And according
to the partition conditions, a is divided into eight-molecule
cube a1 - a8, then the sub-cube a4 is continue divided to eight
cubes a41 - a48. On the right side in Fig. 1, the tree structure
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of the octree is shown. Circle a is the root node of the octree
and it is the representation of cube a in the tree structure.
Similarly, the remaining nodes are also representations of the
corresponding cubes in the tree structure.

FIGURE 2. Flowchart of constructing an octree.

The steps of constructing an octree are shown in Fig. 2.
First, the maximum recursion depth, or the maximum number
of layers for the octree is set. Second, the maximum and
minimum spatial coordinate values of the overall point cloud
are found, and the smallest outer cube that surrounds the
point cloud is built, this outer cube is the space bounding
box. Third, based on the space bounding box, the root node
is generated. Fourth, if the maximum recursion depth is not
reached, the current cube is evenly subdivided into eight.
Fifth, if the number of points in the child cube is as same
as the number of points in the father cube and the number is
not zero, the child cube is stop cut up. Sixth, the fourth step
is repeated until the maximum recursion depth is reached.

III. METHODOLOGY
The DFPSA features three key steps: searching for k neigh-
borhood, evaluating importance of each point, and simplify-
ing non-feature points.

A. SEARCHING FOR K NEIGHBORHOOD
The traditional k neighborhood search methods usually fol-
low the fixed search direction, and as result the points found
are often not the closest ones to the sample. Fig. 3 shows an
example about searching for k neighbor using a fixed direc-
tion. p is located in cube5, the fixed directionmethod searches
cubes consecutively from left to right, and then expands the
search direction from front to back. That is, the search order
is cube1 - cube2 - cube3 - cube4 - cube5 - cube6 - cube7 -
cube8 - cube9. In this process, as long as the k neighborhood
points of the sample p are found, the subsequent cubes are
no longer searched. In Fig. 3, it can be seen that most of
the neighborhood points of sample p are probably located in
cube5, cube6, cube8, and cube9, whereas searching method
using a fixed direction may not reach these cubes.

FIGURE 3. Searching for k neighborhood using a fixed direction.

In order to have a thorough search of the neighborhood,
a new search method is employed. First, a space bounding
box is constructed, and this space bounding box is divided
according to the principle of the space bounding box. Second,
based on the coordinate information of each cube, an index of
cubes is obtained. Third, the relationship between the space
bounding box and each point is built. Fourth, the cube which
includes the sample p is obtained, and the cube index is cp.
Since a space bounding box is made up of cubes of the

same size, in addition to the cubes at boundary position, each
cube cpi has 26 adjacent cubes. Of these 26 cubes, 6 cubes are
adjacent to the six faces of cpi respectively, and the remaining
20 cubes only share edges or points with cpi.

In this context, there are two situations: cp is not a bound-
ary cube and cp is a boundary cube. Therefore, we discuss
the implementation of fifth step from the following two
situations.

Case one, cp is not a boundary cube. First, cp is searched.
If we do not obtain k neighborhood points in cp, we calculate
a series of distances from the sample p to the six faces of
the cube cp, and sort these distances from small to large at
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the same time. Then according to the distances sort order,
searches the 6 cubes in turns which are adjacent to the six
faces of cp. When these 6 cubes have been searched, but
the k neighborhood points of the sample p are not received,
we expand our search area. Hence, the point cloud densities of
the remaining 20 cubes which only share edges or points with
cp are calculated. At the same time, we sort these densities
from large to small and continue searching these cubes based
on density sorting. When the 20 cubes have been searched
without finding the k neighborhood of the sample p, we con-
tinue search cubes adjacent to 26 cubes by density from large
to small.

Case two, cp is a boundary cube. The k neighborhood
search rule about boundary cube is the same as the k neigh-
borhood search rule which is searches non-border cube. But
if the searched cube is absent, we skip this cube and continue
searching next cube.

FIGURE 4. Searching for k neighborhood using our method.

