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ABSTRACT An embryo develops from a single-celled zygote, which produces a multi-cellular organism by
mitosis. Due to the complication of processes and mechanisms, research on embryo cell clusters in different
early embryo developmental stages with significant phenotypic differences is still lacking. In this work,
we identified some gene characters and expression rules to classify these individual cells using several
advanced computational methods. The single cell expression profiles of embryo cells were analyzed by
the Monte Carlo feature selection (MCFS) method, resulting in a feature list. Then, the incremental feature
selection (IFS) method, incorporating support vector machine (SVM), applied on such list to extract key
gene characters. These gene characters include KHDC1, HMGN1, DCP, GDF9, RNF11, DNMT3L, and
CDX1. Furthermore, a rule learning algorithm, Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), was applied to the informative features yielded by MCFS method, producing a group of
classification rules. These rules can clearly uncover different expression patterns on cells in different stages.
This study provided a group of effective gene signatures and rules for embryo cell subtyping and presented
an applicable computational tool to further dig into the regulatory mechanisms of embryo development.

INDEX TERMS Embryo development, single cell, expression pattern, rule, multi-class classification.

I. INTRODUCTION
An embryo develops from a zygote, which is produced by fer-
tilization of female egg cell by the male sperm cell. A multi-
cellular organism was produced by mitosis, which is the
early developmental period of amulti-cellular diploid eukary-
otic organism. The development of zygote into an embryo
goes through multiple stages, i.e., blastula, gastrula, and
organogenesis. The blastula stage is typically characterized

The associate editor coordinating the review of this manuscript and
approving it for publication was Quan Zou.

by a fluid-filled cavity, the blastocoel, which is surrounded
by blastomeres. In the gastrula stage, blastula cells form
two or three tissue layers by coordinated processes of cell
division, invasion, and migration. In the organogenesis stage,
molecular and cellular interactions between germ layers
prompt further differentiation of organ-specific cell types,
based on the cells’ developmental potentials or competence
to respond.

There are many factors affecting embryo development.
Tubulins and other cytoskeletal proteins play important
roles in the gametogenesis, oocyte maturation, fertilization,
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and preimplantation stages of embryo development [1].
Protein deubiquitination (DUBs) can influence sperm
functions during embryo development and promotes the
acquisition of developmental competence during oocyte mat-
uration [2]. Actin nucleator Arp2/3 complex regulates cell
division, thereby affecting preimplantation embryo develop-
ment [3]. Adiponectin regulates metabolic processes involv-
ing several signaling molecules, which in turn regulate the
female reproductive function that may influence preimplan-
tation embryo development [4]. Moreover, some genes are
related to embryo cell development. Kim Y et al. reported
that the knockout of bromodomain-containing protein 7
(BRD7) induced a retardation in embryo development and
mild changes in glucose metabolism [5]. KPNA7 is an oocyte
and cleavage stage embryo-specific karyopherin α subtype;
it is required for procine embryo development [6]. As an
important cellular regulator of mRNAs, PTBP1 can influence
the alternative splicing profile of a cell to change the stabil-
ity, location, and translation of its regulated mRNA, which
can regulate the embryonic and extra-embryonic structures
required for embryonic development before gastrulation [7].
ING2 regulates chromatin affecting the process of preimplan-
tation embryo development [8]. In addition, HUWE1 [9],
PS48 [10], and p38 MAPK signaling pathways [11] play
important roles in embryo development. Although there have
been many experiments that aimed to find these genes related
to embryo development, the group of genes related to embryo
development has not been completely identified.

The development of early embryonic cells can be divided
into 3-, 4-, 5-, 6-, and 7-day stages, in which significant phe-
notypic differences exist. These cells should have different
developmental models and regulatory mechanisms to distin-
guish developmental phases. Due to the complication of these
processes and mechanisms, studies on the embryo cell clus-
ters in different early developmental stages are still lacking.
In this work, we found some gene characters and expression
rules to classify these individual cells with several advanced
computational methods. First, gene features were analyzed
by Monte Carlo feature selection (MCFS) [12], generating a
feature list. Based on such list, incremental feature selection
(IFS) with a classic classification algorithm, support vector
machine (SVM) [13], was executed to extract key gene fea-
tures, with which a SVM classifier was built. Such classifier
can efficiently classify embryonic mammalian cells into five
types (3-, 4-, 5-, 6-, and 7-day stages). Key gene characters
included KHDC1,HMGN1,DCP,GDF9, RNF11,DNMT3L,
andCDX1. In addition, a rule learning algorithm, Incremental
Pruning to Produce Error Reduction (RIPPER) [14], was
adopted to produce classification rules based on informative
features yielded byMCFSmethod. These rules were analyzed
and they can clearly indicate the different expression patterns
on cells in different types. Overall, our study may provide
a group of effective gene signatures and rules for embryo
cell subtyping and present an applicable computational tool
for further digging on the regulatory mechanisms of embryo
development.

