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ABSTRACT The modeling of the engine starting process is vital to ensure the successful start of the engine.
However, the engine starting process is very complicated and challenging to model. To optimize the start
model performance, an improved teaching-learning based optimization (ITLBO) algorithm is proposed.
In ITLBO, a collective lesson preparation phase is increased to enhance the teaching ability of the teacher.
The random learning phase is replaced by S-shape group learning, and students learn from the top students
of their groups. Also the deterministic sampling selection phase is introduced to ITLBO, and the students
with higher evaluation have more possibility to advance in class. The improved algorithm is tested on
18 benchmark functions. The results indicate that the proposed ITLBO algorithm performs much better
in terms of convergence speed and accuracy than standard TLBO. When applied to the model adaptation of
the turbofan engine starting process, ITLBO is used to optimize the speed line of the rotation components
gradually from the lower speed line to the idle speed line. The weighted sum of relative errors between the
model outputs and the start test data is taken as the fitness function. After adaptation, the maximum relative
errors of model outputs to start test data are significantly decreased, which shows the effectiveness of the
ITLBO in model adaption.

INDEX TERMS Model adaptation, teaching-learning based optimization, collective lesson preparation,
turbofan engine.

I. INTRODUCTION
The aero-engine starting process is a very complex non-
equilibrium and non-linear aero-thermodynamic process.
It involves the co-operation of starter, fuel supply system,
ignition system and all other engine components. It is difficult
to establish an accurate starting process model [1]. An effec-
tive engine start model can provide information for engine
start controller design and improve the success rate of start
significantly. Therefore, the modeling of the engine starting
process is essential [2], [3].

The widely used start models are component-level models
based on component performance maps. However, the char-
acteristics of turbomachinery at low speed are difficult to be
obtained by experimental method. Also the accuracy of com-
ponent performance map obtained by computational fluid
dynamics method cannot meet the engineering requirements.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaoyong Li.

Therefore, the commonly used method is to extrapolate the
sub-idle characteristics of the start model based on the known
above-idle characteristics or to construct the whole compo-
nent characteristics by the stage-stacking method [4], [5].
Even so, the obtained performance map can hardly represent
the real starting process. So the accuracy of the start model
still needs to be enhanced. The commonly used method to
enhance the accuracy is performance map adaptation based
on the start test data.

The performance adaptations use a series of scaling factors
optimized by least square [6], [7], genetic algorithm [8]–[10],
particle swarm optimization [11] to scale and shift the per-
formance maps. These studies of performance adaptations
only involve the performance adaptation of steady state points
from idle to maximum power, but ignore the adaptation of
transient performance of the starting process. For the starting
is a continuous dynamic process, the performance adaptations
method used in steady state optimization cannot be applied
directly to start model optimization.
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The performance adaptation problem of the start model can
also be viewed as a parameter identification problem [12].
The scaling factors are the parameters of the start model to be
identified. With the development of evolutionary algorithms,
many parameter identification problems are solved by intelli-
gent optimizations such as particle swarm optimization [13],
bat algorithm [14], differential evolution algorithm [15] and
other heuristic optimization algorithms [16].

Different from all these evolutionary algorithms, Rao pro-
posed an efficient optimization method called Teaching-
Learning-Based Optimization (TLBO) in 2011 [17]. The
principle of the TLBO method is the philosophy of the
teaching-learning process and it is based on the effect of
the influence of a teacher on the output of learners in a
class. Similar to other nature-inspired algorithms, TLBO is
a population-based heuristic stochastic algorithm for global
optimization. While other nature-inspired algorithms need to
be set proper algorithm parameters to work efficiently, TLBO
is nearly parameter-free. Due to TLBO algorithm is easy to
implement and has fast convergence ability, it has beenwidely
used in various engineering problems [18], [19]. So we adopt
TLBO to optimize the scaling factors of the start model to
achieve model performance adaption.

