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ABSTRACT The usage and adoption of electric vehicles (EVs) have increased rapidly in the 21st century due
to the shifting of the global energy demand away from fossil fuels. The market penetration of EVs brings
new challenges to the usual operations of the power system. Uncontrolled EV charging impacts the local
distribution grid in terms of its voltage profile, power loss, grid unbalance, and reduction of transformer life,
as well as harmonic distortion.Multiple research studies have addressed these problems by proposing various
EV charging control methods. This manuscript comprehensively reviews EV control charging strategies
using real-world data. This review classifies the EV control charging strategies into scheduling, clustering,
and forecasting strategies. The models of EV control charging strategies are highlighted to compare and
evaluate the techniques used in EV charging, enabling the identification of the advantages and disadvantages
of the different methods applied. A summary of the methods and techniques for these EV charging strategies
is presented based on machine learning and probabilities approaches. This research paper indicates many
factors and challenges in the development of EV charging control in next-generation smart grid applications
and provides potential recommendations. A report on the guidelines for future studies on this research topic
is provided to enhance the comparability of the various results and findings. Accordingly, all the highlighted
insights of this paper serve to further the increasing effort towards the development of advanced EV charging
methods and demand-side management (DSM) for future smart grid applications.

INDEX TERMS Electric vehicle charging, scheduling, clustering, forecasting, probabilities, machine
learning.

I. INTRODUCTION
Shifting the global energy demand away from fossil fuels
requires fuel-based automobiles to be replaced by EVs. Since
the number of electric vehicles is expected to rise, given the
potentially massive number of vehicles involved, a reliable
control of EV charging will be essential for its successful pen-
etration into the power system [1]. To comprehend the impact
of EV penetration in the electrical grid, Rezaei et al. [2]
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investigated the effect of EV charging in terms of the stability
and reliability of the power system. Andrew and Qiu [3],
Schuller et al. [4] analyzed the economic and environmen-
tal issues brought about by the integration of renewable
energy sources (RES), specifically the incorporation of EVs.
Uncontrolled electric vehicle charging leads to large load
variations in the electrical grid and impacts the power quality
of the distribution grid [5]–[9]. This, in turn, leads to signif-
icant adverse effects on the existing power systems, which
include high load peaks, increased energy consumption, and
power quality degradation. Godina et al. [10] investigated
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FIGURE 1. The core structure of this review.

the impacts of uncontrolled EV charging on the distribution
network, which may lead to the power demand and line
current exceeding the distribution transformer ratings, as well
as the distributed voltage dropping outside the required levels.

Scheduling, clustering, and forecasting are widely used
strategies to control the penetration of high EV charging. The
main objectives of these strategies are to minimize the impact
of charging on the electricity distribution. In particular for
scheduling strategies, Harris and Webbe [11] investigated the
effects of EV charging at the consumer level. Electric vehicle
charging coordination is intended to maintain the stability
of the electricity network by ensuring the balance between
the power supply and energy demand of electricity [12].
Moreover, scheduling EVs is a valuable technique to shift
the grid demand and mitigate over generation and night peak
problems [13].

Clustering strategies have been applied on EVs charging
to find the most common and recurrent load profiles. The
EV charging clustering strategy is used to identify groups
of similar charging objects in a multivariate dataset collected
from the field. By clustering these datasets across the year,
month, or week, important patterns associated with differ-
ent types of consumption during the year, month, or week
can be distinguished. The work in [14] discussed the issues
of EV charging patterns and classified them into the fol-
lowing three categories: home, work, and other. Typically,
each category contains a distinct load profile. For example,
the work category exhibits an early morning peak, which
includes EV charging at schools, colleges, or workplaces.
The home category covers an afternoon time, indicating EV
charging in residential locations. The last category of other
comprises EV charging at leisure locations and shopping
malls.

In the case of forecasting strategies, fault prevention and
network stability are critically dependent on the forecasting of
the daily demand [15]. The accuracy of the EV charging fore-
cast is essential to utility development and decision-making.
The enactment of a highly accurate forecastingmodel will not
only advance the prediction precision for optimal dispatching
but will also support the development of EV charging and

encourage manufactures to promote the use of EVs. Conse-
quently, further research devoted to forecasting strategies is
greatly needed [16], [17].

Previous studies have revealed some particular approaches
to control EV charging; however, each approach has short-
comings in terms of performance efficiency and a lack
of functioning capability in real applications. Additionally,
a lack of flexibility to operate in different operating envi-
ronments and high computation costs are the other concerns
that make implementing a controlling process very difficult.
Scholars and researchers have conducted extensive research
to develop precise EV control charging strategies. However,
the issues in modeling an efficient approach are not resolved
yet. Further, the potential risks in EV control charging strate-
gies have not been identified. Thus, this review fills this
research gap by exploring different existing approaches and
addressing the key issues and challenges of EV control charg-
ing strategies

This review paper includes information on energy sys-
tems from research reports, published legislation, and crit-
ical databases from academic sources. This paper encap-
sulates practical categories, such as EV charging strategies
and observations relating to modeling techniques. It includes
a review of strategies, in particular the methodologies and
techniques associated with controlling EV charging within
electricity distribution networks, as shown in Fig. 1. The
classification of these methods is divided into probability and
artificial intelligence methods. The main contributions of this
paper include the following:

1) This research paper addresses the key issues and chal-
lenges of EV charging by investigating different exist-
ing methodologies of scheduling, clustering, and fore-
casting strategies.