Fig. 4 shows an example of using our searching for k neigh-
borhood method. In order to describe our method clearly,
we extract a small part of the space bounding box, and
embody it hierarchically as Fig. 4 shows. The sample point p
is located in cube25. The light blue cubes are directly adjacent
to the six faces of cube25, while the white cubes only share
points or edges with cube25. We need to find the k neigh-
borhood of the sample p. First, cube25 is searched. If the k
neighborhood points of p are found in cube25, the searching
process is stopped. Otherwise, a series of distances from the
sample p to the six faces of the cube25 are calculated, and
these distances are sorted from small to large at the same time.
We use the indexes of six cubes directly adjacent to cube25
to represent the distances from the sample p to the six faces

of cube25. Assume that the order of distances from small to
large is: cube15 - cube28 - cube26 - cube22 - cube24 - cube35,
and the corresponding cubes are searched according to this
order. In the process of searching, if the k neighborhood
points of p are searched, the searching process is stopped.
If the k neighborhood points of p are not found after searching
these six cubes, the densities of points in the cubes which only
share points or edges with cube25 are calculated and sorted
from large to small, this is the search order. We assume that
the order of point densities of the cubes only share points or
edges with cube25 from large to small is as follows: cube29 -
cube19 - cube18 - cube16 - cube17 - cube13 - cube27 - cube23 -
cube36 - cube38 - cube39 - cube33 - cube37 - cube21 - cube32 -
cube31 - cube34 - cube11 - cube14 - cube12, so the search
order is the density order. In the process of searching, if the k
neighborhood points of p are searched, the searching process
is stopped. If the k neighborhood points of p are not found
after searching these 20 cubes, the search scope is extended,
and we continue to search cubes adjacent to cube11 - cube39
(except cube25) in order of point densities from large to small.
Stated thus, one possible search order of Fig. 4 is: cube25 -
cube15 - cube28 - cube26 - cube22 - cube24 - cube35 - cube29 -
cube19 - cube18 - cube16 - cube17 - cube13 - cube27 - cube23 -
cube36 - cube38 - cube39 - cube33 - cube37 - cube21 - cube32 -
cube31 - cube34 - cube11 - cube14 - cube12.
There is a special case where when a single point is located

exactly at the border between two (or more) sub-cubes,
the point belongs to the first sub-cube searched. That is to
say, when searching a cube, we not only search for the points
which are surrounded by it, but also search for the points
at its boundary. When a cube has been searched, the points
located in or at it are temporarily deleted from the point cloud
data. Thus, a single point is located at the border between two
(or more) sub-cubes can be thought of as is located only at
the first sub-cube searched.
The above method makes full use of the structure of the

space bounding box. After sub-cubes are used to divide the
point cloud, the information of each point is mapped to
the information of the sub-cube. Depending on the coordi-
nates of the sample point, the coordinates of the cube, and
the length of the cube, we can quickly get the index of the
sample cube where the sample point is located, and then
find other points in the sample cube or the points in the
adjacent cubes of the sample cube. These points are obviously
close to the sample point, and the neighborhood points of
the sample point also exist in these points. Therefore, when
searching for the neighborhood of the sample, it is no longer
necessary to traverse the entire point cloud data.We only need
to search some specific small cubes, thereby improving the
search speed. In addition, ourmethod has priority level, which
thus increases accuracy of the found k neighborhood. Also,
density search after distance search saves time. Therefore,
this method not only accurately finds k neighborhood, but
also improves efficiency. At the same time, this way lays the
foundation for an accurate calculation of normal vector.
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B. EVALUATING IMPORTANCE
The traditional method to retain feature points is relatively
simple, for example, only the curvature differences between
the sample and the neighborhood points are considered.
In order to accurately retain the detail feature points of the
overall point cloud, a new method for measuring the impor-
tance of the point is employed. We calculate four characteris-
tic operators to reflect the importance of the point: the normal
vector difference, the projection distance, the spatial distance,
and the curvature difference.

Actually, the normal vector of the point reflects the tangent
plan where the point is located. If two points have the same
tangent plane, their normal vectors are the same and the
normal vector difference between these two points is zero.
In contrast, the larger the difference between the two normal
vectors is, the less likely they are on the same tangent plane.
Furthermore, the neighborhood points reflect the plane in
which the sample is located. Therefore, when the sum of the
difference between the normal vector of the sample point and
the normal vector of its neighbor points is larger, the surface
fitted by the sample and its neighbor points is more convex
at the sample point. So this sample point is likely to be a
feature point, in other words, the importance of the sample
is high. Based on this, we calculate the normal vector np
of the sample p, the normal vector nj(1 ≤ j ≤ k) of the
p′s neighborhood point pj(1 ≤ j ≤ k), and then we calcu-
late the difference between np and nj, finally add up these
differences.

