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ABSTRACT Rotation symmetric Boolean functions (RSBFs) are nowadays studied a lot because of its easy
operations and good performance in cryptosystem. This paper constructs a new class of odd-variable RSBFs
with optimal algebraic immunity (AI). The nonlinearity of the new function, 2n−1−

(n−1
k

)
+2k−4(k−3)(k−2),

is the highest among all existing RSBFs with optimal AI and known nonlinearity, and its algebraic degree
is also almost highest. Besides, the class of functions have almost optimal fast algebraic immunity (FAI) at
least for n < 17, which is actually the highest possible value for the designated number of variables.

INDEX TERMS Rotation symmetric Boolean function, algebraic immunity, nonlinearity, algebraic degree,
fast algebraic immunity.

I. INTRODUCTION
Boolean functions play an important role in cryptosystems of
stream ciphers. They are required to satisfy kinds of crypto-
graphic properties in order to resist many attacks. In 2003,
the algebraic attack was proposed by Courtois and Meier
in [1]. Then algebraic immunity (AI), a new cryptographic
property, was introduced [2], [3]. Boolean functions should
have high AI to resist algebraic attacks. The algebraic immu-
nity of an n-variable Boolean function f can at highest be
AI(f ) = d n2e [3], in which case we say that the function
have optimal AI. Since a tiny difference of AI may change the
resistancemuch, functions with optimal AI have been chased,
and efforts are paid to find them and their properties [5]–[16].
Later, Courtois introduced fast algebraic attacks [4]. The fast
algebraic attack is possible if a nonzero function g exists such

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Arshad.

that deg(g) and deg(g·f ) are low enough. In 2011, another new
cryptographic property called fast algebraic immunity (FAI)
was introduced in [17], which works as a measurement of the
ability of Boolean functions to resist fast algebraic attacks.
Some effort have been paid to study about FAI [18]–[20], but
they are still under too much limitation.

Rotation symmetric Boolean functions (RSBFs) don’t
change under the action of cyclic group, and lots of them have
optimal AI. Up to now, lots of functions with good properties,
including optimal algebraic immunity, are RSBFs [21]–[37].
In 2007, Sarkar and Maitra [22] firstly constructed a class
of odd-variable RSBFs with optimal AI and nonlinearity
2n−1 −

(n−1
n−1
2

)
+ 2. In 2009, 2011 and 2013, [24], [26], [27]

presented constructions of even-variable RSBFs with optimal
AI, with their nonlinearity polynomial higher than 2n−1 −(n−1
n−1
2

)
. In 2014, Su and Tang [31] made use of integer partition

to present new kinds of RSBFs with optimal AI and first
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exponentially higher nonlinearity, 2n−1−
(n−1
k

)
−2+2k (n =

2k+1 ≥ 11) and 2n−1−
(n−1
k

)
−2+3 ·2k−2 (n = 2k ≥ 10),

both of which are later improved in [32]–[34]. However,
the constructions of [31]–[33] totally ignore the fast alge-
braic attack. In 2017, Sun and Fu [35] presented two classes
of even-variable RSBFs with optimal AI, high nonlinearity
and high fast algebraic immunity. In 2019, Chen et al. [36]
presented a class of odd-variable RSBFs with optimal AI
and higher nonlinearity. These two classes of functions have
almost optimal immunity for n = 11, 13 and n = 11, 13, 15,
respectively. In the same year, Zhang and Su [37] constructed
another type of RSBFs, whose AI is optimal and nonlinearity
equals to 2n−1 −

(n−1
k

)
+ (k − 5)2k−1 + 2k + 2 (n =

2k + 1 ≥ 11).
We here construct a new type of odd-variable RSBFs with

the following properties: i) They are balanced with optimal
AI. ii) Nonlinearity is the highest among all odd-variable
RSBFs with exact known nonlinearity. iii) Algebraic degree
reaches optimal upper bound of balanced Boolean functions,
i.e., n−1. iv) The fast algebraic immunity reaches the highest
possible value for the number of variables n < 17.
In this paper, Section II provides some basic definitions and

propositions, Section III constructs the odd-variable RSBFs
and shows that the functions behave well on some aspects,
and Section IV concludes this paper.

