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ABSTRACT Local community detection, only considering the regional information of the large network,
can be used to identify a densely connected community containing the seed node in a network, aiming to
address the efficiency problem faced by global community detection. However, most existing studies in local
community detection did not account for the higher-order structures crucial to the network, but rather have
simply focused single nodes or edges.Moreover, existing higher-order solutions are not purely localmethods,
as they still use global search to find the best local community, which leads to a global search problem.
Furthermore, the quality of the detected community depends on the location of the seed node, which leads
to a seed-dependent problem. Thus, in this paper, we proposed a fuzzy agglomerative algorithm (FuzLhocd)
for local higher-order community detection based on different fuzzy membership functions. To solve the
global search problem, we introduce a novel, purely localized metric called local motif modularity. Based
on this local metric, FuzLhocd only needs to visit a limited number of neighborhoods around the seed node.
To solve the seed-dependent problem, we systematically studied the formation of the local community,
divided the process of local community detection into three stages and employed various fuzzy membership
functions at different stages. Our extensive experiments based on both real-world and synthetic networks
demonstrated that FuzLhocd not only runs efficiently locally but also effectively solves the seed-dependent
problem and achieves a high accuracy as well. We concluded that our local motif modularity metric and
FuzLhocd algorithm is highly effective for local higher-order community detection.

INDEX TERMS Local community detection, higher-order structure, motif, fuzzy membership functions.

I. INTRODUCTION
Community structures naturally exist in many real-world
networks such as social networks, collaboration networks,
biological networks and other types of complex networks
[1]–[4]. The aim of community detection is to identify all
communities in a global network, which has been widely
studied in the literature and remains a fundamental problem
in complex network analysis [5]–[7]. However, it is often
expensive (even no way) to obtain the global information
of the network in many real-world networks of increasing
size [8], [9]. Thus, local community detection, which has
recently drawn considerable research interest, is a related
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but distinct problem. The aim of local community detection
is to identify a densely connected community containing
the seed node by exploring a small region of the network
in the vicinity of the seed node [10]. This technique has a
wide range of applications for analyzing complex networks
because we often only care about the local community to
which the seed node belongs. For example, the goal of the
friend recommendation feature of WeChat is to recommend
candidate friends to a specific user, u. Intuitively, only those
who are in the same community as u are but who are not
yet u’s friends are suggested [11]. Under such circumstances,
local community detection is more appropriate.

Various methods have been proposed to detect the local
community [12]–[16]. However, most existing local com-
munity detection algorithms are not designed to account
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for the higher-order structures crucial to the networks;
rather, they are simply based on individual nodes or edges
and do not consider how these nodes connect to form
small network substructures. The highly developed meth-
ods of local modularity R [8], [17] and local modu-
larity M [18], [19] do not consider such higher-order
connectivity structures as crucial to the organization of com-
plex networks. However, increasing evidence shows that
incorporating higher-order connectivity patterns not only
improves the accuracy of assessing node membership but
also improves the accuracy of identifying community mem-
bers for a given domain [20]–[23]. For example, triangles
are important higher-order structures for social networks,
and feedforward loops are important higher-order struc-
tures for transcriptional regulation networks [21]. In this
paper, we describe new algorithms for local higher-order
community detection.

In recent research, Austin R. Benson [21], [24] used spec-
tral clustering to complete higher-order community detec-
tion. Since this algorithm is globally based, Hao Yin [25]
then proposed the MAPPR algorithm, a local community
detection algorithm that sorts and uses motif conductance
after using Approximate Personalized PageRank. However,
two common problems are still unsolved in the MAPPR
algorithm.
1. Global Search Problem: Before using the Approxi-

mate Personalized PageRank, MAPPR needs to precom-
pute the number of motif instances that contain each pair
of nodes. All nodes in the graph need to be visited,
which is computationally very costly. Therefore, it is dif-
ficult to apply MAPPR to large-scale networks due to its
high time complexity. In addition, MAPPR is often expen-
sive and cannot be used to obtain the entire network in
many real-world applications. Thus, purely local commu-
nity detection based only on local information becomes
essential.
2. Seed-Dependent Problem: Because MAPPR does not

consider the dynamic formation process of the local com-
munity, the quality of the detected community critically
depends on the location of the seed node, which leads to a
seed-dependent problem. Specifically, the local community
detection algorithm obtains a low-quality community from
a noncenter seed node, while it obtains a high-quality com-
munity from a center seed node. In addition, MAPPR cannot
effectively handle seed nodes with special roles, such as those
that serve as hubs bridging different communities.

Considering these limitations, we propose a new local
higher-order community detection algorithm (FuzLhocd) for
finding the community of the seed node based on fuzzy mem-
bership functions. Our local method searches the target com-
munity, C , with maximal local motif modularity. Given the
seed node, s, in a graph,G, and amotif,M , the concrete details
of the local community detection procedure are as follows.
First, in the core detecting stage, FuzLhocd detects core nodes
of the target community. Second, in the community expansion
stage, FuzLhocd expands the core nodes to obtain a rough

target community of the seed node. Third, in the commu-
nity optimization stage, FuzLhocd optimizes the rough target
community by collecting nodes that should not be omitted.
Additionally, FuzLhocd applies different fuzzy membership
functions at different stages. Specifically, in the core detect-
ing stage, the joining of a new node should improve the value
of the local motif modularity and produce the largest gain
for the internal motif. In the community expansion stage,
the joining of the new node also needs to improve the local
motif modularity value and yield the largest gain in the
external motif value. In the community optimization stage,
if the structural similarity between node, s, and the target
community, C , is greater than the threshold parameter λ,
FuzLhocd will consider that the relationship between s and
the target community C is very close and that node s should
join C .

In summary, comparedwithMAPPR, our local higher-order
community detection algorithm, FuzLhocd, has the following
advantages:
1. Purely Local Algorithm: The FuzLhocd method is based

on a purely local metric, and it only needs to visit a lim-
ited number of neighborhoods around the seed node; the
method does not require the number of motif instances to
be precomputed for all nodes in the entire network. When
the neighborhood grows more slowly than the entire graph
size, FuzLhocd is significantly faster than MAPPR. In fact,
the average degree of nodes is often significantly smaller than
the entire graph size.
2. More Robust: The FuzLhocd method divides the process

of local community detection into three stages and employs
different fuzzy membership functions at different stages to
detect the local community. First, FuzLhocd finds the most
relevant core nodes of the target community during the core
detecting stage and then extends the community in the follow-
ing two stages. This can solve the seed-dependent problem of
the MAPPR method. Thus, FuzLhocd is more robust to the
seed-invalid problem than MAPPR.
3. Fewer Parameters: Our method only needs to specify

the threshold parameter, λ, at the community optimization
stage. In fact, at the beginning of the community optimization
stage, the target community is roughly formed. Thus, by using
different λ values for community optimization, the quality
of the detected community is insensitive to parameter λ.
Although MAPPR may have more leverage on the properties
of the local community because it has more parameters, it is
much more difficult to determine the proper values of the
parameters for different networks.