In addition that the normal vector difference can reflect
the importance of the point, the projection distance from the
point to the plane which formed by its neighborhood points
also reflects the point’s concavity and convexity, thus reflects
the importance of the point. When the surface is smooth, the
sample point and the neighborhood points are almost on the
same plane, the projection distance from the neighbor point to
the tangent plane of the sample is almost close to zero. At the
same time, the larger the projection distance is, the more
the sample curvature changes. So, in order to reflect the
change of the sample curvature, we get the k neighborhood
pj(1 ≤ j ≤ k) of the sample p, the tangent plane pplan of p, and
then we calculate the projection distance for pj(1 ≤ j ≤ k)
to pplan, finally add up these projection distances.
Moreover, the spatial distance reflects the relationship

between two points. In point cloud data set, when the spatial
distance of the sample point and its neighborhood is large,
there are two cases: Case one, this sample point is in sharp
position. Thus, this sample point is a detail feature point,
and the importance of this sample point is high. Case two,
sampling of point cloud is not uniform, resulting in a sparse
area near the sample point. In the process of surface recon-
struction, holes will appear in the sparse area. In order to
ensure the integrity of the reconstructed surface in the future,
this sample point should be retained. Hence, we calculate the
spatial distance between the sample p and each neighborhood
of p, and then we accumulate these spatial distances in order
to reflect the importance of the sample p.

Curvature is a parameter that most intuitively reflects the
sharpness of the sample point. When the difference between
the curvature at the point and the curvature at its neighbor is
very large, this point is very likely in sharp position. When
a point in sharp position, it is likely a detail feature point.
Hence, we calculate the difference between the curvature at
the sample p and the curvature at each p′s neighborhood. Then
we accumulate these curvature differences in order to reflect
the sharpness of the sample p.

In summary, the normal vector difference, the projection
distance, the spatial distance, and the curvature difference all
can reflect the importance of the point. In order to reduce
the error accumulation, the above four characteristic opera-
tors are added up to get a new formula which describes the
importance of the sample. The new formula is as follows.

k∑
j=1

[
α ×

(
1− nTp nj

)
+ β ×

∣∣∣nTp (p− pj)∣∣∣
+ γ ×

∥∥p− pj
∥∥+ δ × ∣∣cup − cj

∣∣ ] (9)

α, β, γ, δ(α > 0, β > 0, γ > 0, δ > 0 and α+β+γ+δ =
1) are scale factors, p is the sample point, pj(1 ≤ j ≤ k) is
the neighborhood of p, np is the normal vector of the sample
point p, nj(1 ≤ j ≤ k) is the normal vector of pj(1 ≤ j ≤ k),
cup is the curvature at the sample p, cj(1 ≤ j ≤ k) is the
curvature at pj(1 ≤ j ≤ k).
For different types of point clouds, different combinations

of scale factors can be given. For the point cloud with uniform
sampling, the scale factor γ of the spatial distance operator
is set to a small value. For the point cloud with non-uniform
sampling, the scale factor γ of the spatial distance operator
is set to a large value. For the point cloud with sharp detail
features, the scale factor δ of the curvature difference operator
is set to a large value. For the point cloud with general detail
features, the scale factor α of the normal vector difference
operator, the scale factor β of the projection distance operator,
and the scale factor δ of the curvature difference operator are
set to a large value, respectively. In general, when setting the
scale factors, it is necessary to combine different situations
and project experiences and then give different combinations.

Furthermore, we preset a threshold. A point which impor-
tance is greater than the threshold is reserved as a detail
feature point. And the remaining points are simplified in the
next step. For the point cloud data with a few features, we set
a large threshold to ensure a high simplification rate. For the
point cloud data with a large number of features and complex
features, we set a small threshold to ensure that the algorithm
retains much detail feature points.

C. SIMPLIFYING NON-FEATURE POINTS
Based on the importance of each point, the detail feature
points have been obtained and retained. At the same time,
the detail feature points describe the detail features, con-
tour features, and structure features of the entire point cloud
model. However, if fitting the surface only using the feature
points, there will be a lot of holes in the surface, indicating
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that some non-feature points should be preserved. For this
purpose, an octree is used to simplify the non-feature points.

First, an octree is constructed for all non-feature points.
Second, in each octree leaf node, for all points located in it,
the average normal vector nnon of these points and the average
curvature cunon at these points are calculated. Third, in each
octree leaf node, we calculate the difference between the
normal vector of each point and the average normal vector.
Fourth, we calculate the difference between the curvature at
each point and the average curvature. Fifth, we add up the nor-
mal vector difference and the curvature difference, hereafter,
the point with the smallest sum value is selected to replace the
other points in the leaf node. This normal vector difference
and this curvature difference are different from the normal
vector difference and the curvature difference in III. B. When
selecting feature points, for each point in the point cloud,
we focus on the relationship between the point and its neigh-
borhood. The relationship can determine the importance of
the sample point, and then the feature points can be selected.
So, we use four characteristic operators consisted of sample
point and its neighborhood to filter feature points. When
selecting non-feature points, we use the structure of octree,
and the non-feature points in the same leaf node are spatially
close. For the non-feature points in the same leaf node, we pay
more attention to the relationship between the point and the
whole leaf node. Therefore, the average normal vector and the
average curvature are used to describe the whole leaf node.
And then the non-feature points are simplified based on the
method mentioned in III. C. In summary, the selection of
feature points and the selection of non-feature points inter-
est different perspectives, so different methods are used for
selection.