II. MATERIALS AND METHODS
A. DATA SETS
We downloaded the single cell expression profiles of 26,178
genes in 1,529 embryo cells from ArrayExpress under
accession number of E-MTAB-3929 [15]. A total of 81, 190,
377, 415, and 466 embryo cells were present at days 3, 4, 5, 6,
and 7, respectively. The gene expression changes of these sin-
gle cells may reveal mechanisms underlying dynamic embryo
development.

B. FEATURE SELECTION
In this study, we wanted to identify the significant genes
closely related to embryonicmammalian cells at five different
stages. Here, the expression values of genes were used as
input features for machine learning models, and a two-step
feature selection method was used to select those important
genes. MCFS was used to rank the input genes [16]–[21].
MCFS method is a powerful feature selection method and
good at analyzing datasets with few samples and high dimen-
sions. Considering that our dataset contained 1,529 samples
and each sample was represented by 26,178 features, MCFS
is very proper to tackle such dataset. After features were
ranked by MCFS method, IFS with SVM was applied to
select discriminative genes in order to classify different cells
well [22]–[27].

MCFS is a decision tree-based feature selection method.
It generates m bootstrap sample sets and n feature sub-
sets, in which the number of features was smaller than
the number of original features. The total m∗n decision
trees were grown on each combination of the m boot-
strap sample sets and n feature subsets. Based on the
grown m∗n trees, a relative importance (RI) score was
calculated. For each feature, RI was calculated based on
how frequent this feature is involved in growing the m∗n
trees and in the classification accuracy of individual trees.
Accordingly, a feature list can be produced, in which all
features are ranked by the decreasing order of their RI
scores. MCFS implementation [12] was downloaded from
http://www.ipipan.eu/staff/m.draminski/mcfs.html. Obtained
MCFS program was performed with its default parameters,
where two main parameters u and v were set to one.

After obtaining the ranked feature list, we further used IFS
with a supervised classifier (i.e., SVM) to select the optimum
features for distinguishing different cells.Wefirst constructed
a series of feature subsets with a step interval of 10 from the
ranked feature list by MCFS. In each feature subset, there
are 10 more features than the preceding feature subset. For
example, the first feature subset has top 10 features. Thus,
the second feature subset should have top 20 features, and
so on. For each feature subset, we trained and evaluated
SVM on the samples consisting of the features from this
feature subset using 10-fold cross-validation. After running
this process for all feature subsets, we selected that with the
best performance, and the features in this subset are called
optimum features.
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C. SUPPORT VECTOR MACHINE
SVM is a widely used supervised classifier based on statistics
theory [13], [28], [29]. It tries to find a hyperplane with
maximum margin between two classes and can handle both
linear and non-linear data. In non-linear data, it maps the data
in low dimensional space into a high-dimensional space using
a kernel function, and a linear model is fitted on the new data
in the high-dimensional space.

In general, SVM is designed for binary classification.
In this study, we needed to classify samples from five
groups/stages of cells that can be formulated as a multi-class
classification problem. One-vs-rest strategy was applied to
adapt the SVM to handle multi-class classification. Multiple
binary SVMs were trained, and each binary SVMwas trained
on positive samples from one class and negative samples from
the other classes. Given a new sample, the multiple SVMs
corresponding to individual classes will predict a probability
score, and then, the predicted class with the highest probabil-
ity score will be assigned for this new sample.

In this study, we adopted the tool ‘SMO’ in Weka, which
implements one type of SVM. It was executed using its
default parameters. In detail, the kernel was a polynomial
function and parameter c was set to 1.0.

D. RULE LEARNING
To better understand how the predictors (optimum genes)
make decision on the types of cells, we used RIPPER
[14], [30] to learn the decision rules from the training data.
RIPPER is based on the separate-and-conquer technique
and reduced error pruning strategy. It obtained a good rule
that fit some samples in the training data, and the samples
covered by this rule were removed from the training data.
Next, the abovementioned process of rule generation was
repeated until all samples were removed from the training
data or until other predefined conditions were met. Lastly,
reduced error pruning was applied to reduce the redundancy
of learned rules. Each rule consisted of IF-THEN state-
ment, i.e., if the conditions are met, a decision is made.
In this study, we produced the rules in the following form:
IF gene1 ≥ 2.4 AND gene2 ≤ 10.8, THEN cell type
stage = 5 days. Because there were lots of gene features
used to represent embryo cells, inducing difficulties to pro-
duce brief rules via RIPPER, informative features yielded by
the MCFS method were fed into RIPPER to generate rules.
The implementation of RIPPER was included in the MCFS
package.