The remaining sections of this paper are organized as
follows. We review the related work in Section II , and design
a purely local metric for local higher-order community detec-
tion in Section III . Section IV presents a naive algorithm
based on a global fuzzy membership function. We further
propose a more efficient algorithm based on dynamic fuzzy
membership functions in Section V . Section VI evaluates
all introduced algorithms using extensive experiments, and
Section VII concludes the paper.
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II. RELATED WORKS
The work presented in this paper is closely related to commu-
nity detection, local community detection, higher-order graph
clustering and the fuzzy membership function.

A. COMMUNITY DETECTION
The aim of community detection is to identify all com-
munities in a global network, which has been extensively
studied [26]–[30]. A representative method is the modularity
measure [26], which identifies good communities in many
real networks; however, modularity becomes unreasonable
for large networks (resolution limit problem). Considering
this limitation, label propagation has attracted widespread
interest because it can generally detect communities in almost
linear time [28]. However, this algorithm has poor stability
due to the randomness of the label propagation process.
In addition to extracting communities, finding nodes with
special roles, such as hubs and outliers, is also beneficial for
understanding the structure of the network. One of the most
successful density-based algorithms is SCAN [27], which
not only detects meaningful communities but also hubs and
outliers. However, the quality of the detected communities
is sensitive to the density threshold parameter. Recently,
inspired by synchronization clustering [31], Shao et al. [30]
considered the problem of community detection from a new
point of view of distance dynamics. The proposed algorithm
has several attractive benefits, such as ‘‘intuitive community
detection’’ and ‘‘anomaly detection’’. However, the methods
described above do not consider local community detection,
which is important for many real life applications.

B. LOCAL COMMUNITY DETECTION
The goal of local community detection is to detect a densely
connected community that contains the seed node, which
has attracted growing research interest [10], [12]–[14], [32].
In general, most existing methods take a seed as an initial
community and then expand the community by running a
greedy optimization process with a goodness metric. For
example, local modularity R [17] and local modularity M
[18] have been proposed to detect local communities. How-
ever, the metrics of local modularity R and local modu-
larity M may cause a free rider effect issue [13]. Due to
these shortcomings, Wu et al. [13] proposed a node weight-
ing scheme based on random walk to solve the free-rider
effect problem. Moreover, different semantics for local com-
munity detection have been studied, such as K-Core [10].
The K-Core community is based on the K-Core subgraph,
which contains nodes with at least k edges. However, this
method ignores the diameter of the resulting community.
In recent research, Huang et al. [12] proposed a K-Truss
community model based on triangle adjacency to find a cohe-
sive community that contains the seed node. The K-Truss
community is based on the K-Truss subgraph, where every
edge is contained in at least (k-2) triangles within the
cohesive community. However, all these local community

detection methods are simply based on individual nodes or
edges and do not consider the higher-order structures cru-
cial to the network, nor can they effectively handle directed
networks.

C. HIGHER-ORDER GRAPH CLUSTERING
Incorporated higher-order connectivity patterns have the
potential to improve clustering results and can be eas-
ily applied to community detection in directed networks.
Recently, several higher-order graph clustering methods have
been studied [20], [21]. Austin et al. [20] proposed a tensor
spectral clustering (TSC) algorithm to model higher-order
network structures. In TSC, higher-order network structures
are represented using a tensor and then partition by develop-
ing a multilinear spectral method. In addition, Jure et al. [21]
proposed a novel metric called motif conductance that is
based on higher-order structures to measure the quality of
the detected communities. The smaller the value of the motif
conductance is, the better the detected communities are.
Nevertheless, due to inherently different problems, none of
these methods can be directly used for local community
detection. A recent study by Austin et al. [25] proposed
a novel approach for local higher-order community detec-
tion, namely, MAPPR. MAPPR begins by generalizing the
Approximate Personalized PageRank (APPR) algorithm of
Anderson et al. [24] to detect a local community containing
a given seed node with minimal motif conductance. Unfor-
tunately, this method has several problems, which were dis-
cussed in Section I.

D. FUZZY MEMBERSHIP FUNCTION
The fuzzy membership function has been extensively studied
[33], [34] and is widely used in fuzzy systems to describe
the dynamics of systems [35]. Because the fuzzy member-
ship function can measure the belongingness of nodes in
different communities more accurately, the applications of
the fuzzy membership function in community detection has
attracted much attention in recent years [16], [36]–[39]. For
example, Anupam et al. [39] proposed a fuzzy agglomera-
tive community detection algorithm (FuzAg) based on the
fuzzy membership function. In FuzAg, nodes with a higher
self-membership degree are referred to as anchors, and they
get a chance to expand their associated community. However,
seed nodes are not considered since the focus of FuzAg is not
on local community detection but on community detection.
In addition, Luo et al. [16] provided a systematic analysis
of the formation of the local community and proposed corre-
sponding local community detection algorithms based on the
dynamic membership function. However, higher-order struc-
tures were not considered since this method focuses on the
individual node or edge, and it naturally is unable to handle
directed networks. In this paper, we study another impor-
tant, yet largely underexplored local higher-order community
detection method, which is focused on the local community
detection based on particular network motifs.
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III. LOCAL MOTIF MODULARITY
In this section, we define the problem of local higher-order
community detection and then propose a purely local metric
for local higher-order community detection.

A. PROBLEM DEFINITION
Before providing the formal definition of local higher-order
community detection, we first formally define the basic nota-
tions used throughout this paper. Consider an unweighted
graph, G = (V , E), where V and E denote the node set and
the edge set, respectively. In this paper, graph G may be a
directed graph or an undirected graph. Other types of graphs,
such as a weighted graph, can be handled with only slight
modifications.
Definition 1 (Node Neighbors): The neighbors of a node

are a node set composed of all its adjacent nodes. The neigh-
bors of node u, denoted by N (u), is defined as follows:

N (u) = {v ∈ V | {u, v} ∈ E} ∪ {u} . (1)

Definition 2 (Community Neighbors): The neighbors of a
community are a node set in which all nodes are not in the
community but have at least one neighbor in the community.
The neighbors of community C , denoted by N (C), is defined
as follows:

N (C) = {v ∈ V | v /∈ C, u ∈ C, (u, v) ∈ E} . (2)

Definition 3 (Network Motif): The network motif (also
called a higher-order structure) is a small connected subgraph
and contains multiple nodes and edges, which represent the
information interactions between multiple nodes. For exam-
ple, triangles are important higher-order structures of social
networks [21]. The common motifs are shown in Fig. 1.

FIGURE 1. Common motifs. (M1-M8 are triangular motifs and crucial for
social networks.).

Definition 4 (Motif Degree): Given graph G and motif M ,
themotif degree of node u, denoted by dM (u), is the number of
motif instances in which one of the end points is u, is defined
as follows:

dM (u) = |{M ∈ G| u ∈ M}| . (3)

Problem Definition (LHOCD): The problem of local
higher-order community detection studied here is defined as
follows. Given a graph G(V , E), a seed node s ∈ V and
a motif M , find the local community C that contains s and

maximizes orminimizes a goodnessmetric based onmotifM .
The nodes in the local community C are tightly connected,
whereas the connection of the nodes between C and C is
sparse.