(1− nnon_i T nnon)+ (cunon_i − cunon) (10)

nnon_i is the normal vector of a point non_i in a leaf node,
cunon_i is the curvature at a point non_i in a leaf node. The
point non_i which can minimize (10) is selected to replace
the other points in the leaf node.

In general, the non-feature points have a small amount of
point cloud model information, hence, selecting one typical
point to replace the other points in each octree leaf node
simplifies point cloud to the utmost.

IV. THE OVERALL PROCESS OF THE DFPSA
Fig. 5 illustrates the process of the DFPSA. First, the space
bounding box for the overall point cloud is constructed. Sec-
ond, the relationship between the space bounding box and
the point cloud is built. Third, we search for k neighborhood
of each point based on distance and density. Fourth, we cal-
culate the normal vector of each point and the curvature at
each point using PCA. Fifth, the feature points are selected
based on the four characteristic operators. At the same time,
the feature points are saved to the feature points set and the
non-feature points are saved to the non-feature points set.
Sixth, the non-feature points are simplified using an octree. FIGURE 5. Flowchart of the DFPSA.
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Seventh, we output the feature points set and the simplified
non-feature points.

V. EXPERIMENT AND ANALYSIS
In order to evaluate the performance of the DFPSA, we have
applied the algorithm to bunny data set (has 35947 points and
a few detail features), horse data set (has 48485 points and a
few detail features), gargo50K data set (has 25038 points and
many detail features), and elephant data set (has 24955 points
and many detail features). We also have verified the effec-
tiveness of the DFPSA. Moreover, the simplified results
of the proposed algorithm have been compared with the
results of five simplified methods: the simplified method
based on Gaussian spheres, the simplified method based
on octree coding, the k-means clustering simplified method
based on boundary reservation [10], the uniform simplifi-
cation method [16], and the conformal geometric algebra
method [20]. The data processing platform is windows10 on
laptop PC 1.7GHz processor and 4GB memory.

A. SETTING PARAMETERS
Equation (9) is the core formula for selecting feature points.
It has four parameters α, β, γ and δ. Different parameters
have different effects on different types of point clouds.

FIGURE 6. The effect of different scale factors on the same point cloud
data set. (a) Original data, total number of the points = 24955,
(b) Without screening feature points, treat all points as non-feature
points, α = 0, β = 0, γ = 0, δ = 0, total number of the points = 1793,
(c) α = 1, β = 0, γ = 0, δ = 0, total number of the points = 17582,
(d) α = 0, β = 1, γ = 0, δ = 0, total number of the points = 2710,
(e) α = 0, β = 0, γ = 1, δ = 0, total number of the points = 1793,
(f) α = 0, β = 0, γ = 0, δ = 1, total number of the points = 3026.

Fig. 6 shows the effect of different scale factors on elephant
data set. Fig. 6b regards all points as non-feature points, that
is to say that no feature points are selected. Fig. 6c reserves
most of the points in the legs, nose and ivory while its simpli-
fication rate is not high. Although Fig. 6d retains a few feature

points, we can see that it still retains some features in the back,
soles of feet and nose. The simplification result of Fig. 6e
is exactly the same as that of Fig. 6b, that is to say, spatial
distance does not screen out feature points. This is because
elephant data set is a point cloud with uniform sampling,
so spatial distance has little effect on feature selection. It can
be clearly seen that Fig. 6f has obvious contour details, ear
edge, foot edge and nose edge are completely reserved. This
is because the curvature difference can select sharp detail
feature points. To sum up, for the data set with uniform
sampling and sharp features, the scale factor γ of the spatial
distance operator is set to a small value, the scale factor δ
of the curvature difference operator is set to a large value,
the scale factor α of the normal vector difference operator
and the scale factor β of the projection distance operator are
set to moderate values.

According to the actual application project and experience,
the algorithm parameters have been set as follows: k = 7,
α = 0.1, β = 0.1, γ = 0.2, δ = 0.6, the maximum recursion
depth of octree = 5. For bunny data set and horse data set,
the threshold of the screening feature points = 0.60. For
gatgo50K data set and elephant data set, the threshold= 0.45.