E. PERFORMANCE MEASUREMENT
In this study, we classified the samples into five cells at dif-
ferent stages, thereby resulting in multi-class classification.
To objectively evaluate the performance of trained models,
we measured the overall accuracy and Matthews correlation
coefficient (MCC) [31]–[35]. Defining X as the binary matrix
of the predicted class labels and Y as the binary matrix of the

FIGURE 1. The entire procedures to analyze the single cell expression
profiles of embryo cells in different developmental stages.

true class labels, MCC was calculated as follows:

MCC =
cov(X ,Y )

√
cov(X ,X )cov(Y ,Y )

=

n∑
i=1

C∑
j=1

(xij − x̄j)(yij − ȳj)√
n∑
i=1

C∑
j=1

(xij − x̄j)2
n∑
i=1

C∑
j=1

(yij − ȳj)2
(1)

where x̄j and ȳj are the mean values in the jth column of X and
jth column of Y, respectively.

III. RESULTS
In this study, some advanced computational methods were
adopted to analyze the single cell expression profiles of
embryo cells in different developmental stages. The entire
procedures are illustrated in Fig. 1.
It is clear that not all genes were equally important in

classifying samples from five embryonic cell stages. We first
used MCFS to rank all the input features/genes, which were
the expression values across 26,178 genes. The RI scores
from MCFS for individual features and the feature list are
given in Table S1.

To further select the discriminating features corresponding
to different embryonic cell stages, we used IFS with SVM to
classify the samples consisting of features from individually
generated feature subsets based on the ranked feature list
by MCFS. As shown in Fig. 2 and Table 1, we achieved
the best 10-fold cross-validation MCC value (0.996) when
the top 3230 features were used. In addition, we can still
yield an MCC value and overall accuracy of 0.908 and 0.931,
respectively, if less number of features was used (i.e., the top
80 features). The corresponding performance of SVM using
different number of features is given in Table S2. Our trained
SVMwas close to perfect in classifying the samples from five
embryonic cell stages.

We justified the choice of SVM integrated with IFS by
evaluating another widely used classifier, random forest (RF)
[36], in the same way as SVM. This study employed the tool
‘RandomForest’ inWeka, which implements RF. As shown in
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FIGURE 2. Optimal performances of IFS with SVM and RF.

TABLE 1. The performance and optimum number of features of IFS with
the SVM and RF.

Fig. 2 and Table 1, we achieved the best MCC value (0.948)
if the top 960 features were used, with an overall accuracy
of 0.961. The corresponding performance of RF using differ-
ent number of features is given in Table S3. The performance
of SVM is slightly better than that of RF. As such, we chose
SVM over RF for IFS in this work.

SVM and RF are both black-box classifiers. To better
understand howwe can classify samples from five embryonic
cell stages, we used RIPPER to learn the classification rules.
TheMCFSmethod produced 542 informative features, which
were top 542 features in the ranked feature list. Based on
these informative features, RIPPER produced 18 significant
classification rules, as shown in Table 2, but we still needed
to check their accuracy. Thus, we re-evaluated the prediction
performance of these 18 classification rules using 10-fold
cross-validation. We achieved an accuracy and overall accu-
racy of 0.906 and 0.918, respectively (Fig. 3). The learned
18 rules can classify samples from five embryonic cell stages
with high accuracy.

IV. DISCUSSION
As mentioned above, 3230 features have been screened
to describe the optimal classifier for early embryo cells
subtyping. The expression levels of 3230 genes are screened
for optimal features that contribute to early embryonic
cell development. Considering the number of features, the
top-ranked 80 genes were selected as the optimal genes

TABLE 2. The 18 classification rules for different cell stages learned by
RIPPER algorithm.

FIGURE 3. Confusion matrix of multi-classification model.

as supported by previous analysis, and we discussed the
top-ranked 10 features as examples. In addition, we identified
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a group of quantitative rules that contributed to the detailed
classification of five different stages of embryonic cells,
thereby providing a solid basic research.