The optimization ability of TLBO will directly affect
model performance. So an improved TLBO (ITLBO) algo-
rithm is proposed to enhance its searching ability and the
model accuracy. The improvements include: 1) Increasing a
preparing lesson collectively phase. 2) Adopting the S-shape
group method in the learning phase. 3) Increasing a Deter-
ministic Sampling selection phase. The results of simulations
reveal that ITLBO performs better in terms of convergence
speed and accuracy, and a more accurate start model can
be obtained by ITLBO, which can satisfy the simulation
requirement of the start model.

The rest of the paper is organized as follows. The related
work about TLBO is introduced in Section 2. Section 3
presents the proposed ITLBO algorithm. The verification of
the ITLBO algorithm is given in Section 4. Section 5 shows
the application of ITLBO in start model performance adapta-
tion. Finally, the paper is concluded in Section 6.

II. RELATED WORK ABOUT TLBO
As a swarm intelligence algorithm, the standard TLBO algo-
rithm may get into local optimum when solving complex
global optimization problems, so researchers have made
some improvements to enhance its searching ability.

One commonly used method is modifying the learning
process of TLBO to improve its efficiency. An elitist concept
was introduced into TLBO (ETLBO) by Rao, and the worst
individuals are replaced by the elite ones [20]. An opposition-
based learning method was introduced into TLBO by Roy
et al., and the independent variables of combined heat and
power dispatch systems were generated by oppositional
initialization, and the opposition-based jumping was used
based on jumping probability [21]. Satapathy et al. employed
an adaptive weight to simulate the forgetting process of

Algorithm 1 ITLBO
Begin
Initialize the population, set control parameters and
termination criterion;
Evaluate individuals and select the teacher;
while stop condition is not met:

Generate the teaching group according to Eq.(1)
Prepare lesson collectively according to Eq.(2) and

Eq.(3)
for all students (not including the teacher)
Take part in the teaching phase according to Eq.(4)

end for
for all students
Divide into several groups in S-shape.

end for
for students in each group

Take part in group learning phase according to
Eq.(7) and Eq.(8)
end for
for all students

Take part in the selection phase according to Eq.(9)
and Eq.(10).

end for
Evaluate the new generation and select the teacher
end while

end

the human brain in the learning phase, the new algorithm
(Weighted-TLBO) can do faster in simulation time [22].
Large population size may not always be helpful [23],
so Chen et al. introduced a new TLBO algorithm with
a variable-population scheme to increase the convergence
accuracy [24]. Learning from oneself historical positions
phase and a mutation and crossover phase were added into
TLBO by Ji et al. to enhance its exploration ability [19].
Zou et al. proposed a modified TLBO with differential cal-
culation in teacher phase and repulsion in the self-learning
phase to improve its optimization performance [25].

To improve the overall computational efficiency,
Camp et al. modified the TLBO algorithm by using a fitness-
based weighted mean in the teaching phase and a refined
learner updating process [26]. A hybrid TLBO is presented
by Xie et al. to deal with the permutation flow shop schedul-
ing problem [27]. An autonomous TLBO is presented by
Ge et al. to deal with the global optimization problems
on the continuous space [28]. Except for modifying the
learning way of TLBO, researchers also improved TLBO by
combining it with other evolutionary algorithms. Artificial
bee colony algorithm (ABC) is combined with TLBO to
solve solar photovoltaic parameter estimation problems [29].
The gravitational search algorithm (GSA) is combined with
TLBO to estimate the energy demand of Turkey in Ref [30].
Ghasemi et al. developed a hybrid TLBO variant with double
differential evolution (DDE) to handle the optimal reactive
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power dispatch problem [31]. Lim et al. presented a bidi-
rectional teaching and peer-learning PSO (BTPLPSO) to
improve the search accuracy and efficiency of PSO [32].