TABLE 1. The simplification rate (in percent) of simplification algorithms.

B. SIMPLIFICATION RESULTS
Table. 1 shows the simplification rates of six simplified algo-
rithms which are applied to the four data sets. For different
types of data sets, both the simplified method based on octree
coding and the uniform simplification method [16] achieve
high simplification rates. Whereas the DFPSA and the sim-
plified method based on Gaussian spheres both have high
simplification rates to the point cloud with a small number
of feature points, on the contrary, have a low simplification
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rates to the point cloud with a large number of feature points
to ensure the integrity of the point cloud features. Particularly,
the simplification rate of our algorithm is higher than that of
the simplifiedmethod based onGaussian spheres. In addition,
the k-means clustering simplification method [10] has the
worst simplification ratio.

FIGURE 7. Simplified results of bunny. (a) Original data, total number of
the points = 35947, (b) Our algorithm, total number of the points = 6730,
(c) The simplified method based on Gaussian spheres, total number of
the points = 8491, (d) The simplified method based on octree coding,
total number of the points = 3005, (e) The k-means clustering
simplification method [10], total number of the points = 17385, (f) The
uniform simplification method [16], total number of the points = 4539,
(g) The conformal geometric algebra method [20], total number of the
points = 5434.

Fig. 7 shows the simplified results of bunny data set. In
Fig. 7d and Fig. 7f, although the simplification rate of each
model is respectively as high as 91.6% and 87.4%, the results
only retain the contour points of the rabbit and the detail
features are seriously lost. In Fig. 7b, Fig. 7c, Fig. 7e, and
Fig. 7g, the simplification rate is 81.3%, 76.4%, 51.6%, and
84.9% respectively. Each result retains many detail features.
In particular, compared with Fig. 7c, Fig. 7e, and Fig. 7g,
Fig. 7b retains more points at the detail feature parts, such as
ears, neck, and bottom. At the same time, at relatively smooth
areas, such as back, the number of points is significantly
less. Besides, the simplification rate of our result is 81.3%,
which meets the criteria of the simplification and is higher
than the simplified method based on Gaussian spheres and
the k-means clustering simplification method [10]. More-
over, there is little difference between the simplification rate
of our result and that of the conformal geometric algebra
method [20].

In order to verify the validity of the algorithm, we have
used Geomagic Studio to fit the results of the point cloud
simplification. The reconstruction results are shown in Fig. 8.
It can be seen that these six methods all have good reconstruc-
tion results at the smooth region, such as at the region of back.
However, at some places with many detail features, the recon-
struction results of the DFPSA, the simplified method based
on Gaussian spheres, and the k-means clustering simplifica-
tion method [10] are more complete and finer than others.
Especially at the ear part of the rabbit, the result of the method
based on Gaussian spheres has obvious empty hole, in con-
trast, the result of the DFPSA and the k-means clustering

FIGURE 8. Reconstruction results of bunny. (a) Original data, (b) Our
algorithm, (c) The simplified method based on Gaussian spheres, (d) The
simplified method based on octree coding, (e) The k-means clustering
simplification method [10], (f) The uniform simplification method [16],
(g) The conformal geometric algebra method [20].

FIGURE 9. Simplified results of horse. (a) Original data, total number of
the points = 48485, (b) Our algorithm, total number of the points = 8107,
(c) The simplified method based on Gaussian spheres, total number of
the points = 10058, (d) The simplified method based on octree coding,
total number of the points = 2648, (e) The k-means clustering
simplification method [10], total number of the points = 19271, (f) The
uniform simplification method [16], total number of the points = 4032,
(g) The conformal geometric algebra method [20], total number of the
points = 7194.

simplificationmethod [10] have few errors. In addition, based
on Table. 1, the simplification rate of the method based on
Gaussian spheres is basically as the same as the simplification
rate of the DFPSA, and the simplification rate of the DFPSA
is 1.5 times that of the k-means clustering simplification
method [10]. Therefore, considering simplification rates and
simplification effects synthetically, the reconstruction result
of the DFPSA is more excellent than other five methods.