II. PRELIMINARIES
Let Fn2 be the n-dimensional vector space over the finite field
F2 = {0, 1}. A Boolean function is a mapping from Fn2 to
F2. We’ll later use Bn to represent the set of the 22

n
possible

n-variable Boolean functions.
For a vector x = (x1, x2, · · · , xn) ∈ Fn2, supp(x) is defined

as {i|xi = 1, 1 ≤ i ≤ n}, and wt(x) is |supp(x)|. For any two
vectors α = (α1, α2, · · · , αn) and u = (u1, u2, · · · , un) in
Fn2, we define α � u, if αi ≤ ui for all 1 ≤ i ≤ n.

A quite usually used way to represent a Boolean function
f (x1, x2, · · · , xn) is the algebraic normal form (ANF), that is
to say,

f (x1, x2, · · · , xn) =
⊕
α∈Fn2

c(α)xα11 xα22 · · · x
αn
n , (1)

where c(α) ∈ F2 and ‘‘⊕’’ means the addition on F2. By the
Möbius transform,

c(α) =
⊕

x∈Fn2,x�α
f (x). (2)

Definition 1: The algebraic degree of function f expressed
in format (1) is defined as

deg(f ) = max{wt(α)|α ∈ Fn2, c(α) = 1}.

An represents the set containing all n-variable functions
whose algebraic degree is at most one.

supp(f ) is denoted by {x|f (x) = 1, x ∈ Fn2}, and wt(f ) =
|supp(f )|. A Boolean function f ∈ Bn is balanced if wt(f ) =
wt(f ⊕ 1), or equally, its Hamming weight is 2n−1.

Definition 2: The Walsh spectrum of a Boolean function
f ∈ Bn is defined as

Wf (ω) =
∑
x∈Fn2

(−1)f (x)⊕x·ω, ω ∈ Fn2

where (x1, x2, · · · , xn) · (ω1, ω2, · · · , ωn) = x1ω1 ⊕ x2ω2 ⊕

· · · ⊕ xnωn.
Definition 3: The nonlinearity (NL) of a Boolean function

f with n variables is defined as

NL(f ) = min
g∈An

wt(f ⊕ g).

or equally,

NL(f ) = 2n−1 −
1
2
max
ω∈Fn2

∣∣Wf (ω)
∣∣ . (3)

Definition 4 [3]: The algebraic immunity of a Boolean
function f , denoted by AI(f ), is

AI(f ) = min
{
deg(g)

∣∣0 6= g ∈ Bn, f · g = 0

or (f ⊕ 1) · g = 0
}
.

Functions without high AI will be easily attacked. But even
for ones which having high AI, fast algebraic attacks is still
possible if someone can find two nonzero functions g and h
with low algebraic degree such that f · g = h [4], [38]. Fast
algebraic immunity was later introduced as a measurement
of the resistance of Boolean functions against fast algebraic
attacks.
Definition 5 [17]: The fast algebraic immunity of a

Boolean function f , denoted by FAI(f ) is defined as

FAI(f ) = min
{
2AI(f ),min

{
deg(g)+ deg(f · g)

∣∣
1 ≤ deg(g) < AI(f )

}}
.

We say that f has almost optimal fast algebraic immunity if
FAI(f ) is n−1. We won’t get a balanced function with its FAI
higher than n, and can only have n reached if n = 2m + 1 for
some integer m [39].
A simple function,

F(x) =

{
1, if wt(x) ≥

⌈ n
2

⌉
;

0, else,

called the majority function [40], is showed to achieve the
optimal AI in [6] byDalai et al. Yet, NL(F(x)) is 2n−1−

(n−1
b n2c

)
,

which is exactly Lobanov’s lowerbound [41].
Proposition 1 [6], [22]: Let F(x) be the n-variable major-

ity function with n = 2k + 1. For ω ∈ Fn2,
i) If wt(ω) = 1, thenWF (ω) = 2

(n−1
k

)
;

ii) If wt(ω) = n, thenWF (ω) = 2(−1)k
(n−1
k

)
;

iii) Otherwise, |WF (ω)| ≤ 2
((n−3

k−1

)
−
(n−3
k

))
for n ≥ 7.

