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ABSTRACT The left ventricle segmentation (LVS) is of great important for the evaluation of cardiac
function. This study aimed to establish new segmentation algorithms that can enhance the accuracy and
robustness of automatic LVS on magnetic resonance images. The datasets involved 45 subjects, including
12 heart failure patients with ischemia, 12 heart failure patients without ischemia, 12 hypertrophy patients
and 9 normal individuals. The experiments consisted of three important steps. At first, deep learning was
employed for the coarse LVS on myocardial images. Next, a double snake model was applied to assess the
endo- and epi-cardial boundaries. Finally, the optimal epicardial boundary was obtained by adopting radial
region growing method. Additionally, the performance of the developed LVS method was evaluated by the
previously established software. Furthermore, the developed LVS method was validated by applying the
datasets of 45 subjects. The results showed that the good contours, overlapping dice metric and average
perpendicular distance of both epi- and endo-cardial contours were approximately 97%, 0.97 and 1.8 mm
respectively. The regression coefficient and coefficient of determination between the proposed method and
clinical experts were 0.96 and 1.039, respectively for ejection fraction, while 0.92 and 0.994 for left ventricle
mass. These findings reveal that the developed method can enhance the accuracy and robustness of LVS.
This novel LVS approach exhibits outstanding performance and possesses promising potential to increase
the reliability of computer-aided imaging detection system for cardiovascular disease.

INDEX TERMS Convolutional neural network, snake model, left ventricle segmentation, magnetic reso-
nance imaging, cardiac functional analysis.

I. INTRODUCTION
Cardiovascular disease is the number one cause of mor-
tality worldwide, which has emerged as the most serious
health problem [1], [2]. Assessment of the left ventri-
cle segmentation (LVS) has gained increasing attention,
as it allows the direct measurement of essential parame-
ters including myocardial mass, end-diastolic volume and
ejection fraction. Typically, LVS is carried out manually
by highly experienced clinicians. However, the process of
manual LVS is time-consuming and tedious, and its repro-
ducibility is relatively low, resulting in large intra- and inter-
observer variability [3]. Thus, it is necessary to establish
a novel automatic extraction method of the left ventricular
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from MRI segmentation. Although considerable efforts have
been devoted to the establishment of automatic LVS, this
remains a difficult clinical problem. There have been exten-
sive researches to overcome the potential shortcomings of
LVS, such as dynamic programming (DP) [4]–[6], snake
models [7]–[9], thresholding [10], region growing [11], pixel
classification [12]–[14]. A comprehensive review of LVS
techniques has been described previously [15]. Among the
above-mentioned approaches, the snakemodel has been com-
monly used to solve a wide range of segmentation issues,
including LVS. Indeed, the theoretical framework of this
model remains similar with that invented over the past three
decades [16], [17]. An energy minimizing is applied to
obtain an evolution equation (explicit or implicit) accord-
ing to the image contents. However, some difficulties may
be encountered for the current methods of LVS. First, the
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epi- and endo-cardial contours may have the same shapes,
thus resulting in greater complexity during the extraction
of myocardial boundaries. Second, considering the rela-
tively similar edges between epi- and endo-cardial contours,
the current methods can confuse the subsequent contour as
the initial boundary. Third, unforeseen failure for cardiac
image segmentation is inevitable, including the unexpected
changes in intensity distribution along the peripheral vessels
of myocardial infarction patients. Over the past decades,
deep learning methods (i.e. Convolutional Neural Networks
[CNNs]), are often adopted for medical image comput-
ing [18] with substantial success. CNNs have been success-
fully adopted in the areas of image processing and computer
vision [18]–[21]. A previous study has employed CNNs to
identify the left ventricle, and subsequently used a Stacked
AutoEncoder to infer the shape of the left ventricle [22].
To enhance the accuracy and reliability of LVS, they establish
a deformable model that consists of prior shape informa-
tion and energy terms. By comparing with the datasets of
MICCAI 2009 LVS challenge, an outstanding performance
was obtained for the endocardial contours [23]. In view of
this, we aimed to establish a hybrid approach based on deep
learning and double snake model for determining LVS in a
large-scale population assessment. Segmentation of the left
ventricle myocardial boundaries was performed via CNNs,
and the results were refined for both epi- and endo-cardial
contours. Such application is assisted by the CNNs data-
driven localization of the myocardial boundaries in order
to provide a robust and reliable measurement of epi- and
endo-cardial edges. By integrating CNNs and snake model,
more accurate localization and obvious morphological char-
acteristics LVS can be achieved. The present research is
structured as follows. In the Methodology section, the devel-
oped modelling-simulation-analysis workflow is described in
detail. Next, in the Results and Validation section, the per-
formance analysis and comparison showed that our proposed
method is superior to previously published methods. Finally,
a valid conclusion is drawn and future research directions are
provided.