2) The highlights of this paper will help power system
operators to decide on an appropriate method and iden-
tify challenges.

3) The review identifies many issues and challenges
involved in controlling EV charging, which could
encourage further research on how to overcome these
challenges.
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FIGURE 2. The core structure of this review.

4) Last, this paper proposes a new framework of guide-
lines for EV charging control to be applied in smart grid
applications.

The paper is organized as follows: A summary of generic
framework-based real-world data for the most recent EV
charging strategies is presented in Section 2. Section 3 intro-
duces a generic framework for controlling electric vehi-
cle (EV) charging, while Section 4 describes the methods
and techniques of EV charging strategies. Section 5 presents
the challenges and recommendations and, finally, concluding
remarks are made in Section 6.

II. GENERIC FRAMEWORK OF EV CHARGING STRATEGIES
This section describes the generic framework of EV charg-
ing strategies. Fig. 2 illustrates the control processes of EV
charging, which include the following three main phases:
the information collecting phase, the system operator phase,
and execution. During the first phase, the system operator
predicts the conventional DSM and receives the charging
request signal via the communication system implemented
at the charging spots. Then, in the system operator phase,
the charging patterns are generated according to the charging
plan equipped at the last spatial-temporal slot. In the execu-
tion phase, the charging decision is sent to the charging posts
by a communication system. After that, the charging posts
execute the charging strategy instructions.

FIGURE 3. Data sources of EV charging strategies.

A. INFORMATION COLLECTING PHASE OF EV CHARGING
STRATEGIES
This phase describes the sources, methods, and ways of col-
lecting the data for the threemainmethodologies (scheduling,
clustering and forecasting). A summary of real-world data for
the most recent EV charging strategies is presented in Fig. 3.
The EV charging strategies data are divided into the following
three groups: scheduling data, clustering data, and forecasting
data.

The grid to vehicle (G2V) data are used as the input to
the scheduling strategy. Furthermore, the scheduling data
are implemented according to two categories: demand-side
and charging profile information. For example, in [18],
the researchers presented baseline load profiles data of charg-
ing EVs for regular household usage to obtain the optimal
charging schedule. In [19], a 24-hour load demand profile of
a residential network and the low-voltage network topology
were used as the input data for a smart charging schedule
for EVs. In [20], Han et al. proposed a model that can deal
with different charging profiles data to control the charging
schedules of all EVs subscribing to predetermined payment
schemes.

The clustering data that is used as the input to the clus-
tering strategies consists of data mining and a preprocess.
The preprocessing model consists of the modules of select,
merge, clean, and formation, while the data mining model
comprises the modules of clustering, correlation, and regres-
sion [21], [22]. A data mining model was developed to
investigate the characteristics of the electric vehicle charging
demand in a geographical area [97].

In the forecasting that is used as the input to forecast-
ing strategies, the data are survey data and smart meter-
ing data. For example, a probabilistic method is presented
in [23], which proposed two different datasets illustrated in
the National Travel Survey (NTS), i.e., the mileage data of
EV charging profiles and residential smart meters.
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FIGURE 4. Generic framework of the system operator phase of EV
charging strategies.

B. SYSTEM OPERATOR PHASE OF EV CHARGING
STRATEGIES
To simplify the operator phase of EV charging strategies
and manage the optimum load profiles with respect to the
formulated EV charging problem, the following three generic
modeling approaches are used in the literature:

i. Mathematical optimization: linear programming,
quadratic programming, dynamic programming, and
mixed integer linear programming.

Meta-heuristic
ii. optimization: genetic algorithm, particle swarm opti-

mization, and evolutionary algorithms.
iii. Heuristic optimization: ANN, Markov process, and the

technique for the order of preference by similarity to
the ideal solution.

The framework for controlling EV charging is depicted
in Fig. 4. Based on the figure, the framework shows that
the energy management system plays an important role in
controlling the energy flow between EV charging and the
accumulated power captured from various sources, such as
photovoltaic (PV), wind, hydro, thermal, and biomass energy
sources.

The conventional techniques to charge electric vehicles can
be either fast or slow battery charging types [24]. The charg-
ing power rating is inversely proportionate to their charging
time, with a higher charging power rating being analogous
to a shorter charging time for the same charge capacity bat-
tery. EV chargers can be grouped into level 1, level 2 and
level 3, referring to the power rating. Level 1 and level 2 are
implemented with onboard chargers, while level 3 is used for
an off-board charger. In Level 1, the typical EV battery for
a plug-in hybrid vehicle (PHEV) is 16 kWh. In level 2, the
typical capacity for the battery electric vehicle (BEV) of a
sedan is 24 kWh. In level 3, the typical capacity for the battery
electric bus (BEB) is 250 kWh. Usable data was obtained
from 115 charges and themean charging efficiencywas found
to be 85.7%.With slow charging at a charging power of 3 kW,
it takes approximately 6 to 8 hours for a typical EV battery
to reach full capacity. Overnight charging typically uses slow
charging. Fast charging is typically defined as any charging

FIGURE 5. The control strategies for EV charging.

scheme that works faster than slow charging. The utility
must accommodate both slow and fast charging requirements
as the market penetration of EVs increases. The increasing
penetration of EVs may affect the power system stability and
security [25].