B. MOTIF CONDUCTANCE
In a recent study, Benson et al. [21], [25] generalized the
motif cut, motif volume, and motif conductance metrics to
measure whether a subgraph forms a community. The cor-
responding concepts are illustrated in Fig. 2, and the formal
definitions are as follows:

FIGURE 2. Illustration of motif conductance and local motif modularity
when M8 as the motif. (Red node denote query node. The dashed line
shows the solution of the local higher-order community detection
problem.).

Definition 5 (Motif Cut): Given a motif M and a local
community C , the motif cut of the local community C is the
number of instances ofM that have at least one end point inC
and at least one end point in C , which is denoted as cutM (C).
Definition 6 (Motif Volume): Given a motif M and a local

community C , the motif volume of the local community C is
the number of motif instance end points in C , i.e., counted
over the number of times each node in C participates in
motif M , which is denoted as volM (C).
Definition 7 (Motif Conductance): Given a motif M and

a local community C , the motif conductance of the local
community C is the ratio of the motif cut to motif volume,
which is denoted as φ(C).

φ(C) =
cutM (C)

min
{
volM (C), volM (C)

} . (4)

The motif conductance value is greater than or equal to
zero, which indicates the quality of the detected community.
When themotif conductance of a local communityC is small,
the quality of the local communityC improves and vice versa.

However, the motif conductance is based on both global
(C and C) and local (C) information; thus, it is difficult to
apply motif conductance to large-scale graphs since it needs
to traverse the entire graph.

C. LOCAL MOTIF MODULARITY
Considering the above limitations, in this paper, we propose
a new goodness metric, the local motif modularity, which
is based on internal motifs and external motifs. The corre-
sponding concepts are illustrated in Fig. 2, and the formal
definitions are as follows.
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Definition 8 (Internal Motifs):Given a motifM and a local
community C , the internal motifs of the local community C
are the number of instances ofM in which all nodes are in C ,
which is denoted as MIn(C).
Definition 9 (External Motifs):Given a motifM and a local

community C , the external motifs of the local community C
are the number of instances of M in which only some of the
nodes are in C , which is denoted as MOut (C).
Definition 10 (Local Motif Modularity): Given a motif M

and a local community C , the local motif modularity of the
local community C is the ratio of internal motifs to external
motifs, which is denoted as MMotif (C).

MMotif (C) =


0,MIn(C) = 0 and MOut (C) = 0;
MIn(C), MOut (C) = 0;
MIn(C)

/
MOut (C), otherwise.

(5)

The local motif modularity is greater than or equal to
zero, which indicates the quality of the detected community.
A large local motif modularity indicates a good local com-
munity, and we will use this metric for evaluating community
quality.

D. WHY LOCAL MOTIF MODULARITY?
Compared with the latest motif conductance [21] metric,
the local motif modularity metric has two significant advan-
tages: a purely localized metric and has polynomial time
complexity. Based on these beneficial properties, we can
design a more efficient, scalable, and easier-to-use algorithm
to detect the target community.

1) PURELY LOCALIZED METRIC
Unlike motif conductance, our local motif modularity is a
purely localized metric to assess the quality of the detected
community and does not require the global information from
the original network. Based on the local motif modularity,
we can fully consider the characteristics of the local commu-
nity during local community formation. Specifically, we can
design different fuzzy membership functions based on the
local motif modularity at different stages to more accurately
measure the local community.

2) POLYNOMIAL TIME COMPLEXITY
Because the local motif modularity is a purely localized
metric, FuzLhocd can extend the community by running a
greedy optimization process to reduce the complexity. It has
an extremely fast running time, which is linear with respect
to the size of the output community. In addition, the local
motif modularity does not need to traverse the entire graph to
precompute the number of motif instances that contain each
pair of nodes. In general, when there are n nodes in the local
community and when the average degree of the nodes in the
local community is d , there should be at most nd nodes that
are traverse.

IV. GLOBAL FUZZY METHOD
In this section, we devise a global fuzzy membership function
based solution for LHOCD. The global fuzzy membership
function based approach first take the seed node as an initial
community, and then extend the community by running a
greedy optimization process with a global fuzzy membership
function.

A. GLOBAL FUZZY MEMBERSHIP FUNCTION
Before presenting the global fuzzy membership function
based solution for LHOCD, it is necessary to introduce the
main process of the local community formation.

For a network G, we can divide it into three parts, i.e., the
local community C that the seed node belongs to, region B in
which all nodes have at least one neighbor inC , and regionU ,
which is the unknown part of the network, in which all of
its neighbors are not in local community C , as Fig. 3 shows.
The concrete process of the local community formation is as
follows: Initially, the local community C includes only a seed
node. Then, one by one node in B will be added into C each
time. At the same time, B is updated by adding the border
nodes inU into B, andU is also updated. This process breaks
until the stopping criterion ismet. Actually, a goodnessmetric
is usually used to measure whether the stopping criterion is
met.

FIGURE 3. Local community structure. (C is the local community. The
region B in which all nodes have neighbors in C . U represent the
unknown region.).

Definition 11 (Motif Gain): At time step t , the local motif
modularity value about local community C can be denoted as
MMotif (C). At time step t + 1, assume node x in region B is
chosen and add it into local community C . The definition and
calculation of the motif gain of metricMMotif (C) is provided
as follows.

1M (C) = M t+1
Motif (C)−M

t
Motif (C)

=
M t+1
In (C)

M t+1
Out (C)

−
M t
In (C)

M t
Out (C)

=
M t
In (C)+ m

u
In

M t
Out (C)− m

u
In + m

u
Out
−

M t
In (C)

M t
Out (C)

, (6)

wheremuIn is the number of internal motifs of node u inC , and
muOut is the number of external motifs of node u that are not
in C . Clearly,1M (C)may be above 1. Therefore, the global
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fuzzy membership function, δ (u), is defined as follows.

δ (u) =

1−
1

1+1M (C)
, 1M (C) ≥ 0;

0, 1M (C) < 0.
(7)

In fact, 1M (C) is equivalent to δ (u). If we add node
u with the largest value of δ (u) into the local commu-
nity C , we can also obtain the best motif gain of metric
MMotif (C). Moreover, adding a node into C changes the
values of muIn and muOut . Thus, δ (u) is a fuzzy membership
function.

B. THE GLOLHOCD ALGORITHM
Based on obtaining the best motif gain of metric MMotif (C),
a straightforward strategy for local higher-order community
detection involves only adding the node with the largest
value of δ (u) into the local community C at each time
step. The details of the greedy optimization procedure are
as follows. First, we take the seed as initial community C .
Then, the nodes in B that have the largest value of δ (u) will
be chosen and added into C at each time step. Afterwards,
region B is updated by putting the boundary nodes in U into
B. As a result, regionU is naturally updated. Finally, the local
detection process stops when all nodes inB decrease the value
of MMotif (C). Algorithm 1 outlines the procedure to process
local higher-order community detection based on the global
fuzzy membership function, δ (u).