II. MATERIALS AND METHODS
A. DATASET
The datasets employed here were short axis cardiac cine
MRI images published online 1 by MICCAI grand challenge.
A total of 45 subjects were enrolled in this study, including
heart failure patients with ischemia (HF-I; n= 12), heart fail-
ure patients without ischemia (HF-NI; n = 12), hypertrophy
patients (HYP; n = 12) and normal individuals (N; n = 9)
Their cardiac MRI images were acquired during breath-hold
sessions lasting for 10 to 15 s with a temporal resolution
of 20 cardiac phases per cardiac cycle. Six to twelve SAX
images were acquired from the atrioventricular ring to the
apex (FOV = 320 mm × 320 mm; thickness = 8∼10 mm;
matrix = 256× 256).

1 http://sourceforge.net/projects/cardiac-mr/files/

B. ANALYTICAL FRAMEWORK FOR
SEGMENTATION ALGORITHM
The present method employed the discriminative features of
CNNs for the purpose of automated heart localization in the
cardiacMRI image. The entire work-flow of the segmentation
algorithm consisted of three steps Fig.1. Firstly, the ground
truth and short axis images were used to construct and train
the CNN model. Next, short axis images were extracted for
each new case by using the CNN parameters derived from the
initial step in order to compute the coarse myocardial seg-
mentation. Lastly, a constrained region was built according
to the coarse contours of LV, in order to obtain an appropriate
epicardial contour for the final dynamic programming-based
segmentation method.
The overall procedure of LVS involving a collection of

image processing methods is shown in in Fig.1. The algo-
rithms began by identifying the ROI in the cardiacMRI slices.
Then, the improved snake model was applied to extract blood
pool activities. After that, topological stable-state threshold-
ing approachwas used to obtain refined endocardial contours.
For epicardial contour extraction, an edge map was deter-
mined from the gradient images, followed by analysis with
multi-constrained dynamic programming technique. The fol-
lowing sections describe the proposed LVSmethod in details.

1) STEP I: DEEP CNNs
In CNNs, the neuronal cells are weakly attached to the neigh-
boring cells through weights, thus stacking across the images.
This enables CNNs with invariant features and accelerates
training process in comparison with the fully connected neu-
ral network [24]. Another advanced feature of CNNs is rep-
resentation learning, in which the weights are associated with
the optimal and automatic feature learning detectors. Over the
past five years of applications, CNNs have been demonstrated
to exhibit unrivaled performance [25]. Due to their great
achievement, CNNs are commonly applied to medical image
processing [26].
Different types of CNN architectures are designed to ful-

fill specific aims. In this study, we employed SegNet, an
CNN-based encoder-decoder approach [27]. The parame-
ters of SegNet, with stacking of 17 convolutional layers,
are presented in Fig. 2. The first 4 convolution layers were
consisted of batch normalization (BN) and Rectified Linear
Unit (ReLU). The addition of 4 MaxPool layers allowed
higher-layer representations to be invariant to small trans-
lations of the input. The 4 upscale layers up-sampled their
input feature maps and integrated them with the correspond-
ing encoder feature map to generate the input to the next
decoder [28].
SegNet has been well-trained to segment the MRI images

in order to assess the blood pool and myocardial regions.
Given the spatial relationship among left ventricle slice
images, the left ventricle blood pool and myocardial regions
on the top and bottom of slice images are not far away from
those in the middle of slice images. Base on SegNet data,
the location of blood pool and myocardium can be detected
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FIGURE 1. Schematic diagram depicting the steps during LVS analysis.