Definition 6 [23]: Let x = (x1, x2, · · · , xn) ∈ Fn2, then for
any x and 0 ≤ h < n, ρhn (x) is defined as

ρhn (x1, x2, · · · , xn) = (xh+1, xh+2, · · · , xn, x1, x2, · · · , xh).
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Definition 7 [23]: A Boolean function f ∈ Bn satisfying
that f

(
ρkn (x)

)
= f (x) holds for all x ∈ Fn2 and 0 ≤ k < n is

called rotation symmetric Boolean function (RSBF).
Since f

(
ρkn (x)

)
and f (x) are always equal, we can separate

Fn2 into several orbits such that, x and y are in same orbit if
there exists some k , y = ρkn (x).

III. CONSTRUCTION OF ODD-VARIABLE RSBFS
In this paper, we’ll assume that n = 2k + 1 ≥ 11, construct
a kind of balanced RSBF on n variables, and prove that f (x)
has optimal AI, high nonlinearity, almost optimal algebraic
degree, then check that it has almost optimal FAI.

A. CONSTRUCTION
For convenience, we denote by W≤i = {α ∈ Fn2|wt(α) ≤ i}
and Wi = {α ∈ Fn2|wt(α) = i}. For 1 ≤ i ≤ k − 2 and
2 ≤ j ≤ i, we define:

Ti,j =
{
(1, 1, 1, · · · , 1︸ ︷︷ ︸

i−j

, 0, 1, · · · , 1︸ ︷︷ ︸
j−1

, 1, 1,

0, · · · , 0︸ ︷︷ ︸
k1

, 1, 0, · · · , 0︸ ︷︷ ︸
k2

, 1, · · · , 0, · · · , 0︸ ︷︷ ︸
kk−i−1

) ∈ Wk+1

∣∣∣
k1, k2, · · · , kk−i−1 ≥ 1

}
.

It is quite obvious that k1 + k2 + · · · + kk−i−1 = k − 1, as by
definition wt(α) = k + 1 for all α ∈ Ti,j. Therefore,

T =
k−2⋃
i=2

i⋃
j=2

Ti,j ⊆ Wk+1.

We write the vectors defined in T as

T =
{
α2,2,1, α2,2,2, · · · , α2,2,|T2,2|,

α3,2,1, α3,2,2, · · · , α3,2,|T3,2|,

α3,3,1, α3,3,2, · · · , α3,3,|T3,3|,

· · · ,

αk−2,2,1, αk−2,2,2, · · · , αk−2,2,|Tk−2,2|,

αk−2,3,1, αk−2,3,2, · · · , αk−2,3,|Tk−2,3|,

· · · ,

αk−2,k−2,1, αk−2,k−2,2, · · · , αk−2,k−2,|Tk−2,k−2|

}
,

where αi,j,s means the sth smallest vector according to the
lexicographic order in Ti,j.
We can find ui,j,s for each αi,j,s as

Ui,j =
{
ui,j,s = αi,j,s ⊕ (0, · · · , 0︸ ︷︷ ︸

i−j+3

, 1, · · · , 1︸ ︷︷ ︸
j−1

,

0, · · · , 0︸ ︷︷ ︸
2k−1−i

)
∣∣∣αi,j,s ∈ Ti,j}

⊆ Wk−j+2

and similarly

U =
k−2⋃
i=2

i⋃
j=2

Ui,j

=

{
u2,2,1, u2,2,2, · · · , u2,2,|U2,1|

,

u3,2,1, u3,2,2, · · · , u3,2,|U3,2|
,

u3,3,1, u3,3,2, · · · , u3,3,|U3,3|
,

· · · ,

uk−2,2,1, uk−2,2,2, · · · , uk−2,2,|Tk−2,2|,

uk−2,3,1, uk−2,3,2, · · · , uk−2,3,|Tk−2,3|,

· · · ,

uk−2,k−2,1, uk−2,k−2,2, · · · , uk−2,k−2,|Tk−2,k−2|
}
,

which is a subset ofW≤k . It’s a direct result that
∣∣Ti,j∣∣ = ∣∣Ui,j∣∣

for every possible i and j, and |T | = |U |.
Example 1: For k = 5, i.e., n = 11, we have

T2,2 = {(1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0),
(1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0),
(1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0)},

T3,2 = {(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0)},
T3,3 = {(1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0)},

and

U2,2 = {(1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0),
(1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0),
(1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0)},

U3,2 = {(1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0)},
U3,3 = {(1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0)}.