A. GENES ASSOCIATED WITH EMBRYO DEVELOPMENT
The first identified gene in our optimal prediction list is
KHDC1L. According to previous reports [37], KHDC1 is
expressed in oocyte and embryo cells and is related to atypical
structure and phylogenomic evolution. Its family members
are known to be KH-domain-containing RNA-binding pro-
teins, which are highly expressed in oocytes and are unique
to eutherian mammals [38]. In 2010, it is reported that
KHDC1B, a novel CPEB-binding partner interacting with
mCEPB1 and regulating oocyte maturation, is a member of
a small family of KH-domain-containing proteins that have
been identified in oocytes and early embryos [39]. Based
on these evidences, we speculated that KHDC1 may have
a differential expression pattern in early embryonic cells,
validating the efficacy and accuracy of our prediction.

The next gene in our prediction list, HMGN1, encodes
the chromosomal protein HMG14, which helps maintain
transcribable genes in a unique chromatin conformation.
HMGN1 can regulate embryogenesis by modulating Sox9
expression and enhance the rate of DNA repair in chro-
matin [40], [41]. Chromatin structure plays a key role in
regulating gene expression and embryonic differentiation.
Thus,HMGN1, as a nucleosome-binding protein that is ubiq-
uitously expressed in vertebrate cells; it regulates embry-
onic stem cells by modulating nucleosome occupancy [42].
Therefore, we speculated that HMGN1 gene may be differ-
entially expressed in embryonic cells, validating the efficacy
and accuracy of our prediction.

The next gene in our prediction list is DCP-1. During
meiotic maturation, DCP-1 plays an important role in the
regulation of mRNA stability, especially for proper mRNA
degradation [43]. During oocyte maturation through the
two-cell stage, the degradation of selected maternal tran-
scripts is dramatic, which accounts for approximately 20%
(total) RNA decrease in the oocyte [44]. The inhibition
of increased DCP1A expression associated with matura-
tion could prevent bulk degradation of maternal mRNAs
and could affect embryonic genome activation during the
two-cell stage. Therefore,DCP-1 genemight be differentially
expressed in embryonic cells.

The next gene, growth differentiation factor 9 (GDF9),
is predicted to contribute to classify early embryonic cells.
As a member of the transforming growth factor-beta (TGFβ)
superfamily synthesized by ovarian somatic cells, it directly
affects oocyte growth and function and is expressed in
oocytes. Its expression level is closely associated with oocyte
maturation, fertilization, embryo quality, and pregnancy out-
come [45], [46], thereby suggesting its ability as a marker
and in identifying embryonic cells. In a published report,
GDF-9 mRNA can be detected up to eight-cell stage
in embryo but not in preantral follicles and early antral
follicles [47]. Therefore, GDF9, a high-ranking predicted

gene, has been confirmed to have differential expression
pattern that contribute in embryonic cells.
RNF11, another gene identified in our predicted list,

contributes to ubiquitination regulation. It is specifically
present in early embryonic cells. Its transcripts are specif-
ically present in presomatic mesoderm (PSM), and later
in the brain and retina [48]. Another publication reported
that it directly enhances TGFβ signaling by direct asso-
ciation with Smad4, which is a well-known signaling sig-
nal transducer and transcription factor that regulates TGFβ,
BMP, and Activin pathways. Although it is associated with
Smad4 and other transcription factors, it may play a role
in direct transcriptional regulation [49]. Smad4 potentiates
a subset of TGFβ-related signals during early embryonic
development [50], thereby suggesting that it can regulate
early embryonic development by affecting Smad4. These
literature reports support that our predicted gene RNF11may
have differential expression pattern in early embryonic cells,
validating the efficacy and accuracy of our prediction.
DNMT3L, another gene identified in our predicted list,

functions in CpG methylation that is an epigenetic modifi-
cation relevant to embryonic development, imprinting, and
X-chromosome inactivation. DNMT3 is the major DNA
methyl-transferase expressed in gonocytes and is increased
in spermatogonia at four and six days postpartum [51].
Another report showed that genomic DNA is methylated by
de novo methyltransferases, Dnmt3a and Dnmt3b, during
early embryonic development. The activity of both enzymes
increases in the presence of Dnmt3L, a Dnmt3a/3b-like
protein [52]. According to the results in these literatures,
DNMT3L regulates embryonic development by increasing
the expression of Dnmt3a/3b at days 4 and 6 to regu-
late CpG methylation, thereby strengthening our speculation
that DNMT3L has a differential expression pattern in early
embryonic cells.