Algorithm 1 : GloLhocd
1: Input: Graph G = (V ,E), motif M , seed node s;
2: Output: Motif-based local community C ;
3: Procedure: GloLhocd(G, M , s);
4: Set C = {s};
5: while true do
6: get N (C) based on definition 2;
7: Candidate = ∅;
8: compute N = MMotif (C) via Eq. (5);
9: for each node u ∈ N (C) do
10: compute N ′ = MMotif (C) via Eq. (5) if node u

is added into C ;
11: if N − N ′ ≥ 0 then
12: Candidate = Candidate ∪ {u};
13: end if
14: end for
15: if Candidate 6= φ then
16: traverse Candidate and select the node that

maximizes δ (u), denoted as vBest;
17: C = C ∪ {vBest};
18: else
19: break;
20: end if
21: end while
22: Return: C ;

C. LIMITATIONS OF GLOLHOCD
GloLhocd has two drawbacks in its detection processing
mechanism of using the global fuzzy membership function.

GloLhocd prefers to add the nodes with a smaller muOut to
the local community first. As a result, the core nodes of the
local community may be missed because themuOut of the core
nodes are usually larger at the beginning.

The local community detected by running the greedy opti-
mization process with the global membership function cannot
always accurately describe the dynamic structures of the local
community. This phenomenon is because the structure of the
local community is constantly changing due to joining of new
nodes.

We can solve the problems based on the idea of making
the local community C cohesive. In fact, with an increasing
value ofMMotif (C), the local communityC becomes cohesive
because the nodes with a high density are connected in local
community C and because there are relatively low density
links between the nodes in region B.

As shown from Eq. (6), obtaining a more cohesive local
community corresponds to two conditions, a larger muIn and a
smaller muOut . The main reason that GloLhocd may miss core
nodes initially is that the core nodes of the local community
may have a smaller muIn or larger muOut at the beginning.
Hence, it is difficult for GloLhocd to add nodes with a smaller
muIn or largerm

u
Out initially. Therefore, a more reasonable way

to identify a cohesive local community is as follows.
First, we choose and add the core nodes with the largest

potential value of muIn because the neighbors of node u have
the greatest possibility to join local community C in the
following time steps. Then, we expand the local community
to obtain the border nodes with the smallest potential value of
muOut because the neighbors of node x have little possibility to
join local community C in the following time steps. Finally,
the local community can be further optimized by adding some
fuzzy nodes that have a larger similarity with it.

V. DYNAMIC FUZZY METHOD
In this section, we devise a more efficient algorithm for
LHOCD, which can overcome the challenges introduced in
Section IV-C. Specifically, we divide the local higher-order
community detection process into three stages, and design
the different fuzzy membership functions to detect the local
community at different stages.

A. THE STAGES OF FUZLHOCD
According to the above analysis, we divide the process of
local higher-order community detection into three stages
to accurately describe the dynamic structures of the local
community. Specifically, the stages of the local higher-order
community detection are decided by the values ofMMotif (C)
and B’, where B’ is the subset of N (C) containing all nodes
that satisfy 1M (C) ≥ 0. The specific division standard is
provided as follows.
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1) CORE DETECTING STAGE
The process of local higher-order community detection is at
the core detecting stage when MMotif (C) < 1. At this stage,
MIn(C) is less than MOut (C), and the skeleton of the local
community will be basically formed.

2) COMMUNITY EXPANSION STAGE
The process of local higher-order community detection is at
the community expansion stage when MMotif (C) ≥ 1 and
B′ 6= φ. At this stage,MIn(C) is larger thanMOut (C), and the
members of the local community will be roughly identified.

3) COMMUNITY OPTIMIZATION STAGE
The process of local higher-order community detection is at
the community optimization stage when B′ = φ. At this
stage, MMotif (C) no longer increases, and the fuzzy nodes of
the local community will be fully considered.

B. CORE DETECTING
Core nodes have a considerable influence on the formation
and stability of the local community. Core detection aims to
detect the core members of the local community based on the
fuzzy membership function. At this stage, the skeleton of the
local community will be basically formed. Thus, the fuzzy
membership function and core detecting method determine
the effectiveness of this local higher-order community detec-
tion algorithm.

At the core detecting stage, the number of internal motifs
is smaller than the number of external motifs, and the degree
of node u belonging to the local community C is measured
by the fuzzy membership function, δc (u). The definition of
δc (u) is given as follows.

δc (u) =

1−
1

1+1mIn
, 1M (C) ≥ 0;

0, 1M (C) < 0.
(8)

where 1mIn = mN (u)In − muIn, m
N (u)
In is the number of internal

motifs of node u in C if the neighbors of node u are added
into the local community C , andmuIn is the number of internal
motifs of node u in C if node u is added into the local
community C .

Equation (8) describes the potential internal motif gain of
node u. At this stage, we add the node with the largest value of
δc (u) that also satisfies1M (C) ≥ 0 into local communityC .
We use an example to explain the potential internal motif gain
of a node and core detecting stage, which is shown in Fig. 4.

In Fig. 4, MIn(C) = 0, MOut (C) = 3, and MMotif (C) = 0
according to Eq. (5); thus, the detection is at the core detecting
stage. FromFig. 4, we observe that only seed node 1 is in local
community C and nodes 2, 3, and 4 are the neighbor nodes
of community C . We calculate 1M (C) according to Eq. (6)
if nodes 2, 3, and 4 are added into local community C , and
nodes 2, 3, and 4 satisfy 1M (C) ≥ 0. Then, we calculate
δc (2), δc (3), and δc (4) according to Eq. (8). Because m2

In =

0, mN (2)In = 4, m3
In = 0, mN (3)In = 4, m4

In = 0 and mN (4)In = 6,

FIGURE 4. The core detecting stage.

δc (2) = 0.8, δc (3) = 0.8 and δc (4) = 0.857. Therefore,
node 4 will be added into local communityC at this time step.

Moreover, adding a node into C changes the values of
muIn and m

N (u)
In . Thus, δc (u) is a fuzzy membership function.

Algorithm 2 outlines the procedure to process core detecting
based on the fuzzy membership function, δc (u).