As a nature-inspired algorithm, many beneficial strategies
in teaching process are not included in standard TLBO.
In the real teaching process, especially in middle and pri-
mary school, teachers play a dominant role in class, so the
improvement of teaching ability is significant for teachers.
The teaching ability can be improved by preparing lessons
collectively. During this process, teachers can learn from each
other and get better preparations for their class. Also in the
real teaching process, teachers tend to group their class in
S-shape according to the student’s performance. Therefore,
there are top students in each group, and the performance of
each group is similar. Then in the learner phase, learners learn
knowledge from the top students of each group which can
increase the diversity of the population, and the top students
learn from the teacher or the randomly selected student in his
group. Also the selection strategy in the genetic algorithm is
considered to imitate keeping failing students from advancing
in class, which can be viewed as an elitist strategy.We learned
from the above teaching strategies and improved TLBO algo-
rithm by increasing a preparing lesson collectively phase
and a Deterministic Sampling selection phase and taking an
S-shape group learning method in the learning phase. All
these modifications will benefit the algorithm in convergence
speed and accuracy.

III. IMPROVED TEACHING-LEARNING BASED
OPTIMIZATION ALGORITHM
TLBO algorithm seeks the optimal solution of the problem by
simulating the process of ‘‘teaching’’ and ‘‘learning’’ in class,
which typically includes two phases: the teaching phase and
the learning phase. Each learner improves his or her score by
teaching or learning from other learners. The best learner is
considered as a teacher. The goal of the teacher’s teaching
process is to improve the average grade of the class, and the
goal of the learner’s learning process is to improve the grade
of the individual learner, to promote the performance of the
whole class. In this part, the improvements are advanced to
enhance the searching ability of the algorithm.

A. COLLECTIVE LESSON PREPARATION PHASE
In the typical TLBO algorithm, the role of teachers is weak
and the study of teachers is ignored. A capable and expe-
rienced teacher can improve the performance of the class
more quickly. It has already been proved by facts that a great
teacher produces a brilliant student. Teachers can enhance
their teaching skills by taking part in training or preparing
lessons collectively. In training, teachers can learn frommore
talent experts. In collective lesson preparation, teachers can
learn from each other to make up their deficiencies. Because
the experts cannot be predicted in the algorithm, the collective
lesson preparation process is introduced into the algorithm to
enhance the teacher’s performance.

First, a teaching group should be generated around the
current teacher, who is the best individual of the current
iteration. The jth dimension of the ith teacher in the teaching
group (XG,i,j) is generated within a circle of radius rj whose
center is the jth element of the current teacher (Xj).

XG,i,j = X j + 2 (γ − 0.5)X jrj (1)

where γ is a random number in the range [0,1].
During the collective lesson preparation phase, if other

teachers’ performance is better than the current teacher,
the current teacher should adopt other teachers’ teaching
methods according to Eq(2).

X = XG,i if f (XG,i) < f (X) (2)

Other teachers in the teaching group learn from the best
teacher and explore new teaching methods according to
Eq. (3).

XG,i = X + RD �
(
X i − XG,i

)
(3)

where RD is D dimension random vector in the range [0,1],
� is Schur-Hadamard product of two vectors.

The performance of all the teachers in the teaching group
will be sorted, the one with the best fitness will be signed to
the current teacher X .

B. TEACHING PHASE
In the teaching phase, the teacher imparts knowledge to learn-
ers to enhance the average performance of the class. For an
n-dimensional optimization problem f (X ), assume the posi-
tion of the ith learner is Yi = {yi,1,yi,2,...,yi,n}, the mean
position of the current class is noted as YMean.Then we have:

Ynew,i = Yold,i + RD � (X − TFYMean) (4)

where Ynew,i and Yold,i are the new and old position of ith
learner. TF is the teaching factor, its value is heuristically set
to either 1 or 2 by the following equation:

TF = round[1+ γ ] (5)

The greedy selection is carried out. That is if f (Ynew,i) <
f (Yold,i), Yold,i = Ynew,i. Yold,i will be appeared in the
following learning phase.