The type of horse data set is the same as that of bunny data
set, they are both the data sets with a few features. In combi-
nation with Table. 1, Fig. 9, and Fig. 10, it can be seen that the
simplification rates of the simplified method based on octree
coding and the uniform simplification method [16] are high,
but the fitting effects of legs are not good. The simplification
rate of the k-means clustering simplification method [10] is
the worst and the fitting effect of back is not good either,
as shown in Fig. 10e. The DFPSA, the simplified method
based on Gaussian spheres, and the conformal geometric
algebra method [20] have reasonable simplification rates and
good fitting effects. Moreover, in Table. 1, it can be seen that
the DFPSA simplifiesmore points than the simplifiedmethod
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FIGURE 10. Reconstruction results of horse. (a) Original data, (b) Our
algorithm, (c) The simplified method based on Gaussian spheres, (d) The
simplified method based on octree coding, (e) The k-means clustering
simplification method [10], (f) The uniform simplification method [16],
(g) The conformal geometric algebra method [20].

FIGURE 11. Simplified results of gargo50K. (a) Original data, total number
of the points = 25038, (b) Our algorithm, total number of the points =

12604, (c) The simplified method based on Gaussian spheres, total
number of the points = 16138, (d) The simplified method based on octree
coding, total number of the points = 2409, (e) The k-means clustering
simplification method [10], total number of the points = 23146, (f) The
uniform simplification method [16], total number of the points = 3905,
(g) The conformal geometric algebra method [20], total number of the
points = 3861.

based on Gaussian spheres, and the conformal geometric
algebra method [20] simplifies more points than the DFPSA.
However, it is clearly that the difference of simplification
rates about these methods is very small. In Fig. 9b, we can
see that the DFPSA retains more points at the local detail
feature position, retains less points at the smooth position,
which not only guarantees the characteristics of the simplified
model, but also ensures the simplification rate. In summary,
the DFPSA has good simplification effect at both smooth and
feature positions.

Fig. 11 shows the simplified results of using simplified
algorithms on gargo50K data set. Based on Table. 1, it can
be seen that the simplified method based on octree coding
simplifies much points, and its simplification rate is as high
as 90.4%. The simplification rate of the uniform simpli-
fication method [16] is 84.4%. The simplification rate of

the conformal geometric algebra method [20] is 84.6%. The
simplification rate of the k-means clustering simplification
method [10] is only 7.6%. Whereas the DFPSA and the
simplified method based on Gaussian spheres retain many
points, and their simplification rates are respectively 49.7%
and 35.5%. Actually, there is a very important premise of
the point cloud simplification, that is the simplified points
must be able to reflect the model described by the original
point cloud. The results of the simplified method based on
octree coding, the uniform simplification method [16] and
the conformal geometric algebra method [20] have a high
simplify level, but it is obvious that for the data set with
lots of detail feature points, the simplified results are often
bad. In Fig. 11d, Fig. 11f and Fig. 11g, only the outline
of point cloud can be distinguished and it is impossible to
identify what object is described by the simplified point cloud
model. The result of the k-means clustering simplification
method [10] completely reflects the original model, but the
simplification rate is too low, which does not meet the criteria
of the high degree of simplification. Compared with Fig. 11a,
the number of the points in Fig. 11e has hardly decreased.
In Fig. 11b and Fig. 11c, not only the outline of point cloud
is saved, but also the features are retained. Especially in
Fig. 11b, the DFPSA greatly reduces the points at the smooth
area and retains the details completely.

The reconstruction results of gargo50K are shown
in Fig. 12. In Fig. 12d, Fig. 12f and Fig. 12g, the reconstruc-
tion results are very bad, only the outline can be distinguished.
The surface of each model is blurred and there are large holes
at the wing part of each model. On the contrary, the detail
features are obvious in Fig. 12b, Fig. 12c, and Fig. 12e. Each
fitting model is almost the same as the fitting model using
the original point cloud. In Fig. 12c, the result of the method
based onGaussian spheres has one big empty hole in the wing
part. In Fig. 12c and Fig. 12e, the bottom of the model fits
incomplete. Whereas in Fig. 12b, the surface is smooth and
there are few mistakes, the reconstruction result is almost the
same as Fig. 12a. In addition, the DFPSA has a smaller num-
ber of points compared with the method based on Gaussian
spheres and the uniform simplification method [16]. Hence,
in combination with simplification rates and simplification
effects, the DFPSA is better than other methods.