FIGURE 2. Architectural design and construction of the CNNs. BN: batch normalization; ReLU(x) =

max (0, x).

from the slice images in both end-systole and end-diastole
phases.

The segmentation results obtained from SegNet were
refined for myocardial contours. Moreover, a centered, fixed

rectangular ROI is pointed out at the middle position of
the resulting endo-cardial contours (Fig. 3). Subsequently,
the ROI is converted into rectangle shape image through polar
transform, with center point as a pole (Fig. 4(A) and 4(B)).
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FIGURE 3. Original image and ROI. The right and left images represent original CMR depicting epi- and
endo-cardial contours generated by CNNs, respectively. Solid white curves highlight both epi- and
endo-cardial contours.

FIGURE 4. Structure of the left ventricle (I. blood pool of the right ventricle; II. blood pool of the left
ventricle; III endocardial contour; IV epicardial contour). (a) ROI; (b) transformed rectangular image via
polar transform.

2) STEP 2: SNAKE MODEL CONSTRUCTION
Given the ROI in polar coordinate system, a curve L that is
driven by edge force, balloon force and curvature force was
identified [29], [30]. The proposed snake model is as follows:

Lt+1 = Lt + γ (αE ∗ FE + αB ∗ FB − αC ∗ FC ) (1)

where FE is the edge force, FB denotes the balloon force,
FC represent curvature force. αE = 15, αB = 5 and αC =
0.1 are image modality dependent. γ constant is equal to
0.75 multiply by the smallest distance between two nodes and
then divided by the greatest force. It is further reduced to the
lowest value of 0.05 multiply by the normalization.

The proposed edge force FE was separated into 2 variants,
as shown in Fig. 5. The deformable model of concordant edge
force was engaged with only a black-white transition, while
that of discordant edge force was engagedwith different types

of transition (i.e. white-black or black-white). Input images
were generated by the edge detection, in accordance with
the polar radius direction. The edge force FE is calculated
as follows:

concordantedgeforce : FE = I ∗ f ∗ s

discordantedgeforce : FE = |I ∗ d ∗ s| ∗ d

f =

 1
−2
1

 ; s =

0.25
0.5
0.25

 ;
d =

−10
1

 (2)

where I represents the input image, ∗ delineates image con-
volution, and f , d and s denote small edge-detecting, derivate
and small directional smoothing filters, respectively.
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FIGURE 5. Representative images for concordant edge and discordant edge forces. (a) concordant edge
force; (b) discordant edge force.

The inflating balloon force used in this research is image
dependent, and is calculated as follows:

Endocardial FB = (I − 0.5 ∗ λ) (3)

Epicardial FB = (e−(I−λ)
2
− 0.5) (4)

where λ is an estimated image intensity of the input image I.
The internal force of the snake model is curvature force,
in order to ensure a smooth model surface (in the short axis
plane). It is derived from the calculation of the curvature on
the model surface.

FC = κ (5)

where κ is the curvature of the deformable model curve L.
The coarse endocardial contour of CNN segments is con-
sidered as the first contour for snake model, and thus the
endocardial contour can be derived iteratively according to
the Equation.1.

3) STEP 3: CALCULATION OF THE EPICARDIAL CONTOUR
The procedure of epicardial contour extraction is similar to
endocardial boundary extraction with regards to the polar
system used. However, only specific locations are avail-
able for identifying the edge points of epicardial. Therefore,
we employed region growing method to find the epicardial
contour. To locate the epicardial contour, the epicardial con-
tour of CNN segments was considered as the first contour for
snake model according to the 1 and a coarse epicardial edge
could be obtained Fig.6(A). The search for the edge points
of epicardial was initiated from the endocardial contour. The
endo- and epi-cardial contours extracted by snake model,
together with the epicardial contour regions obtained from

the preceding slice images, were used to construct a binary
mask, in order to define the search range for the edge points
of epicardial contour in the following region growing method
Fig.6(B).