Therefore, scheduling, clustering, and forecasting strate-
gies of EV charging offer solutions for the issues that arise
from EV charging. These control strategies consider both the
real-time status of the power grid and the demand of EV
charging, thus improving the power grid stability and effi-
ciency, reducing the grid operating cost, and avoiding peak
loading [26]–[28]. EV batteries are potential storage options
for intermittent supply and can be featured in scheduling,
clustering, and forecasting schemes as a factor to seamlessly
match the load consumption [16], [29]. The key to effectively
control charging requires communication between the elec-
tric vehicles, the electric vehicle supply equipment (EVSE),
the regional power grid, and the control center. EV control
charging requires a communication system that has the ability
to send and receive information with a bidirectional flow.

C. EXECUTION PHASE OF EV CHARGING STRATEGIES
The charging strategies will be executed in this phase accord-
ing to their charging plan. A charging model produces the
optimal charging profile of each EV with the optimal per-
formance, which is then executed by the power grid at the
appropriate spatial-temporal slot.

III. CONTROL STRATEGIES OF EV CHARGING
This section presents the core work of this paper, as shown in
Fig. 5. It illustrates the scheduling, clustering and forecasting
control methods. Furthermore, this manuscript discusses the
process variables, data transformation strategies, and model-
ing methods of the EV charging strategies.

A. SCHEDULING STRATEGIES OF EV CHARGING
Proper scheduling of EV charging can maintain the stability
of the power grid and ensure the equilibrium between the
electricity supply and demand. It also enables grid-to-vehicle
and vehicle-to-grid services through coordinated schedul-
ing [30]. Shojaabadi et al. [31] comprehensively exhibited
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FIGURE 6. Diagram of centralized scheduling for EV charging.

the merits of an appropriate EV charging or discharging
schedule. The coordination between the electric vehicle’s
owner and system operators increases the EV penetration
levels to enable effective vehicle-to-grid (V2G) services and
EV charging scheduling [32]. There are two main types of
EV charging scheduling strategies, as follows: (1) centralized
scheduling and (2) decentralized scheduling.

1) CENTRALIZED AND DECENTRALIZED SCHEDULING OF EV
CHARGING
A central strategy is responsible for managing and controlling
the EV charging demand by controlling the charging process
of each EV directly. In the central approach, communication
with EV users is established by the EV aggregator in a way
that minimizes the energy charging cost. The EV aggregator
collects charging data from the EVs and the electrical grid
to solve optimization problems and to arrange the charging
pattern for each EV directly. A centralized scheduling strat-
egy utilizes historical and statistical data to study the charging
time, the capacity of the grid, and the charging rate. The
literature asserts that centralized charging requires a universal
plan set by the central controller. Quan-Do et al. [33] pro-
posed serving EV parking lot users by utilizing a centralized
charging controller that considered the size of the battery
pack, the state of the charge (SOC), and the power system
conditions. The main goal of the abovementioned study was
to minimize the peak loads on the grid and satisfy driver
expectations. In a decentralized case, EV users behave strate-
gically and seek tominimize their charging costs individually.
Each EV user will then decide when to charge individually.
Furthermore, the charging power and time are chosen accord-
ing to the parameters and the associated optimization criteria
of the EV users.

In this decentralized approach, each EV formulates its own
bids, and the aggregator simply has the role of aggregating
these bids. In [34], as an example, Wu and Sioshansi pre-
sented a two-stage stochastic optimization model with bal-
ance constraints to provide the optimal profit of an aggregator.
A Monte Carlo-based sample-average approximation tech-
nique is applied to solve the resulting optimization problem
efficiently. The work in [35] presented the concept of a price-
based decentralized control scheme, wherein electric vehicles
communicate their load demands iteratively, depending on a
pricing pattern. In [36], Wu et al. proposed a decentralized
structure that applied a price pattern to inspire electric vehicle
users to manage their EV charging.

2) CENTRALIZED SCHEDULING METHODS AND
TECHNIQUES
Each electric vehicle owner should communicate with the
electric system operator using a centralized approach to
arrange the charging scheme for each electric vehicle directly.
Several examples of control strategies for the charging
demand and charging processes can be found in [37]–[43]. On
the other hand, two-stage stochastic programming is another
method that has been applied for centralized approaches
to electric vehicle charging demand. The stochastic pro-
gramming approach establishes an appropriate tool to make
decisions under uncertainty [44]. A scenario tree is another
technique used to visualize the probability of uncertain data,
which consists of decision point nodes and branches. The
nodes represent possible solutions to the problem, while
a branch represents a transition between scenarios [45].
An example of a two-stage stochastic method is a centrally
administered control model for a high-voltage and quick
charging station [34], [46]. The study presented in [47]
implemented a scenario-based stochastic model for a renew-
able energy microgrid in the presence of electric vehicles to
solve the optimal scheduling problem over one day. More-
over, if an electric vehicle is added to the V2G process or
an electric vehicle is unpredictably cut off from the grid,
the mathematical model will be transformed according to
these updated inputs. Subsequently, the rescheduling will
be directed in the coordinated operation center [48]. Fig. 6
represents a typical model of centralized scheduling for EV
charging.