Example 2: For k = 6, i.e., n = 13, we have

T2,2 = {(1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0),
(1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0),
(1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0),
(1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0),
(1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0),
(1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0)},

T3,2 = {(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0),
(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0),
(1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0),
(1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0)},

T3,3 = {(1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0),
(1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0),
(1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0),
(1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0)},

T4,2 = {(1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0)},
T4,3 = {(1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0)},
T4,4 = {(1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)}.

We can see that, when k increases from 5 to 6, the amount
of vectors is more than tripled.
Now, define

P̃ =
{
ρln(x)

∣∣x ∈ P, 0 ≤ l < n
}

for P being any subset of Fn2, and we can have:
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Construction 1: Let F(x) as the majority function, then

f (x) =

{
F(x)⊕ 1, x ∈ T̃ ∪ Ũ;
F(x), otherwise.

(4)

Obviously f is a balanced RSBF.

B. ALGEBRAIC IMMUNITY
Define ‘‘(x1, x2, x3, · · · , xh) < (y1, y2, y3, · · · , yh)’’ as
‘‘x1 < y1 or x1 = y1 and (x2, x3, · · · , xh) <

(y2, y3, · · · , yh)’’, and that () 6< (), then we have:
Lemma 1: For αi,j,s ∈ T , ui,j,s, ui′,j′,s′ ∈ U, the following

properties hold.
i) ρln(ui,j,s) � ρ

l
n(αi,j,s), for 0 ≤ l < n.

ii) ρln(αi,j,s) 6= αi,j,s, ρ
l
n(ui,j,s) 6= ui,j,s, for 1 ≤ l < n.

iii) ui,j,s � ρln(αi,j,s), for 1 ≤ l < n.
iv) ui′,j′,s′ � ρln(αi,j,s), for (i′, j′, s′) < (i, j, s) and

0 ≤ l < n.
Proof: For convenience, we write

αi,j,s = (1, 1, 1, · · · , 1︸ ︷︷ ︸
i−j

, 0, 1, · · · , 1︸ ︷︷ ︸
j−1

, 1, 1,

0, · · · , 0︸ ︷︷ ︸
k1

, 1, 0, · · · , 0︸ ︷︷ ︸
k2

, 1, · · · , 0, · · · , 0︸ ︷︷ ︸
kk−i−1

)

and

ui,j,s = (1, 1, 1, · · · , 1︸ ︷︷ ︸
i−j

, 0, 0, · · · , 0︸ ︷︷ ︸
j−1

, 1, 1,

0, · · · , 0︸ ︷︷ ︸
k1

, 1, 0, · · · , 0︸ ︷︷ ︸
k2

, 1, · · · , 0, · · · , 0︸ ︷︷ ︸
kk−i−1

).

Here, we define (x1, x2, · · · , xn)
q
p as (xp, xp+1, · · · , xq).

i) holds by the definitions of Ti,j and Ui,j.
If 1 ≤ l < n, then (ui,j,s)10 = (ui,j,s)

4+i
3+i = (1, 1), but

the existances of (1, 1) only appear in the range of the bits.
Therefore, ui,j,s � ρln(αi,j,s) for 1 ≤ l < n, and then ii) and
iii) hold.