Elephant data set has a large number of complex detail
features at ear, nose, and ivory areas. Fig. 13 shows the
simplification results of elephant data set. In Combination
with Table. 1, the simplified method based on octree coding
and the uniform simplification method [16] highly simplify
point cloud. However, in Fig. 13d and Fig. 13f, it is difficult
to distinguish ears and ivory. The k-means clustering simplifi-
cation method [10], the DFPSA, the simplified method based
on Gaussian spheres, and the conformal geometric algebra
method [20] retain many points at detail feature position,
but a few points at smooth position. In Fig. 13b, Fig. 13c,
Fig. 13e, and Fig. 13g, elephant model is described very
clearly. In Fig. 13b, we can see that back part has a few points
and legs, ears, and ivory parts have many points. This also
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FIGURE 12. Reconstruction results of gargo50K. (a) Original data, (b) Our
algorithm, (c) The simplified method based on Gaussian spheres, (d) The
simplified method based on octree coding, (e) The k-means clustering
simplification method [10], (f) The uniform simplification method [16],
(g) The conformal geometric algebra method [20].

reflects the core idea of our algorithm: on the premise of
preserving features, simplify as many non-feature points as
possible to achieve a high reduction rate.

The reconstruction results of elephant are shown in Fig. 14.
Fig. 14d and Fig. 14f have many errors, the elephant’s nose
and ivory can no longer be distinguished. Fig. 14c, Fig. 14e,
and Fig. 14g have some holes at ears and body parts. Although
Fig. 14b has a small hole in ivory part, it does not have much
effect on the whole model. And compared with the other
five algorithms, the reconstruction effect of the DFPSA is the
best. In conclusion, the DFPSA has advantages in simplifying
point cloud with multiple features.

We have experimented with these six methods in the same
system environment. Each method run 20 times on each
data set. The average running time is shown in table. 2. It can
be seen in table. 2 that for the four data sets, the uniform
simplification method [16] takes very short time, but in com-
bination with the above experimental results, it sacrifices
simplification accuracy. Although the simplification speed of
the method is fast and the simplification rate of the method
is high, the simplified point cloud cannot completely replace
the original point cloud. This algorithm is suitable for point
clouds with a few feature points, or for situations requiring
only simplification speed and simplification rate, but not

FIGURE 13. Simplified results of elephant. (a) Original data, total number
of the points = 24955, (b) Our algorithm, total number of the points =

8483, (c) The simplified method based on Gaussian spheres, total number
of the points = 8591, (d) The simplified method based on octree coding,
total number of the points = 2496, (e) The k-means clustering
simplification method [10], total number of the points = 15833, (f) The
uniform simplification method [16], total number of the points = 2851,
(g) The conformal geometric algebra method [20], total number of the
points = 3887.

FIGURE 14. Reconstruction results of elephant. (a) Original data, (b) Our
algorithm, (c) The simplified method based on Gaussian spheres, (d) The
simplified method based on octree coding, (e) The k-means clustering
simplification method [10], (f) The uniform simplification method [16],
(g) The conformal geometric algebra method [20].

simplification accuracy. The k-means clustering simplifica-
tion method [10] also has a high simplification speed, but in
combination with the above experimental results and table. 1,
we can find that the simplification rate of this method is low,
which will have a great impact on the operation of point
cloud in the future. The simplification speed of the confor-
mal geometric algebra method [20] is also high. However,
the simplification of feature parts and the simplification of
non-feature part are similar, the simplification of complex
features is not ideal. The simplified method based on octree
coding has a high simplification rate but the poor speed. And
in combination with the above experiments and analyses, this
method is not a good choice. For bunny data set and horse data
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TABLE 2. The running time (in second) of simplification algorithms.

set with a few feature points, the simplified algorithm based
on Gaussian sphere runs fast, the DFPSA runs slow. This is
because in the DFPSA, for a data set with a few detail feature
points, a large number of non-feature points are processed
by octree, which makes the overhead of constructing the
octree is large, so the overall operation efficiency is reduced.
In contrast, for a data set with many feature points, such
as gargo50K data set and elephant data set. The number of
non-feature points is small, and the overhead of constructing
octree is small. Therefore, we can see in table. 2 that the
running time of the DFPSA on gargo50K data set and ele-
phant data set is shorter than that of the simplification method
based on Gaussian spheres. Furthermore, it can be aware
from table. 1 that the simplification rate of our algorithm is
higher than that of the method based on Gaussian spheres.
To summarize, the DFPSA runs faster on the data set with
much detail feature points than on the data set with a few
detail feature points. Accordingly, the DFPSA is suitable for
the point cloud with a large number of detail features.

C. SIMPLIFICATION RESULTS AT SIMILAR SCALES
Section V. B is the comparative experiment based on the
parameters recommended in the reference papers. In order
to further verify the effectiveness of the DFPSA, we adjust
the parameters to ensure that the simplification rate of each
algorithm is similar, and then compare the simplification
results of the DFPSA with those of the other five algorithms.