In this study, radial region growing method was employed
to extract the epicardial contour of the left ventricle.
At present, the radial region growing has been recognized
as single direction region growing method, originating from
the endocardial contour. This approach utilizes a threshold
value in the detection of muscle activity, and it determines
both intensity value and binary mask to identify the stopping
criterion. To ensure a smooth contour that adapts the epicar-
dial surface, the first edge of epicardial was refined by 1D
FFT (fast Fourier transform). Subsequently, the edge point
was inversely transformed to determine both epi- and endo-
cardial contours. Furthermore, 1D FFT and Bezier curve
fittingmethods [31] were applied to smooth the contours. The
formula for 1D FFT approach is expressed as follows:{

x∗ = IFFT (H ∗ FFT (x))
y∗ = IFFT (H ∗ FFT (y))

(6)

where x, y represent the Cartesian coordinates of the edge
points; IFFT denotes the inverse FFT;H indicates a low pass
filter.

C. EVALUATION OF THE SEGMENTATION MODEL
In the present study, we tested 45 datasets reported by
the MICCAI Clinical Image Segmentation Grand Chal-
lenge Workshop. The same assessment software used in that
report [32] was adopted in this study. The data and assess-
ment software can be retrieved freely, which allow investi-
gators to develop and evaluate their algorithms efficiently
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FIGURE 6. Construction of a region constrained mask: (A) endo- and epi-cardial contour, (B) a binary region constrained mask.

TABLE 1. LVS outcomes of the 45 cases.

and impartially. Indeed, numerous parameters were used in
the model, including the good contours, overlapping dice
metric, average perpendicular distance, ejection fraction and
left ventricle mass.

The ground truth of the left ventricle was extracted from
the datasets by experienced clinicians. The contours were
considered good if their mean distance from the ground
truth was less than 5 mm. The calculation for the values of
good contours, overlapping dice metric and average perpen-
dicular distances are as follows. Good contours (%) = the
number of good contours / the total number of all tested
contours. Overlapping dice metric = the region overlapping
proportion between automatic delineation and ground truth.

Average perpendicular distance equals to the distance
between the automatically segmented contour and the corre-
sponded to manual segmented contour / total contour points.
Besides, different approaches have been developed to calcu-
late the volume of the left ventricle, in which both ejection
fraction and the left ventricle mass are essential parameters
for cardiac function evaluation [33]. Specifically, the left
ventricle mass and are delineated as follows:

LVM = (V ED
epi − V

ED
end ) ∗ 1.05 (7)

EF =
(V ED

end − V
ES
end )

V ED
end

∗ 100% (8)
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TABLE 2. Comparison of the segmentation performance between the proposed algorithm and other state-of-the-art methods.

where V ED
epi and V ED

end denote the epi- and endo-cardial
volumes, respectively, during end-diastole phase, while V ES

end
stands for the endocardial volume during end-systole phase.

III. RESULTS
A. LVS OUTCOMES OF THE 45 CASES
In the present study, a total of 45 cases were included and
analyzed in themodel. Table 1 shows the comparison between
automatic segmentation and ground truth. Our results demon-
strated that the overall good contours, overlapping dice
metric and average perpendicular distance of epi- and endo-
cardial contours were approximately 97%, 1.8 mm and 0.97,
respectively. In addition, the computation time of LVS was
analyzed by Matlab code (Mathworks) using pentium Ddual-
core 2.60 GHz hardware. Among the 45 cases, the average
computation time for reading DICOM slices and saving con-
tour files was 58.98±11.49 seconds for each case. Moreover,
the computation time was 3.26 seconds in average for assess-
ing each image among the 45 cases. As shown in Table 2,
our current approach exhibited a great advantage over the
other state-of-the-art methods by comparing good contours,
overlapping dice metric, average perpendicular distance and
conformity [34] using the same database.

B. REGRESSION AND BLAND-ALTMAN ANALYSES
Regression and Bland-Altman analyses were used to deter-
mine the accuracy of our LVS method. The regression and
Bland-Altman plots for the measurements of left ventricle
mass and ejection fraction are presented in Fig. 7a-d. It was
found that the regression coefficient for the measurement of
ejection fraction was 1.0392, and the bias was 3.07 accord-
ing to Bland-Altman plot Fig.(7(A) and 7(B)). Meanwhile,
the slope of the left ventricle mass was 0.994, and the bias
was 4.59 according to Bland-Altman plot. The coefficient
of determination for ejection fraction and left ventricle mass
were 0.96 and 0.92, respectively. Taken altogether, the pro-
posed LVS method is quite accurate for measuring left ven-
tricle mass and ejection fraction.