If i′ < i, and ui′,j′,s′ � ρln(αi,j,s), by the
necessarity of existance of the two (1, 1)’s we know
ui′,j′,s′ ⊕ (0, · · · , 0︸ ︷︷ ︸

i−j+2

, 1, · · · , 1︸ ︷︷ ︸
j

, 0, · · · , 0︸ ︷︷ ︸
2k−1−i

) � αi,j,s ⊕

(0, · · · , 0︸ ︷︷ ︸
i−j+2

, 1, 0, · · · , 0︸ ︷︷ ︸
2k−i+j−2

). Since the two vectors have same

weight, they should be equal, which is obviously impossible.
If i′ = i then we use the same method when proving ii) and

iii) and get that l = 0. In this case, if j′ < j, then (ui′,j′,s′ )
j+2
j+2 >

(αi,j,s)
j+2
j+2; otherwise, they use different partitions, so ui′,j′,s′ �

ρln(αi,j,s), still. This completes the proof of iv).
Lemma 2 [8]: Define F(x) as the majority function. Let

T = {α1, · · · , αl} ⊆ W≤k and U = {u1, · · · , ul} ⊆ W k+1,
for some integer l. If the vectors in T and U satisfy

P1. αi � ui for 1 ≤ i ≤ l,

and

P2. αi � uj for 1 ≤ i < j ≤ l,

then

f1(x) =

{
F(x)⊕ 1, x ∈ T ∪ U
F(x), otherwise

has optimal AI.
Theorem 1: The Boolean function f (x) in Construction 1

has optimal AI.
Proof: Since ρln(ui,j,s) � ρln(αi,j,s) for 0 ≤ l < n,

ρln(ui,j,s) � ρmn (αi,j,s) for 0 ≤ l,m < n and m 6= n, and
that ρln(ui′,j′,s′ ) � ρmn (αi,j,s) for (i

′, j′, s′) < (i, j, s) according
to Lemma 1, we can renumber the elements ρln(αi,j,s) in T̃ in
order of (i, j, s, l), and the same operation can apply on Ũ .
In this way the conditions in Lemma 2 satisfy, and the proof
is completed.

C. NONLINEARITY
Theorem 2: The nonlinearity of f (x) in (4) is

NL(f ) = 2n−1 −
(
n− 1
k

)
+ 2k−4(k − 3)(k − 2),

where n = 2k + 1 ≥ 11.
Proof: For ω ∈ Fn2, we’ll first calculate the maximum

of Walsh transform on ω.
Case 1: If wt(ω) = 1, then∑

x∈T̃

(
(−1)f (x)⊕ω·x − (−1)F(x)⊕ω·x

)
=

∑
x∈T

(
− wt(x)−

(
n− wt(x)

))
−

(
wt(x)−

(
n− wt(x)

))
=

∑
x∈T

(
2n− 4wt(x)

)
and∑
x∈Ũ

(
(−1)f (x)⊕ω·x − (−1)F(x)⊕ω·x

)
=

∑
x∈U

(
wt(x)−

(
n− wt(x)

))
−

(
− wt(x)+

(
n− wt(x)

))
=

∑
x∈U

(
− 2n+ 4wt(x)

)
.

Therefore,

Wf (ω)=WF (ω)+
∑
x∈T̃

(
(−1)f (x)⊕ω·x − (−1)F(x)⊕ω·x

)
+

∑
x∈Ũ

(
(−1)f (x)⊕ω·x − (−1)F(x)⊕ω·x

)
= 2

(
n−1
k

)
+ 4

∑
{(i,j,s)|αi,j,s∈T }

(
−wt(αi,j,s)+wt(ui,j,s)

)
= 2

(
n−1
k

)
− 4

k−2∑
i=2

i−1∑
j=1

(j− 1)
(

k − 2
k − i− 2

)

= 2
(
n−1
k

)
− 2k−3(k − 3)(k − 2).
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Case 2: If wt(ω) = n, then∑
x∈T̃

(
(−1)f (x)⊕ω·x − (−1)F(x)⊕ω·x

)
=

∑
x∈T

n(−1)f (x)+wt(x) − n(−1)F(x)+wt(x)

=

∑
x∈T

2n(−1)wt(x)

and ∑
x∈Ũ

(
(−1)f (x)⊕ω·x − (−1)F(x)⊕ω·x

)
=

∑
x∈U

n(−1)f (x)+wt(x) − n(−1)F(x)+wt(x)

=

∑
x∈U

−2n(−1)wt(x).