The final gene to be discussed is CDX1, also known as
homeobox protein CDX-1, which is expressed in the devel-
oping endoderm. CDX1 is regulated by Wnt-3a, which is an
important factor for somite specification along the antero-
posterior axis of the embryo [53]. It has an early period
of expression when the embryonic body axis is established,
and its expression is maintained throughout adulthood in the
proliferative cell [54]. Hox genes regulate axial extension and
may be significant in mammalian embryo development. They
regulate embryonic positional identities and are expressed in
early embryonic cells [55]. Anther CDX gene, CDX2, is also
expressed in the different stages and positions of embryonic
cells [56], thereby suggesting thatCDX1 and its homologs are
specifically expressed in embryonic cells. We speculated that
the predicted gene CDX1 has differential expression pattern
in early embryonic cells.

B. RULES ASSOCIATED WITH EMBRYO DEVELOPMENT
Apart from the qualitative analyses of optimal genes and their
expression patterns associated with embryo development,
we identified 18 rules for detailed quantitative analysis on
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the distinction of embryonic cells. According to recent pub-
lications, all expression tendencies have been confirmed.
To validate the threshold parameters in these rules, we iden-
tified quantitative proofs from existing databases such as
GEO. The detailed analysis of each rule can be seen
below.

The first two rules are about distinguishing the three-day
embryonic cells. According to our prediction, a relatively
high expression level of ARID4A or a relatively low expres-
sion level of NME1 may indicate the three-day stage of
embryonic cells. ARID4A can regulate genomic imprinting,
which is an important factor for embryo development [57].
NME1 has not been found in embryonic development,
suggesting that it may be a negative factor. Therefore,
we regarded the non-detection of NME1 expression and
high detection of ARID4A expression as potential param-
eters for distinction of embryonic cells in the three-day
stage.

The second two rules are related to four-day embryonic
cells. According to our prediction, these rules are as follows:
the relatively low expression levels of TPM4 and PRDX1
and the relatively high expression level of ETNPPL and a
relatively low expression level of ATP5A1. It has been proven
that PRDX1 exists in embryos [58] and ATP5A1 gene muta-
tion leads to embryonic lethality [59], thereby suggesting that
PRDX1 and ATP5A1 are important factors in embryo devel-
opment. We regarded these genes as potential parameters for
the distinction of embryonic cells.

The next six rules are about distinguishing the five-day
embryonic cells. According to our prediction, these rules are
as follows: 1) relatively low expression levels of KRT19 and
FTL as well as a relatively high expression level of SLC17A5;
2) relatively low expression levels of CCKBR and FABP3
as well as a relatively high expression level of CLDN10;
3) relatively high expression levels of PRSS23 and
MTRNR2L1; 4) relatively high expression levels of KHDC1L
and S100A14; 5) relatively low expression levels of CLDN4
and AK2; and 6) a relatively high expression level of
VCX. Although FTL and KRT19 were not found in embry-
onic development, gene SLC17A5 or sialin, is related to
embryonic expression patterns [60]. According to pub-
lished reports, many gene rules can be regarded as essential
parameters in the distinction of embryonic cells. CLDN10
is essential in blastocyst formation in preimplantation
embryos [61]. PRSS23 is essential in blastocyst development
and hatching [62].MTRNR2L1 is important in human preim-
plantation epiblast [63]. KHDC1L, as an embryo-expressed
gene, is a novel CPEB-binding partner that is specifically
expressed in oocytes and early embryos [37], [39].

The following seven rules are associated with six-day
embryonic cells: 1) relatively high expression levels of
CLDN10 and ATP5I; 2) relatively low expression levels of
FTL and FADS2 as well as a relatively high expression level
of HMGCS1; 3) a relatively low expression level of HINT1
and non-expression of CGA; 4) relatively high expression
levels of RGS13 and ERH; 5) a relatively high expression

level of HTR3B; 6) relatively high expression levels of RPL9
and ACSL4; and 7) a relatively low expression level of
CTSV. HMGCS1 is an essential factor during oocyte matu-
ration and preimplantation embryo development [64]. ERH,
a kind of embryonic RNA helicase gene, influences embry-
onic development by regulating RNA helicases [65]. CTSV
gene is a predictor of human blastocyst hatching and is
related to the launch of one of the direct hatching mech-
anisms [66]. CGA has not been found in recent reports,
thereby suggesting that it is a negative factor for embryo
development.

The last rule in our prediction list involves gene CTSV.
As previously analyzed, a relatively lower expression level
of CTSV turns to be the 6-day and 7-day embryonic cells.
We analyzed embryonic mammalian cells at two different

levels. All the qualitatively analyzed genes have been con-
firmed to contribute to the distinction of embryonic cells.
Moreover, most learned expression rules are supported by
recent literature. Therefore, our newly presented computa-
tional approach identifies potential cell-signature genes and
cell-cluster rules for different stages of embryogenesis and is
significant for further research on the underlyingmechanisms
in early-stage embryonic cells.
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