Fig. 15 shows the simplified results of bunny data set
while retaining the similar number of points. Fig. 16 shows
the corresponding fitting results. It can be seen in Fig. 15a
and Fig. 15b, a few points are retained at the smooth part
while many points are retained at the contour position.
The simplification results of Fig. 15c, Fig. 15d, Fig. 15e and

FIGURE 15. Simplified results of bunny. (a) Our algorithm, total number
of the points = 4566, (b) The simplified method based on Gaussian
spheres, total number of the points = 4391, (c) The simplified method
based on octree coding, total number of the points = 4359, (d) The
k-means clustering simplification method [10], total number of the
points = 4519, (e) The uniform simplification method [16], total number
of the points = 4539, (f) The conformal geometric algebra method [20],
total number of the points = 4748.

FIGURE 16. Reconstruction results of bunny. (a) Our algorithm, (b) The
simplified method based on Gaussian spheres, (c) The simplified method
based on octree coding, (d) The k-means clustering simplification
method [10], (e) The uniform simplification method [16], (f) The
conformal geometric algebra method [20].

Fig. 15f are uniform. It is obviously in Fig. 16 that these six
algorithms have good reconstruction results at smooth area,
but at the narrow feature location such as ear, the fitting effect
of the DFPSA is better than other algorithms.

The simplified results of elephant data set are shown
in Fig. 17. In Fig. 17a, Fig. 17b and Fig. 17d, the DFPSA,
the simplified method based on Gaussian spheres and the
k-means clustering simplification method [10] save a few
points at the smooth area andmuch points at the feature areas,
such as legs, ears, nose and ivory. Because the simplification
rate of Fig. 17 is high, we can see that in Fig. 18, these six
algorithms all have errors in reconstruction process. Never-
theless, the reconstruction result of Fig. 18a is better than
those of the other five algorithms, the errors in Fig. 18a are
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FIGURE 17. Simplified results of elephant. (a) Our algorithm, total
number of the points = 2872, (b) The simplified method based on
Gaussian spheres, total number of the points = 2640, (c) The simplified
method based on octree coding, total number of the points = 2496,
(d) The k-means clustering simplification method [10], total number of
the points = 2899, (e) The uniform simplification method [16], total
number of the points = 2851, (f) The conformal geometric algebra
method [20], total number of the points = 2938.

FIGURE 18. Reconstruction results of elephant. (a) Our algorithm, (b) The
simplified method based on Gaussian spheres, (c) The simplified method
based on octree coding, (d) The k-means clustering simplification
method [10], (e) The uniform simplification method [16], (f) The
conformal geometric algebra method [20].

obviously less than errors in other figures. This is because the
DFPSA can not only greatly simplify non-feature points, but
also maintain the features of original point cloud vigorously.

Generally, instead of simplifying the original point cloud
directly, the DFPSA considers feature points and non-feature
points separately. Thus, the DFPSA can greatly retain the
detail feature points. Combining with the simplification rate,
the simplification results, the simplification time and the
reconstruction results, it can be seen that the DFPSA is
able to simplify point cloud and it is more suitable for the
simplification of point cloud with complex features.

VI. CONCLUSION
This study presents a new simplification point cloud algo-
rithm based on detailed feature points. First, a new k neigh-
borhood search method based on distance and density is
proposed to find the k neighborhood of each point as accu-
rately as possible. Second, feature points are selected based
on geometric features of points. Third, feature points and non-
feature points are simplified in different ways. The DFPSA
greatly simplifies non-feature points while retaining detail
feature points.

In order to verify the effectiveness of the DFPSA, we have
carried out a series of experiments. Compared with two
classical simplified algorithms and three recently proposed
simplified algorithms, the DFPSA has good simplification
effect and reasonable simplification time. For data sets with
a small number of features such as bunny data set and horse
data set, when the simplification rate is about 80%, a very
good fitting effect can be obtained. For complex point cloud
data sets such as gargo50K data set and elephant data set,
the DFPSA retains much feature points, and compared with
other simplified algorithms, it has the best reconstruction
effect at the same scale. According to table. 2, we can see
that the simplification speed of the DFPSA for data sets with
a large number of complex feature points is shorter than it for
data sets with a small number of feature points. It is confirmed
that the DFPSA is suitable for the point cloud data set with
lots of detail features.

We can learn from the reconstruction experiment in the
section V that the DFPSA has a good simplification result
at the detail feature positions, the contour positions, and
the sharp positions. The algorithm also has good effect for
simplifying narrow areas, such as rabbit ears, horse legs, gar-
goyles wings, elephant nose, and elephant ivory. In addition,
according to setting different simplified threshold and setting
different simplified parameter proportion, the DFPSA can
flexibly simplify different types of point cloud data sets.
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