Two-stage stochastic programming is one of the best
approaches for modeling problems that involve uncertainty
in decision-making. The model presented in [49] assigns
Boolean variables to the first stage to denote the availability
of charging points at parking lot spaces. The second stage
makes a recourse judgment to designate EV drivers to their
favored parking lot spaces based on their walking propen-
sity, thereby maximizing access to the conventional charging
network. In [50], the first stage is presented to formulate
the number of charging stations in the chosen parking lots.
A recourse decision is made in the second stage to assign
the electric vehicle owners to one of their selected parking
lots depending on their willingness to walk. In this context,
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the predicted admission of electric vehicle owners to the
public charging grid is maximized. A two-stage stochastic
programming model has also been developed to find the
optimal locations to exchange EV battery packs in battery
exchange stations [51]. Hosseini and MirHassani [52] pro-
posed a two-stage stochastic program to trace permanent
and movable charging stations to increase the served traf-
fic flows. The station-control approach is expressed as a
stochastic two-stage optimization problem, which reduces
the anticipated charge station-operation costs over a fixed
period. The first stage describes the present time interval
(the next minute) for (here/now) electric vehicle charging.
The second stage describes the balance of the model horizon.
The model assumes that the electric vehicle charging demand
and the energy prices are known for stage 1, but that these are
undefined for stage 2 [34], [46], [53]. In [54], Graber et al.
proposed a framework based on a centralized double-layer
smart chargingmanagement strategy to optimize the charging
energy of electric vehicles and to direct the electric vehicles
to the proper charging stations.

The most important advantage of the centralized strategy
is the reduction of power fluctuations. For example, in [55],
Zheng et al. proposed a schedule for electric vehicle charging
demand based on a centralized charging approach to achieve
a reduction in power fluctuations. A genetic algorithm (GA)
was employed to obtain the stochastic feature parameters
of the aggregation model. In [56], the scholars proposed
a model of V2G technology as a strategy for peak load
shaving and valley filling. Moreover, a centralized approach
can be applied to optimize the swapping of electric vehicle
batteries [57]. Nguyen et al. [58] presented an optimization
method to regulate the V2G power to deal with the intermit-
tency in RES. In [59], the researchers proposed a scheduling
strategy for electric vehicles integrated with wind generation
utilities to achieve balance in the power system. The most
classic algorithm employed to choose areas where EVs will
be guided for charging is the Floyd algorithm (shortest way
algorithm), shown in Equation (1) [60]. The shortest way
from point v to point v

′

including the vertex N is considered,
which includes a subway from V to N and a subway from
N to v

′

. Each subway can only contain intermediate vertices
in {1,. . . , N − 1} and must be as short as possible. Namely,
they have the lengths of dN−1vN and dN−1

Nv
′ . Thus, the route

has a length of dN−1vN + dN−1
Nv
′ . Combining the two cases,

the following equation is obtained from [40], [61]:

dN
vv′
= mim

{
dN−1
vv′

, dN−1vN + dN−1
Nv
′

}
(1)

The optimal solution of the centralized charging strategy
based on real optimal charging is proposed in [30] by apply-
ing four steps, as illustrated in Fig. 7. In the first step, the total
loads with EV penetration is calculated by employing unco-
ordinated charging with a reasonable searching interval of the
supplying power (Pc), which should be optimized.

PU (EVk) = PmaxT−uc (EVk) (2)

PL (EVk) = PmaxCon (3)

where PU (EVk) is the power of the upper boundary,
PmaxT−uc (EVk) is the total value of the maximum power with
uncontrolled charging, PL (EVk) is the power of the lower
boundary, and PmaxCon is the maximum power of the conven-
tional load profile.

In the second step, an initial value of Pc is chosen by using
the dichotomy method, namely, as follows:

Pc =
PU (EVk)+PL (EVk)

2
(4)

In the third step, the EV charging loads are scheduled with the
given Pc. In the fourth step, the search interval is successively
halved until its length is short enough.

However, for a large number of electric vehicles, opti-
mizing and controlling the electric vehicle charging demand
by using centralized approaches is computationally expen-
sive [62]. In addition, the scalability issue is the main draw-
back of centralized control—the high computational com-
plexity of the centralized control algorithms become a burden
inhibiting the efficient and prompt operations of the system
as the number of EVs increases. Although the centralized
scheduling approach delivers a straightforward manner to
regulate electric vehicle charging demands, it is not applica-
ble for large-scale numbers of electric vehicles, as it requires
massive computational energy and an advanced communica-
tion system. Shortcomings have also been stated concerning
the information confidentiality of electric vehicle owners,
as their charging behavior and data would be composed in
one location, increasing the threat of exposure to malicious
cyber-attacks.

3) DECENTRALIZED SCHEDULING METHODS AND
TECHNIQUES
In the decentralized control architecture, each individual EV
creates its own charging schedule based on the local load.
Unlike the centralized control architecture, an operator is not
needed, and this allows each individual vehicle to minimize
its charging cost [63]. In this case, the decentralized charging
can be improved by carrying out a number of algorithms,
such as the genetic algorithm (GA) [64], the neural network
(NN) [65], [66], the Markov decision process (MDP) [67],
and a multiagent system [68].

The case study outlined in [69] examined a prototype
implementation of a decentralized system for scheduling the
charging of electric vehicles by using the GA. The model
reported in [70] is decentralized based on the artificial bee
colony algorithm and is chosen for operation in a small-scale
power network, as shown in Fig. 8. The authors presented an
aggregated charging technique based on multiagent Markov
decision processes, which accounts for the uncertainty in
the renewable energy supply and coordinates the charging
processes of several EVs.