Algorithm 2 : CoreDetecting
1: Input: Graph G = (V ,E), motif M , seed node s;
2: Output: The core members of the target community;
3: Procedure: CoreDetecting(G, M , s);
4: Set Cc = {s};
5: while true do
6: get N (Cc) based on definition 2;
7: Candidate = ∅;
8: compute N = MMotif (Cc) via Eq. (5);
9: if N ≥ 1 then
10: break;
11: end if
12: for each node u ∈ N (Cc) do
13: compute N ′ = MMotif (Cc) via Eq. (5) if node u

is added into Cc;
14: if N − N ′ ≥ 0 then
15: Candidate = Candidate ∪ {u};
16: end if
17: end for
18: if Candidate 6= φ then
19: traverse Candidate and select the node that

maximizes δc (v), denoted as vBest;
20: Cc = Cc ∪ {vBest};
21: else
22: break;
23: end if
24: end while
25: Return: Cc;

C. COMMUNITY EXPANSION
The input of the community expansion method is the output
of the core detecting method. Community expansion aims to
expand the community with another fuzzy membership func-
tion. At this stage, the members of the local community will
be roughly identified. Thus, the fuzzy membership function
and community expansion method determine the efficiency
of our local higher-order community detection algorithm.
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At the community expansion stage, the number of internal
motifs is greater than the number of external motifs, and
the degree of node u belonging to the local community C
is measured by the fuzzy membership function, δe (u). The
definition of δe (u) is given as follows.

δe (u) =


1mOut
dM (u)

, 1M (C) ≥ 0;

0, 1M (C) < 0.
(9)

where1mOut = m¬uOut−m
u
Out ,m

¬u
Out is the number of external

motifs of node u in C if node u is not added into the local
community C , and muIn is the number of external motifs of
node u in C if node u is added into the local community C ,
whereas dM (u) is the motif degree of node u.

Equation (9) describes the potential external motif gain of
node u. At this stage, we add the node with the largest value of
δe (u) that also satisfies1M (C) ≥ 0 into local communityC .
We use an example to explain the potential external motif gain
of a node and community expansion stage, which is shown
in Fig. 5.

FIGURE 5. The community expansion stage.

In Fig. 5,MIn(C) = 4,MOut (C) = 3, andMMotif (C) = 4/3
according to Eq. (5); thus, the detection is at the community
expansion stage. From Fig. 5, we observe that nodes 1, 2,
3 and 4 are in local community C and nodes 5, 6, and 7 are
the neighbor nodes of community C . We calculate 1M (C)
according to Eq. (6) if nodes 5, 6, and 7 are added into local
communityC and if nodes 5 and 6 satisfy1M (C) ≥ 0. Then,
we calculate δe (5) and δe (6) according to Eq. (9). Because
m¬5Out = 1, m5

Out = 0, dM (5) = 1, m¬6Out = 2, m6
Out = 1 and

dM (6) = 2, δe (5) = 1.0 and δe (6) = 0.5. Therefore, node
5 will be added into local community C at this time step.
Moreover, adding a node intoC changes the values ofm¬uOut

and muOut . Thus, δe (u) is also a fuzzy membership function.
Algorithm 3 outlines the procedure to process community
expansion based on the fuzzy membership function, δe (u).

D. COMMUNITY OPTIMIZATION
The input of the community optimization method is the
output of the community expansion method. Community
optimization aims to add some fuzzy nodes to the local
community with the third fuzzy membership function. At this
stage, the fuzzy nodes of the local community will be
fully considered. Thus, the fuzzy membership function and

Algorithm 3 : CommunityExpansion
1: Input: Graph G = (V ,E), motif M , Cc;
2: Output: The roughly members of the target community;
3: Procedure: CommunityExpansion(G, M , Cc);
4: Set Cr = Cc;
5: while true do
6: get N (Cr ) based on definition 2;
7: Candidate = ∅;
8: compute N = MMotif (Cr ) via Eq. (5);
9: for each node u ∈ N (Cr ) do
10: compute N ′ = MMotif (Cr ) via Eq. (5) if node u

is added into Cr ;
11: if N − N ′ ≥ 0 then
12: Candidate = Candidate ∪ {u};
13: end if
14: end for
15: if Candidate 6= φ then
16: traverse Candidate and select the node that

maximizes δe (v), denoted as vBest;
17: Cr = Cr ∪ {vBest};
18: else
19: break;
20: end if
21: end while
22: Return: Cr ;

community optimization method determine the accuracy of
our local higher-order community detection algorithm.

At this stage, the local community C has been roughly
identified, and metric MMotif (C) cannot be increased by
adding any node into C . For fuzzy node u, we calculate the
value of δo (u). If δo (u) ≥ λ (λ is the threshold of the
structural similarity, 0 < λ < 1), then the relationship
between node u and the local community C is likely very
close. The definition of δo (u) is given as follows:

δo (u) =
|N (u) ∩ C|
|N (u)|

. (10)

Equation (10) describes the structural similarity between
node u and local community C . When they share more
common nodes, their structural similarity is large. At this
stage, we add the node with largest value of δo (u) into local
community C . We use an example to explain the similarity
between a node and a local community and the community
optimization stage, which is shown in Fig. 6. We set the
threshold of the structural similarity to λ = 0.5.

In Fig. 6, MIn(C) = 6, MOut (C) = 1, and MMotif (C) =
6 according to Eq. (5), and metric MMotif (C) cannot be
increased by adding any node into C ; thus, the detection is at
the community optimization stage. From Fig. 6, we observe
that nodes 1, 2, 3, 4, 5 and 6 are in local community C
and node 7 is the neighbor node of C . Then, we calculate
δo (7) according to Eq. (10). Because |N (7)| = 6 and
|N (7) ∩ C| = 3, then, δo (7) = 0.5. Therefore, node 7 will
be added into local community C at this time step.
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FIGURE 6. The community optimization stage.

Moreover, adding a node into C changes the membership
of the local community. Thus, δo (u) is also a fuzzy member-
ship function. Algorithm 4 outlines the procedure to process
community optimization based on the fuzzy membership
function, δo (u).

Algorithm 4 : CommunityOptimization
1: Input: Graph G = (V ,E), motif M , Cr , λ;
2: Output: The detected local community C ;
3: Procedure: CommunityOptimization(G, M , Cr , λ);
4: Set C = Cr ;
5: while true do
6: get N (C) based on definition 2;
7: if N (C) 6= φ then
8: traverse N (C) and select the node that

maximizes δo (v), denoted as vBest;
9: if δo (vBest) ≥ λ then
10: C = C ∪ {vBest};
11: else
12: break;
13: end if
14: else
15: break;
16: end if
17: end while
18: Return: C ;

E. THE FUZLHOCD ALGORITHM
As mentioned above, the local higher-order community
detection process is divided into three stages, and we use
different fuzzy membership functions at different stages
to detect the local community. Combining core detecting,
community expansion and community optimization together,
we propose a more effective approach, which is denoted
as FuzLhocd, for local higher-order community detection.
Algorithm 5 describes the process of these three stages. The
first is the core detecting stage, which detects the core mem-
bers of the local community based on the fuzzy member-
ship function. Second, the community expansion stage uses
another fuzzy membership function to expand which nodes
should join into the local community. Third, the community
optimization stage occurs in which the third fuzzy member-
ship function is provided to add some fuzzy nodes to further
improve the quality of the local community.