C. METHOD COMPARISON
Fig.8 shows the LVS outcomes of selected patients analyzed
by our method and clinical experts. Red circles denote the
contour drawn by clinical experts; while green circles repre-
sent the outputs from our method. Four groups of cases were
tested in our experiments as mentioned above, and the four
types of images were arranged in different rows (Fig.8). The
1st row is HF-I group, the 2nd row is HF-NI group, the third
row is HYP group, and the last row is normal subjects. Two
resultant images of end-systole phase (left) and end-diastole
phase (right) are demonstrated for each case. Ground truth of
the left ventricleąŕs epicardial contour was neglected during
end-systole phase, due to its unnecessity for measuring left
ventricle mass and ejection fraction.

Fig.9 demonstrates a heart failure patient without ischemia
(SC-HF- I-05). The outcomes of LVS were different between
our approach and clinical experts. Red circles delineate the
contours drawn by clinical experts, whereas green circles
stand for our outputs. The images with odd numbers are from
the end-systole phase, while those with even numbers belong
to the end-diastole phase. Ground truth of the left ventricleąŕ
epicardial contours during end-systole phase was excluded
by clinical experts, due to its unnecessity for measuring left
ventricle mass and ejection fraction.

D. DISCUSSION
In the present study, an automatic LVS method is established
for the evaluation of left ventricle volumes and functions
in multi-slice short-axis MRI images. The proposed method
incorporates a sequence of image segmentation techniques,
such as snake model, thresholding and radial region growing.
The findings demonstrate a highly promising performance of
our method compared to others.

During LVS process, Otsu thresholding and Gaussian-
mixture model have been commonly used to identify the
location of the left ventricle blood pool. The effectiveness
of Gaussian mixture model-based segmentation algorithms is
largely dependent on the histogram of images and accuracy
of the estimated model parameters [39]. For the Otsu
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FIGURE 7. Regression curve and Bland-Altman plots for measuring ejection fraction and left ventricle
mass. (A) Linear regression for the measurement of ejection fraction; (B) Bland-Altman plot for the
measurement of ejection fraction; (C) linear regression for the measurement of left ventricular mass;
and (D) Bland-Altman plot for the measurement of left ventricular mass.

FIGURE 8. LVS outcomes of selected patients (cropped for better viewing). First row: Heart failure
patients with ischemia (HF-I); second row: Heart failure patients without ischemia (HF-NI); third row:
Hypertrophy patients (HYP); and last row: Normal subjects.

method [40], several segmentation errors may be resulted
from the potential incorrect threshold, due to the larger vari-
ances of both object and background intensities compared to
the mean difference [41], [42]. This study solves the above
problem by deep learning and transforming the images into
polar coordinates. Such approach is effective for conducting

image segmentation in the polar coordinate system, and it has
been adopted by few other studies [6], [43]. After transfor-
mation, it is one-way direction for snake model and radius
region growing, which is easy to implement and time saving.
In addition, the parameters of good contours, overlapping
dice metric and average perpendicular distance were used
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FIGURE 9. LVS outcome of a representative case (SC-HF-I-05) analyzed using the proposed method
(cropped for better viewing).

to evaluated the performance of our LVS method. Moreover,
the cardiac function parameters (i.e. ejection fraction and left
ventricular volume) were assessedwith regression andBland-
Altman analyses. Taken altogether, the findings reveal that
the developed method exhibit higher accuracy and greater
robustness compared to other methods.

IV. CONCLUSION
In this study, an automatic method has been established to
segment the left ventricle on MRI. Experimental results on
45 cases demonstrate that our proposed LVS method gen-
erates more reliable findings compared to other methods.
This novel LVS approach can be valuable for enhancing the
reliability of computer-aided imaging detection system for
cardiovascular disease. Despite that this method tend to be
more reliable than previous methods, substantial challenges
remained at few extreme cases, with regards to the overlap-
ping of intensity distribution throughout the cardiac regions.
Therefore, it is necessary to enhance the accuracy of LVS
method and conduct addition researches on the right ventricle
extraction in the near future.
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