The study conducted in [63] proposed a decentralized
electric vehicle charging schedule, using broadcast con-
trol signals and asynchronous computation to converge on
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FIGURE 7. Calculation process to search for the optimal solutions by Model (k) [30].
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FIGURE 8. Flow chart of the genetic algorithm (rx=receive,
tx=transmit) [69].

an optimal valley-filling charging demand. A decentralized
strategy was presented in [35], [71] to create a timetable
of electric vehicle charging loads by using game theory.
In [72], [73], and [74], the authors proposed a decentralized
EV charging method to optimize load demand based on the
energy price, which required iterative interactions between
the EVs and the market. The Stochastic Dual Dynamic Pro-
gramming (SDDP) algorithm is used to define the optimal
charging profile forminimizing the household daily operation
costs with respect to EV charge scheduling [72]. A pricing
pattern is formulated as two-stage stochastic programs that
convey the price and quantity information to the load aggre-
gator and compare it to a simpler price only scheme [74].
In [75], a decentralized control strategy was developed based
on a multiagent system algorithm that involves data interac-
tions between neighboring agents. Fig. 9 presents a typical
model of decentralized scheduling for EV charging.

The main advantage of decentralized charging is the pos-
sibility to minimize the communications infrastructure cost.
Although the decentralized strategies for scheduling EV
charging require minimal computational resources, some of
the strategies require higher communication burdens and, due
to a lack of worldwide information, it is difficult for dis-
tributed control strategies to reach global optimal solutions.

To some extent, the decentralized strategy can obtain the
optimization targets asymptotically with reduced data com-
putations. For example, in [76], the Frank–Wolfe algorithm
was applied to solve a general convex quadratic optimization
problem.

A summary of the outcomes obtained by different cen-
tralized and decentralized studies is presented for the

FIGURE 9. Diagram of decentralized scheduling for EV charging.

convenience of the reader in Tables 1 and 2. It can be seen that
there is remarkable inconsistency between the probabilities
methods in Table 1 and the artificial intelligence methods
in Table 2 in terms of their optimization abilities, which are
also reported in the tables.

4) POTENTIAL BENEFITS AND RISKS OF SCHEDULING EVs
A summary of the potential benefits and risks of scheduling
EV charging is given as follows:
A. Potential Benefits
i. Better utilization of network capacity;
ii. Economic saving;
iii. Reduction of peak and overall demand;
iv. Market participation.
B. Potential Risks
i. Needs a primary communications infrastructure across

the grid;
ii. Requires a third party to manage the EV charging rates;
iii. Security issues; Exploitation of private information for

public commercial purposes.

B. CLUSTERING STRATEGIES OF EV CHARGING
The load profile curves can be analyzed based on EV charging
data to gain an enhanced observation of the EV charging
performance and energy demand patterns as well as to clarify
the potential energy efficiency, which can help grid oper-
ators to manage the consumption demand. The strategy of
clustering is used to analyze the curves of the EV charging
load. Clustering can be defined as an unsupervised method
of data mining, which can be used to group the related daily
load profiles into similar clusters. Furthermore, clustering
algorithms can be used to create load profiles that cluster
consumer behaviors based on their similarities.

1) DATA FOR CLUSTERING OF EV CHARGING
The clustering method discovers unknown dataset patterns
by separating the dataset into subgroups [77]. The analysis
of the daily EV charging demand involves applying cluster-
ing strategies to group related profiles into the same sub-
groups, thus revealing the most typical load profiles [78].
The required EV cluster for dataset collection is usually
operated with temporal, spatial, or spatial-temporal datasets.
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TABLE 1. Probabilistic methods of scheduling strategies.

The temporal resolution of the data points directly affects
the resolution of the resulting typical load profile. Typi-
cally, 48 data points, one taken every half hour, or 96 data
points, one taken every 15 minutes, are common resolutions.
For example, in [79], the EV dataset was organized using
MATLAB software into three time series, as follows: an
hourly energy time series, a daily peak energy time series,
and a monthly energy time series. The resulting data were
formatted to the correlation module. The data preprocess-
ing procedure is presented in Fig. 10. In [80], Shepero and
Munkhammar presented datamapping to cluster the buildings
into the following three groups: residential, workplace, and
other. Recently, a number of studies have used clustering
approaches for EV charging demand to determine load pro-
files with mutual characteristics. Several case studies have
been presented to cover the following two types of geo-
graphical scale: small-scale grids, such as islands, residential
buildings, shopping malls, and universities, and large-scale
grids, such as cities, states, and entire nations. Regarding
spatial EV models, Fraile-Ardanuy et al. [81] used global
positioning system (GPS) data from a taxi fleet to develop
a spatial EV charging model. The authors of [82] employed
a Markov chain traffic model to develop a spatial-temporal
model for EV charging in urban areas.

2) CLUSTERING METHODS AND TECHNIQUES
Several methods have been applied for clustering the
EV charging demand, such as Markov-inspired stochastic,
k-means, self-organizing maps (SOM), and Markov chain

FIGURE 10. Data preprocessing of a temporal model [79].

methods. In [83], a statistical analysis of the data was used
to feed into a Markov-inspired stochastic model used in the
simulation, as shown in Fig. 11, where the three-state model
was based on the state probabilities, and Pt(S) denotes the
probability that a transition to state S will occur at time t. The
authors proposed theMarkov chain to be used alongwith RES
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TABLE 2. Artificial intelligence (AI) methods of scheduling strategies.