Algorithm 5 : FuzLhocd
1: Input: Graph G = (V ,E), motif M , seed node s, λ;
2: Output: The detected local community C ;
3: Procedure: FuzLhocd(G, M , s, λ);
4: Set Cc = φ, Cr = φ, C = φ;
5: // Stage 1: Core Detecting
6: Cc = CoreDetecting(G, M , s); Algorithm 2
7: // Stage 2: Community Expansion
8: Cr = CommunityExpansion(G, M , Cc); Algorithm 3
9: // Stage 3: Community Optimization
10: C =CommunityOptimization(G,M ,Cr , λ); Algorithm 4
11: Return: C ;

F. COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity of
the GloLhocd and FuzLhocd algorithms. These two methods
are greed algorithms. GloLhocd use a global membership
function during all the stages, and FuzLhocd use different
fuzzy membership functions at different stages. Therefore,
the time complexity of these algorithms is basically the same.
Assuming that the identified local community has n nodes
and m edges, the average degree of the nodes in the local
community is d . To facilitate the analysis, we take the triangle
as the motif. At time step 0, there is only the seed node in
the local community, and these two algorithms traverse d
nodes to determine which node should be added into the local
community. At time step t , there are k nodes in the local
community, and these two methods should traverse at most
kd nodes to determine which node should be added into the
local community. In general, there are at most nd nodes that
should be traversed during the entire process. For each node,
we needO (d log d) to compute its membership, and we need
O(m1.5) to compute the local motif modularity. Thus, the time
complexity of our methods is O

(
n2d2 log d + dn2m1.5

)
.

Currently, in local higher-order community detection,
almost all methods need precomputes the number of motif
instances containing each pair of nodes, which is a possibly
large upfront time consuming, such as K-Truss [12] and
MAPPR [25]. Assuming that the network has N nodes and
M edges, the average degree of the nodes in network is D.
At present the most effective solutions such as Latapy [25]
requires O(M1.5) to find triangle motifs in the network.
So when the motif is a triangle, the time complexity of
local higher-order community detection method is at least
O
(
NM1.5 logD

)
. In contrast, our methods only needs to

search the limited motifs around the seed node. So when
the local motifs grows more slowly than the whole network
size, our method will definitely be more efficient than other
methods.

VI. EXPERIMENTS
In this section, we first give details of the strategy for
evaluating the performance of the proposed methods. Then,
we performed experiments to evaluate the effectiveness of

128518 VOLUME 7, 2019



T. Meng et al.: Local Higher-Order Community Detection Based on Fuzzy Membership Functions

the proposed methods using a variety of real-world networks.
We also conducted experiments on different synthetic net-
works to show its scalability and the sensitivity to community
structure. In the end, the parameter-tuning result and the case
studies are analyzed.

A. EXPERIMENTAL SETUP
1) EXPERIMENTAL PLATFORM
To simulate the performances of all algorithms on both real
and synthetic graphs, all experiments are performed on a
high performance server with 176G memory, 2x Intel Xeon
3.2GHz CPU, and Ubuntu OS.

2) COMPARISON ALGORITHMS
To evaluate the performance of our proposed algorithms,
we select two local higher-order community detection algo-
rithms in the state of the art to compare with our algo-
rithms, as shown in Table 1. In which, K-Truss [12] and
MAPPR [25] are considered as the standard algorithms for
local higher-order community detection, we can download
the implementations of C++ version from the website for the
algorithms. In addition, our algorithms GloLhocd and FuzL-
hocd were implemented in Python. For all local higher-order
community detection algorithms, unless otherwise stated,
the recommended default parameter values were used to
obtain the best experimental results. Specifically, K-Truss
uses the trussness value (k = 5) as suggested by the authors.
MAPPR uses the default teleportation parameter (α = 0.98)
and tolerance parameter (ε = 10−4) as suggested by the
authors. We set the threshold parameter to (λ = 0.6) for
FuzLhocd as the default parameter.

TABLE 1. Comparison algorithms.

3) EVALUATION METRICS
To extensively compare the community detection algorithms
in terms of effectiveness, we adopt the following two quality
measures:

Relative Density: The first metric is the relative density.
The density is a popular local community detection fitness
measure that takes both the inter and intra edges of a target
community into consideration [11]–[13]. Intuitively, a target
community with a high density indicates that the connectivity
of the target community is high. The relative density of the
target community is formally defined as follows, where C ′

is the detected community, |∗| indicates the number of |∗| in
the set, E

∣∣C ′∣∣ is the number of inter edges, and E ′
∣∣C ′∣∣ is the

number of intra edges.

density
(
C ′
)
=

∣∣E (C ′)∣∣
|E (C ′)| + |E ′ (C ′)|

. (11)

F-Score: We also use the F-Score to quantify the perfor-
mances of the identified community. F-Score is a commonly
used criterion for local community detection algorithms
when the community ground truth is known [16], [24], [32].
C denotes the real community where the seed is located.
C ′ denotes the identified community. Recall is the number
of correctly classified nodes divided by the number of nodes
in C .

Recall
(
C ′
)
=

∣∣C ∩ C ′∣∣
|C|

. (12)

The precision is the number of correctly classified nodes
divided by the number of the nodes in C’.

Precision
(
C ′
)
=

∣∣C ∩ C ′∣∣
|C ′|

. (13)

The F-Score provides a real number that is between zero
and one and combines recall and precision. A poorly per-
forming community detection algorithm should be associated
with a low F-Score. A higher F-Score value represents a better
performing algorithm.

F − Score
(
C ′
)
=

2 ∗ Recall(C ′) ∗ Precision(C ′)
Recall(C ′)+ Precision(C ′)

. (14)

B. EXPERIMENTS ON REAL-WORLD NETWORKS
1) NETWORK DESCRIPTION
To evaluate the performance and effectiveness of various
community detection algorithms, it is necessary to inves-
tigate them in real-world networks. Six commonly used
large-scale real-world networkswere used in the experiments,
and the characteristics of the networks are listed in Table 2.
These networks were selected since they are very well-known
and contain the real structure of communities, which can
be used to discuss the results of each algorithm with a
desired accuracy. All chosen real-world networks are publicly
available from the Stanford large network dataset collection
(http://snap.stanford.edu/data/).

TABLE 2. The characteristic of commonly used real-world networks.

2) EFFECTIVENESS EVALUATION
We first evaluated the effectiveness of the selected meth-
ods on real networks. For each network, we use a triangle
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as a motif and randomly select nodes as seeds to examine
100 communities with more than 100 nodes. The details of
the procedure of the seed selection strategy are as follows.

We randomly picked 2 sets of seeds with a size of 100.
The first set of seeds was picked from a random ground-truth
community with a lower node degree. Another set of seeds
was picked from a random ground-truth community with a
higher node degree. Then, we calculated the average val-
ues for the density and F-score for the two seed sets. The
experimental results are presented in Fig. 7 and Fig. 8. The
experimental results demonstrate that our algorithm performs
better in terms of density and F-score precision with the
ground truth community in these networks than earlier state-
of-the-art algorithms, and its running time is also competitive.

FIGURE 7. Local community detection performances of various
algorithms on real-world networks.