Thus,

Wf (ω)

= 2(−1)k
(
n− 1
k

)
+

∑
x∈T

2n(−1)wt(x) +
∑
x∈U

2n(−1)wt(x)

= 2(−1)k
(
n− 1
k

)
+ 2n

∑
i,j,s

(
(−1)wt(αi,j,s) − (−1)wt(ui,j,s)

)

= 2(−1)k
(
n− 1
k

)
− 4(−1)kn

k−2∑
i=2

⌊
i−1
2

⌋∑
t=1

(
k − 2

k − i− 2

)
.

Since

n
k−2∑
i=2

⌊
i−1
2

⌋∑
t=1

(
k − 2

k − i− 2

)
>

k−2∑
i=2

i−1∑
j=1

(j− 1)
(

k − 2
k − i− 2

)
as ⌊

i−1
2

⌋∑
t=1

(
k − 2

k − i− 2

)
≤

1
2

i−1∑
j=1

(
k − 2

k − i− 2

)
and 2(j− 1) < n, and

4n
k−2∑
i=2

⌊
i−1
2

⌋∑
t=1

(
k − 2

k − i− 2

)
< 2

(
n− 1
k

)
,

the absolute of Wf (ω) is obviously larger when ω = 1 than
ω = n.
Case 3: If 2 ≤ wt(ω) < n, then

∣∣Wf (ω)
∣∣ ≤ 2(

(n−3
k−1

)
−(n−3

k

)
) + 4n |T |, which is also smaller than the Walsh when

ω = 1.
Hence, the maximum absolute of Walsh transform appears

when wt(ω) = 1, in which case we can know from (3)
that the nonlinearity of f is 2n−1 −

(n−1
k

)
+ 2k−4(k − 3)

(k − 2).

TABLE 1. Comparisons of nonlinearities among the odd-variable RSBFs.

D. ALGEBRAIC DEGREE
Lemma 3 [6]: For the n-variable majority function F,

deg(F) = 2blog2 nc.

Lemma 4: Let f be the function defined in (4), and F be
the majority function, then

deg(f ⊕ F) < n− 1.

Proof: Let’s define ηn−1 = (1, · · · , 1︸ ︷︷ ︸
n−1

, 0). Since

f is balanced, by (2), deg(f ) < n; Because of the
rotated symmetrical of f , deg(f ⊕ F) = n − 1 iff⊕

t�ηn−1 f (t), which has same parity to
∑

x∈T∪U (n−wt(x)),
and same to 1

4Wf (1, 0, · · · , 0︸ ︷︷ ︸
n−1

). Since it’s always even,

deg(f ⊕ F) < n− 1.
Theorem 3: For Boolean function f (x) defined in (4),

if k = 2m, then deg(f ) = n− 1, and vise versa.
Proof: Since deg(f ⊕F) < n−1, we know that deg(f ) =

n−1 iff deg(F) = n−1. By Lemma 4, it only happens when
n = 2m+1 + 1, i.e., k = 2m.

Therefore, in most situations, deg(f ⊕ F) < n − 1. The
exception happens when k = 2m for some integer m. That’s
quite small amount.

To improve the degree, we define:
Construction 2:

f ′(x) =

{
f (x)⊕ 1, if ρln(x) ∈ {αk−2,2,1, uk−2,2,1};
f (x), else.

Because it inverts
⊕

t�ηn−1 f (t), with the same methods
used before, we can get:
Theorem 4: For function f ′ defined in Construction 2,

where k 6= 2m, f ′ has optimal AI, deg(f ′) = n − 1, and
NL(f ′) = 2n−1 −

(n−1
k

)
+ 2k−4(k − 3)(k − 2)− 2.

E. FAST ATTACK IMMUNITY
Currently exact FAI is still only available for majority func-
tion on some special n [18], [19], and for our function, we’re
only able to analyze for small n. With the computer program
in [42] we can get that, for odd n < 17,FAI(f ′) = FAI(f ) =
n− 1. As proved in [39], this is the highest possible value for
RSBFs with optimal AI.
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IV. CONCLUSION
In this paper, we construct a new type of balanced
odd-variable RSBFs with optimal AI, and show the exact
value of nonlinearity of our construction, which is higher
than the known ones before. And such functions also have
highest possible algebraic degree. In addition, for odd n < 17,
the function has almost optimal FAI. However, the value of
FAI for higher n still need some work, which is a significant
open research area.
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