FIGURE 11. Illustration of the stochastic model for a vehicle based on
state likelihood [83].

models to estimate the spatial-temporal synergy potentials
between the two technologies.

The study presented in [84] employed k-means program-
ming on over 1000 customers to ascertain usage patterns, and

those datasets were sampled within a 48-hour window. How-
ever, that analysis was significantly skewed by differences
between weekend and weekday charging patterns. Since
the initial assignment of the predefined cluster affects the
final clustering outcome when utilizing a k-means clustering
approach, the application of the k-means clustering algorithm
categorizes the EV user behavior, and may apply supervised
learning and unsupervised learning approaches to provide
additional classifications [85]. Themain objective of k-means
models is to decrease the variation inside the cluster. How-
ever, finding the optimal number of clusters is recognized as
the main challenge that might require inspection and inter-
vention. In [86], the k value with the largest validity index
was chosen after determining the optimum cluster amount,
performing k-means clustering with the training dataset for a
k range from approximately 10% to 100% of the number of
unique occurrences in the training dataset. Various studies in
the literature applied the SOM algorithm, which can provide
automatic clustering; meanwhile, [87], [88] used the SOM
algorithm to cluster different load profiles.

A number of models can be used for clustering strate-
gies, such as decision tree and support vector machines
(SVM) [89]–[92]. Xydas et al. [15] presented a model
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TABLE 3. Probabilistic methods of clustering strategies.

framework containing two parts of a dataset, i.e., training and
testing. The support vector machine’s objective is to provide
a model that expects the target values of the test data. Various
traffic situation modes resulted from the analysis of historical
traffic and meteorological data. In this context, the charging
behavior of electric vehicles was classified by applying the
decision tree algorithm. To establish the relationship between
the formed clusters of traffic patterns and influential factors,
Arias and Bae [93] used a decision tree as a classification
method to predict the responses to the data.

Although the SVM algorithm can efficiently handle high-
dimensional data and has great flexibility in modeling dif-
ferent sources of data, it requires complex computations for
large-scale EV charging data. Decision tree methods take
advantage of the flexibility, extensibility, and resilience of
distributed control systems. Moreover, decision tree methods
have been considered to be the most suitable tool for the dis-
patch problem. Among the major disadvantages of decision
tree analysis is its inherent limitations [94]. A number of
algorithms have been proposed to obtain the optimal number
of clusters. For example, in [79], the algorithm of the Davies–
Bouldin criterion was applied to obtain the optimal number
of clusters. A summary of different methods is presented for
the convenience of the reader in Tables 3 and 4. It can be seen

that there is a significant difference between the probabilities
methods in Table 3 and the artificial intelligence methods
in Table 4 in terms of the clustering ability of the models with
diverse datasets, which are reported in Table 4.

3) POTENTIAL BENEFITS AND RISKS OF CLUSTERING EVs
A summary of the potential benefits and risks for clustering
EV charging is given as follows:
A. Potential Benefits
i. The clustering strategy research aims to explain the

effects of EV penetration on the quality of the power
system;

ii. These strategies provide a quick and efficient way to
solve the location problem of charging stations;

iii. They also minimize the total operating costs by assign-
ing the charging station to the selected charging
demand cluster.

B. Potential Risks
i. A threat for clustering security and reliability;
ii. The clustering research has shown that different clus-

ters may reveal considerably different load profiles;
hence, using the same clustering model over these
different clusters may not be the most appropriate
approach.
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TABLE 4. Artificial intelligence (AI) methods of clustering strategies.

C. FORECASTING STRATEGIES OF EV CHARGING
Most of the research works in the literature aim towards the
association of usage patterns and predictions of EV charging
demand. In this context, the forecasting strategies in the EV
charging pattern can be grouped into the following types:
(1) charging load prediction and (2) charging pattern identi-
fication. From the data mining perspective, such categories
can be referred to as predictive and descriptive analytics,
respectively [16].

According to the time horizon, the EV charging forecasting
load is grouped into the following three main categories:
short-term load forecasting (STLF), medium-term load fore-
casting (MTLF), and long-term load forecasting (LTLF).
STLF is required to predict the load demand from a few hours
to one week. STLF plays an important role in power system
optimization and next-day operation commitment. Further-
more, STLF is used to maintain the stability of the power
system and to minimize the energy cost for EV charging.
MTLF is applied to forecast the load of EV charging from
one week to one year in advance.MTLF is essential for power
system planning, where an accurate MTLF is crucial to plan
maintenance operations and EV charge switching. LTLF is
required to predict the load demand of EVs from one year
to many years in advance. LTLF has an important impact on
the decisions regarding investments in infrastructure and new
generation units [15], [95].

1) DATA FOR FORECASTING EV CHARGING
Most of the studies that applied EV charging demand fore-
casting strategies acquired datasets by using a transporta-
tion survey on the EV user’s behavior based on annual

averages [96]. However, the collection of such survey data
may be difficult and impractical. Therefore, smart meter
installations at building or stations can provide an extensive
amount of data, which is collected from termination points,
e.g., every 15 minutes, which could be applied for EV charg-
ing forecasting strategies. Recent studies have examined dif-
ferent ways to use calendar information from smart meters,
such as holiday, weekday, weekend, and daily data [97], [98].