Fig. 7 shows the two goodness metrics, density and
F-score, are the selected methods on real-world networks.
These metrics are normalized so that their maximum val-
ues equal to 1. Fig. 7(a) and Fig. 7(b) shows the density
indices of the algorithms on real-world networks. Ourmethod
FuzLhocd achieves the highest density on most networks.
K-Truss has the second best performance, which outperforms
FuzLhocd on com-friendster network when the degree of
seed was smaller. MAPPR and GloLhocd are does not per-
form well due to the seed-dependent problem. Fig. 7(c) and
Fig. 7(d) shows the F-score of the detected communities using
different methods. The FuzLhocd method has the best overall
performance. We can see that the F-score value of FuzLhocd
is about 20% to 50% higher than those of other methods.
The seed-dependent problem causes the low F-score of other
methods. This is why their F-score value is very low. Similar
results can be observed in other datasets.

Fig. 8 shows the overall running time averaged over
100 random queries. Fig. 8 shows that FuzLhocd runs much

FIGURE 8. The overall running time of different methods.

faster than MAPPR and K-Truss, and is close to GloLhocd.
The FuzLhocd method can process large graphs with mil-
lions of nodes in tens of seconds. Note that even though
the heuristic local search method GloLhocd runs faster than
FuzLhocd, but its accuracies is low. In addition, The MAPPR
and K-Truss methods takes long running time, because both
of them needs to precomputes the number of motif instances
containing each pair of nodes, and this precomputation is time
consuming.. The running time for FuzLocd almost monoton-
ically increases with the growth of the network. This implies
FuzLocd is quite effective when the network is large.

C. EXPERIMENTS ON SYNTHETIC NETWORKS
1) NETWORK GENERATION
In order to test the sensitivity-to-community-structure and
scalability of the selected algorithms, we investigated the
results on synthetic networks generated by Lancichinetti For-
tunato Radicchi (LFR) benchmark [40]. The network gener-
ating model LFR(N , C , k , kmax, µ, . . .) has five important
parameters, where N is the number of nodes in the network,
C is the number of communities, k is the average degree of the
nodes, kmax is the maximum degree of nodes, µ is the mixing
parameter indicating the proportion of a node’s neighbors
that reside in other communities. Generally, the higher the
mixing parameter of a network is, the more difficult it is to
identify the intrinsic communities. By varying the parameters
of the LFR benchmark, we can analyze the behavior of the
algorithms in detail. In this experiments, we generate eight
large-scale synthetic networks with properties of ground-
truth. The values of the parameters for generated networks
are given in Table 3.

2) COMMUNITY STRUCTURE SENSITIVITY EVALUATION
Local community detection is sensitive to the clarity of com-
munity structures in the network. In general, the fuzzier the
community structure, the more difficult local community
detection. To verify this conjecture, we evaluated the local
community detection performances of various algorithms on
LFR synthetic networks. Clearly, by tuning µ, we can vary
the clearness of the community structure of the generated
synthetic network.
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TABLE 3. Synthetic networks and parameters for the LFR benchmark.

We first evaluate the sensitivity-to-community-structure
when varying the mixing parameter µ from 0.1 to 0.8. The
number of nodes in the network is 10M, the number of com-
munities C = 1000, the average degree of nodes k = 10, and
the maximum degree of nodes kmax = 20. The seed selection
strategy is the same as the experiments on real-world net-
works. Then, the average values for the density and F-score
were calculated. Fig. 9 display density and F-score indices of
the algorithms on artificial networks.

FIGURE 9. Local community detection performances of various
algorithms on LFR networks.

Fig. 9(a) and Fig. 9(b) shows the density indices of the
algorithms on artificial networks. As we can see, the density
decreases when increasing µ, i.e., lowering the clearness of
the community structure. Moreover, it is clear that FuzLhocd
and K-Truss are consistently and significantly better than
GloLhocd and MAPPR for different µ. FuzLhocd exhibits
a similar performance as K-Truss, but is still better than
K-Truss. Fig. 9(c) and Fig. 9(d) shows the F-score of the
detected communities using different methods. We can see
that the accuracies of all existing methods drop significantly
after certain threshold. Because whenµ is large, the boundary
of the communities become vague. In addition, FuzLhocd

performs better than other methods no matter taking lower
degree nodes or higher degree nodes as seeds, causing by
our method FuzLhocd is more robust to the seed-dependent
problem than other algorithms. In summary, for synthetic
networks, FuzLhocd performs well for detecting a local com-
munity with ground truth and ismore robust to fuzzy structure
networks than the other algorithms.

3) SCALABILITY EVALUATION
We then evaluate the scalability when varying the network
size from 2M to 20M. Using the LFR model, we generated
an ensemble of synthetic networks with various numbers of
nodes from 2M to 20M. The other parameters, including
community number, average degree, maximum degree and
mixing ratio, were fixed at 1000, 10, 20 and 0.2, respectively.
For each network we use triangle as a motif and randomly
select nodes as seeds to examine 100 communities with more
than 100 nodes; then, the average running time of these
100 seeds were calculated and normalized. The scalability
results of all methods are shown in Fig. 10.

FIGURE 10. Scalability of local community detection.

As shown in Fig. 10, we found that FuzLhocd (or
GloLhocd) are consistently more efficient than global search
methods even on networks with millions of nodes. Interest-
ingly, we observed that the running time of FuzLhocd is an
average of 1∼10 times shorter than that of MAPPR. More-
over, we found that the running time gap betweenMAPPR (or
K-Truss) and FuzLhocd (or GloLhocd) becomes larger as the
nodes size increases. This is because MAPPR (or K-Truss)
is a global method and needs to visit all nodes in the graph.
In contrast, FuzLhocd (or GloLhocd) is a local method and
only needs to visit limited neighborhoods around the seed.
These observations verify that a local method is certainly
more efficient than a global method. As the node size grows
to a million, the running time of FuzLhocd may be a few
orders of magnitude faster than MAPPR. Thus the FuzLhocd
method runs efficiently.

D. PARAMETER SENSITIVITY EVALUATION
The third objective of the experimental evaluation was to
observe and validate the sensitivity of parameter λ in the
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FIGURE 11. Sensitivity of parameter λ for local community detection.

FuzLhocd algorithm. Parameter λ was defined to determine
which node should be added into the local community at
the community optimization stage. We were interested in
the changes in accuracies and community size with differ-
ent values of λ. For this evaluation, we used the Polbooks
network as the experimental dataset and observed the change
in community structure upon gradually modifying the value
of λ. Similar results were obtained on other networks.

We first analyzed the influence of λ on the accuracies.
In general, it is expected that the accuracies depend on small
changes to λ. The results are shown in Fig. 11, and they verify
our conjecture. As shown in Fig. 11(a), the density is very
large when 0 < λ ≤ 0.2. When λ = 0.3 and is larger,
the density is almost stable. As shown in Fig. 11(b), the recall
is very large when 0 < λ ≤ 0.3, When λ = 0.4 and is
larger, the recall is almost stable. As shown in Fig. 11(c),
λ = 0.4 is the critical point upon which stable precision is
found. Afterwards, the precision is almost stable. As shown
in Fig. 11(d), λ = 0.4 is the critical point upon which a
stable F-score is found. Afterwards, the F-score is almost
stable. Therefore, FuzLhocd yields a perfect partitioning with
parameter λ over a long stable range (0.4∼1.0).
Then, we analyzed the influence of λ on community size.