Moreover, a load consumption graph has also been used
for EV charging demand forecasting strategies, where the
load consumption graph can be applied to enhance the energy
management system and strengthen the resourcefulness of the
proposed approach. This will help to overcome energy supply
shortages on the vendor side and avoid inconveniences for the
user as well. The load consumption graph includes arbitrary
load forecasting samples from charging stations in different
regions directed to the user. These samples help to predict
the peak hour demand as well as the number of customers
expected during a specific time of the day [99], [100].

2) FORECASTING METHODS AND TECHNIQUES
EV load forecasting is influenced by fluctuating factors, such
as the driving and travel patterns of each EV owner. These
patterns must be considered to approximate the charging
demand. The stochastic nature of the EV charging demand
factors forces the use of advanced forecasting techniques that
are able to decipher all the patterns [101].

AMarkov chain is a sequentially formed stochastic method
that satisfies the Markov attribute [102]. The Markov algo-
rithm can be applied to model electric vehicle travels and the
electric vehicle charging demand by following the events in a
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TABLE 5. Probabilistic methods of forecasting strategies.

stochastic process [103]. The Markov chain has been demon-
strated to be a useful instrument to optimize the states and
phases during charging events at each time step [104], [105].

Markov analysis has the advantage of being an analytical
method, which means that the reliability parameters for the
system are calculated in effect by a formula. This has the
considerable advantages of speed and accuracy when applied
in forecasting strategies for EV charging. Iversen et al. [67]
used a hidden Markov model that allowed the forecasting of
additional states not directly observed in the data. In fact,
a hidden Markov model can estimate these states so that the
waiting time in each state matches what is actually observed
in the data.

Recently, various studies have considered artificial net-
work algorithms as the forecasting method for EV charging
demand applications [106]. For example, in [107], the electric
bus (EB) power consumption forecast design picks similar
days using a wavelet neural network (WNN), which can
improve the prediction accuracy and provide a reference
for EB operation optimization. The electric bus (EB) power
consumption forecast guarantees an optimal EB dispatch,
which dramatically affects the reductions in EB charging
station operating costs. The artificial neural network (ANN)

algorithm used charging data to forecast the energy demand
of EV charging and load management [65], as shown
in Fig. 12.

In [108], the proposed method is mainly used for short-
term load forecasting for large-scale EV charging demand to
present the impacts on the power system network, discharging
and charging control approaches, and charging infrastructure
development. In this case, machine learning (ML) models
are mostly preferred over probabilistic models, because of
their adept functionality and superiority in representing com-
plex nonlinear problems, such as individual forecasting for
the demand load of EV charging. Furthermore, in a typical
ML structure, the models are tested on the existing dataset
before being used in real forecasting applications. Several
traditional optimization algorithms have been used to select
the parameters for EV charge forecasting, such as genetic
algorithms, particle swarm optimizations, and ant colony
algorithms [109]. Although the above algorithms have their
own advantages, they also have corresponding shortcom-
ings. For example, a genetic algorithm cannot guarantee
the convergence to the best fit and can easily fall into the
local optimum, which leads to a decrease in the prediction
accuracy [110]. In Particle swarm optimization, premature
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TABLE 6. Artificial intelligence (AI) methods of forecasting strategies.

FIGURE 12. Energy demand forecasting for EV charging using an artificial
neural network (ANN) [65].

convergence will occur in different situations [111]. The
lion algorithm is a social behavior-based bionic algorithm.
In [109], the optimal solution was proposed through terri-
torial lion breeding patterns. In this approach, the process
includes the following four main steps: population initializa-
tion, mating and mutation, territorial defense, and territorial
takeover.

A summary of the results obtained by different proba-
bilities and artificial studies is presented for the reader’s
convenience in Tables 5 and 6. In a typical machine learning
framework, the models are trained, validated, and tested on
the available dataset before being used in a real forecasting
application.

3) POTENTIAL BENEFITS AND RISKS OF FORECASTING EVs
A summary of the potential benefits and risks for forecasting
EV charging is given as follows:
A. Potential Benefits

i. Increased predictive capabilities to obtain a demand
and supply balance;

ii. A precise estimate of the EV charging demand is essen-
tial for the purpose of setting tariffs;

iii. The forecasting strategy is necessary to predict the
energy demand for the operation and planning of power
systems.

B. Potential Risks

i. Data security issues;
ii. Forecasting models are developed based on big data

technologies. It requires high-resolution data which
may not available.

IV. ISSUES, DISCUSSION, AND RECOMMENDATIONS
This study identified many significant drawbacks by ana-
lyzing the methods and techniques presented in many EV
charging studies. The following section provides these related
issues and separates the major fundamentals of the previous
studies into the following two categories: operational aspects
and implementation challenges. The final part of the section
provides a report on guidelines for future studies on this
research topic. This guideline aims to enhance the compa-
rability of the various results and findings.

A. OPERATIONAL ASPECTS
As described previously in Section 4, most of the EV charging
scheduling methods studied in the literature utilize central-
ized control. In this context, because the number of elec-
tric vehicles penetrating the power network has increased,
centralized control strategies face some challenges and the
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problems of reduced system scalability, high computational
time, and high instability.

Therefore, the recent research has focused more on decen-
tralized strategies. However, decentralized strategies require
continuous accessibility of a two-way communication net-
work between the communication system of the EVs and
their synchronization, leading to increased system costs.
Furthermore, the costs of upgrading these communication
networks need to be optimized. Applying a hybrid control
system that includes centralized and decentralized strategies
in two level managements is recommended—level 1 is occu-
pied by the centralized control system, while level 2 com-
prises the decentralized management operator. A hybrid
centralized-decentralized EV charging control method is sug-
gested to offer flexible charging choices for customers. In this
charging scheme, EV owners can either assign the charging
tasks to the system controller or individually choose the
charging profiles based on their own preferences.

This study reviewed many clustering studies. The most
important observations included that these studies applied
diverse clustering techniques on diverse data criteria and
evaluated the performance with diverse validity indices. Fur-
thermore, these studies did not present a vision regarding
the dependency of the outcomes on the model variables and
validity indices, which leads to a major challenge for the
process assessments among the outcomes achieved by the
diverse clustering research. Using statistical measures with
the model variables is suggested to evaluate the change-
ability of the validity indices to overcome the assessment
challenges.

Based on previous discussion, one of the most significant
problems of forecasting the EV charging load is that that
EV load is considered an unpredictable load. In this con-
tent, the variation and magnitude of the EV demand directly
impact the accuracy of the predictions. A large number of
research studies that have examined the impression of the
EV demand scale on the prediction precision have shown
that forecasting a large-scale EV demand is more challenging
compared to forecasting a small-scale EV demand. In this
case, STLF can be significantly more accurate than MTLF
or LTLF.

B. THE CHALLENGES OF CONTROL CHARGING
IMPLEMENTATIONS
A fundamental problem with many of the reviewed studies is
their limited designs of realistic models for electric vehicle
arrival/departure times. The question raised in this case is
whether or not the proposed strategies for electric vehicle
charging can be applied in real life.

The operator management center is required to commu-
nicate between the EVSE and the power system operator.
Thus, reliable communication links, protected protocols, and
a secure network are essential. Nevertheless, there are very
significant challenges in the communication systems related
to ensuring compatibility among the diverse mechanisms and
providing smooth and secure data broadcasting. Therefore,

FIGURE 13. Proposed analysis guideline for future EV charging studies.

issues concerning the increased infrastructure, maintenance
budgets, and functioning are also raised.

C. SUGGESTED ANALYTICAL FRAMEWORK FOR FUTURE
STUDIES
There was no benchmark or framework set to compare the
research in this area. Therefore, it was quite complicated
to determine which methods provide the best results. Fur-
thermore, the different EV charging control studies work on
managing diverse kinds of applications and the optimization
purposes may differ among the research works. Thus, while
new research may provide valuable outcomes, it is difficult
to verify the actual achievement due to the absence of a
set analysis benchmarks or frameworks. Therefore, the fol-
lowing guideline framework, shown in Fig. 13, is presented
to minimize some of these discrepancy problems among
the research works and make their comparison and analysis
easier:

1) CHARACTERIZE THE EV LOAD PROFILE DATA
Describe different types of EV loads based on the size of
the batteries and the standard deviation. To this end, estab-
lishing an accurate and reasonable load profile model of EV
charging is of great importance for the planning, operation,
and scheduling of a power system. By considering a series
of different EV load profiles, the distribution management
system can take uncertainty into account when making deci-
sions, such as the safe operation of the distribution net-
work, optimal economic trade, and cooperative scheduling
strategies.
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2) BENCHMARKING
Choose a reference dataset commonly used in the literature
(for example, Commission of Energy Regulator (CER) Smart
Meter Trial, NOBEL field trial). Apply the methodology
to the reference dataset in addition to the available unique
dataset. Choose data characteristics, such as temporal resolu-
tion, forecast and optimization horizon, and analyzed appli-
ance types, that are consistent with the reference dataset.

3) REPORTING RESULTS
Use conventional performance metrics to compare with the
previous studies. Customize the error metrics for particular
end-use applications (this can be used to prevent problems
related to the use of conventional error metrics). Apply sta-
tistical measures to test the stability of the results.

V. CONCLUSION
Mostmethods discussed in this paper used real-world datasets
of EV driving and charging patterns according to schedul-
ing, clustering, and forecasting EV charging demands. These
collections of data are practical, since they are based on
real-world datasets. The use of real-world data avoids the
need to make assumptions about the stochastic nature of the
vehicle use and can minimize the uncertainties associated
with a simulated charging demand.

The methods investigated in this manuscript have gener-
ated useful results in addressing the inherent challenges of
applying the strategies of scheduling, clustering, and fore-
casting for EV charging. Considering the versatility of the
methods investigated in this paper, potential enhancements
can be obtained by integrating them for specific applications.
According to the literature, artificial intelligence models have
been the preferred approach for many researchers, as they
perform better than other probabilistic models. Furthermore,
new models, such as unsupervised machine learning models,
offer promising supplementary improvements for EV control
charging strategies.

This extensive review addresses the solutions, opportuni-
ties, prospects, and optimizations to minimize the impacts of
EV charging on power system networks by applying numer-
ous powerful methods. These methods are selected based
on their suitability, practicability, and tractability. Extensive
research is still needed to address customer privacy issues,
as well as secure and reliable communication system cost
management. Furthermore, control charging analyses based
on DSM have not been presented in detail for remote area
applications. These particular areas require further examina-
tion and should be studied in detail to achieve the optimal
energy efficient operation of the power systems.
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