In general, it is expected that the community size monoton-
ically decreases with λ. When λ is small, it is easy to find a
large community. When λ grows, the community decreases.
The results are shown in Fig. 12, and they verify our con-
jecture. As shown in Fig. 12(a), the community size mono-
tonically decreases with λ. Moreover, λ = 0.4 is the critical
point upon which a stable value for the community size was
found. Before this, some border nodes could be added to
the local community when λ is small. After this, irrelevant
nodes quickly keep far away from the local community due
to the strong constraint on the closeness of a community.
The resulting community structures of the Polbooks network
with respect to distinct parameters are further illustrated
in Fig. 12(b) to Fig. 12(e), where all nodes with the same
color belong to the same community. The red nodes denote
the seed, and the green nodes denote the membership of the
finding community.

FIGURE 12. Sensitivity of parameter λ for community size.

Besides the above cases, we also investigate the influence
of λ on the result of running time. In general, it is expected
that the running time monotonically decreases with λ. When
λ grows, the search space of local search becomes smaller.
As a result, the running time of local search decreases.
To verify this conjecture, we apply FuzLhocd with λ =
0.1, 0.2, . . . , 1.0 on the synthetic networks and real networks.
For each λ, we randomly selected 10 nodes as the query node
from the network. Then, we averaged the running time of
these 10 query nodes. The results are shown in Fig. 13 and
they verify our conjecture. From Fig. 13, We can clearly
see that with the increase of parameter λ, the running time
gradually decreases. Moreover, when λ = 0.5 and larger,
the running time is almost stable.

FIGURE 13. The running time change with parameter λ in synthetic
networks and real networks.

From the result, we found that FuzLhocd is not sensitive to
the search results by using different parameter λ parameters.
In general, a λ value between 0.4 and 1.0 is sufficient to
achieve a good result. We recommend a value of 0.6 for λ.

E. CASE STUDIES
To evaluate the effectiveness of our local higher-order com-
munity detection methods, we selected three well-known
real-world networks with ground truth, namely, Strike,
Karate and Dolphins, for case studies. These real-world
networks are publicly available from the UCI data repos-
itory at https://networkdata.ics.uci.edu/index.php. Addition-
ally, we selected different special role nodes as seeds at
different networks for case study. Specifically, we selected
an outlier (sparsely connected nodes) node as the seed in the
Strike network, a hub (bridging different communities) node
as the seed in the Karate network, a core (higher centrality)
node as the seed in the Dolphins network.
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FIGURE 14. Case study on the Strike network.

FIGURE 15. Case study on the Karate network.

The first networkwas the Strike network. In this case study,
we used outlier node ‘‘1’’ as the seed and obtained the com-
munity result shown in Fig. 14. Fig. 14(a) shows the ground
truth of the networks, where all nodes with the same color
belong to the same community. Fig. 14(b) shows the detec-
tion results that were obtained by the MAPPR algorithm,
which identified only the seed node in the local community.
Fig. 14(c) shows the detection results that were obtained by
the GloLhocd algorithm, which are denoted by green nodes.
Fig. 14(d) shows the detection results that were obtained by
the FuzLhocd algorithm, which are denoted by green nodes.
Comparing Fig. 14(b) to Fig. 14(a), Fig. 14(c) to Fig. 14(a)
and Fig. 14(d) to Fig. 13(a), FuzLhocd was found to perform
better for identifying a ground-truth community when the
outlier was the seed.

The second network was the Zachary’s Karate club net-
work. Here, we used hub node ‘‘10’’ as the seed and obtained
the community result shown in Fig. 15. Fig. 15(a) shows
the ground truth of the networks, where all nodes with the
same color belong to the same community. Fig. 15(b) shows
the detection results that were obtained by the MAPPR
algorithm, which identified only the seed node in the local
community. Fig. 15(c) shows the detection results that were
obtained by the GloLhocd algorithm, which are denoted by
green nodes. Fig. 15(d) shows the detection results that were
obtained by the FuzLhocd algorithm, which are denoted by
green nodes. Comparing Fig. 15(b) to Fig. 15(a), Fig. 15(c)
to Fig. 15(a) and Fig. 15(d) to Fig. 15(a), we found that
FuzLhocd performed better in identifying the ground-truth
community when the hub node was used as the seed.

The last network was the Dolphins social network. Here,
we used core node ‘‘13’’ as the seed and obtained the com-
munity result shown in Fig. 16. Fig. 16(a) shows the ground

FIGURE 16. Case study on the Dolphins network.

truth of the networks, where all nodes with the same color
belong to the same community. Fig. 16(b) shows the detection
results that were obtained by the MAPPR algorithm, which
are denoted by green nodes. Fig. 16(c) shows the detection
results that were obtained by the GloLhocd algorithm, which
are denoted by green nodes. Fig. 16(d) shows the detec-
tion results that were obtained by the FuzLhocd algorithm,
which are denoted by green nodes. Comparing Fig. 16(b) to
Fig. 16(a), Fig. 16(c) to Fig. 16(a) and Fig. 16(d) to Fig. 16(a),
the performances of three algorithms were found to be similar
when the core node was used as the seed.

Based on the above three case studies, we make the fol-
lowing remarks. (1) The quality of the detected community
by our FuzLhocd method does not depend on the location of
the seed. (2) Our local FuzLhocd method is the most effective
of the different networks.

VII. CONCLUSION
Local community detection is a fundamental problem in com-
plex network analysis and has attracted intensive research
interest. However, most existing local community detection
methods are based on a single node or edge, thereby ignoring
the higher-order structures that are important for networks
of a given domain. This paper proposes a local higher-order
community detection algorithm (FuzLhocd) based on fuzzy
membership functions. FuzLhocd is proposed to solve two
common problems of existing local higher-order commu-
nity detection algorithms: the global search problem and the
seed-dependent problem. To solve the global search problem,
this paper introduces a new local metric called local motif
modularity. FuzLhocd only needs to visit limited neighbor-
hoods around the seed based on this local metric. To solve the
seed-dependent problem, we divide the process of the local
community detection into three stages and employ the differ-
ent fuzzy membership functions at different stages to detect
the local community. We conducted extensive experiments
on both real-world and synthetic networks, and the results
demonstrate that FuzLhocd not only runs efficiently locally
but also effectively solves the seed-dependent problem and
achieves a high accuracy.

The methods in this paper are effective for static net-
works. However, complex networks in the real world change
dynamically over time, and their community structures are
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dynamically updated. In the face of dynamic networks with
complex changes, new fuzzy membership functions should
be designed. In future work, the local community detection
algorithms of dynamic networks will be further studied.
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