It can be seen that we adopt the typical teaching phase
unchanged.

C. LEARNING PHASE
During the learning phase, learners increase their knowledge
by interacting among themselves. In the typical learning
phase, the ith learner learns new knowledge from the jth
learner, who is randomly selected from the class. This phe-
nomenon is expressed as below.

Ynew,i

=

{
Yold,i+RD�

(
Yold,i−Yold,j

)
if f

(
Yold,i

)
< f

(
Yold,j

)
Yold,i+RD �

(
Yold,j−Yold,i

)
else

(6)
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The randomly selected individual may not be better than
the current one. So the searching is aimless in a way. In the
real class, teachers tend to divide the students into groups and
the S-shape group is preferred. There are top students in each
group in the S-shape group, and the students in one group
learn from the best student of their group. So the searching
is towards a better position. Also the different group has
a different target, which can increase the diversity of the
population.

YG,new,i = YG,old,i + RD �
(
YG,best − YG,old,i

)
(7)

where the subscript G represents the Gth group in the
population.

For the best student in the Gth group, he learns from the
teacher with the probability PG, otherwise he will learn from
the randomly selected students in his group.

YG,best,new

=

{
YG,best + RD �

(
X − YG,best

)
, if γ < PG

YG,best − RD �
(
YG,old,j − YG,best

)
else

(8)

D. DETERMINISTIC SAMPLING SELECTION PHASE
As the selection operation in the genetic algorithm, the Deter-
ministic Sampling selection phase is introduced into the
TLBO algorithm. The deterministic selection shows the abil-
ity to reach better fitness with lower computational time and
a smaller number of generations.

Take Na as the number of students advancing in class.
Np is the population size. The expected number of student i
advancing in class is

Ni = NpJ (Y i)/
Np∑
j=1

J (Y j) (9)

where J (Y) is the adaptive function of the maximum problem.
For minimum problem min f (Y), J (Y) can be set as -

f (Y) or the reciprocal of f (Y).

The number of students advancing in class is
Np∑
j=1
bNic, then

the number of students that fail to advance in class is

NF = Np −
Np∑
j=1

bNic (10)

where bNic is the integer part of Ni.
So NF students need to be added to the class to keep

the population size unchanged. The NF students are selected
according to the sorting of the fractional part of Ni. The
NF students with bigger fractional parts are duplicated and
add to the class.

E. PSEUDO-CODE OF ITLBO
From the above description, the improved TLBO (ITLBO)
including four phases. Compared with TLBO, ITLBO has
four additional control parameters: 1) The number of teachers
in a teaching group. 2) The number of learning groups that

a class divided into. 3) The radius rj of the teaching group
generated. 4) The probability (PG) of the top student in each
learning group learns from the teacher. They all can be set
constant. So the pseudo-code of ITLBO can be summarized
as follows.

IV. VERIFICATION OF ITLBO
Eighteen benchmark functions listed in Table 1 are selected
to verify the performance of ITLBO. In Table 1, f1-f5
are multimodal functions, f6-f10 are unimodal functions,
f11-f18 are rotated models. For fairness, we compare ITLBO
with TLBO [17], ETLBO [20] and CLP-TLBO (TLBO
with the Collective lesson preparation phase). The ‘‘Range’’
in Table 1 is the lower and upper bounds of the vari-
ables searching space. ‘‘fmin’’ is the theoretical global
minimum solution. All algorithms were coded in Matlab
(Matlab 9.0) and all executions were made on a computer of
E5-1620 v3 CPU, 16GB RAM.

50 times independent experiments were carried out on
these test functions. Each test function is set to 30-dimension.
The mean results of the experiments were used to reduce the
statistical errors. For all the algorithms, we set the number of
population to 50. The number of ETLBO’s elitist is set to 4.
In ITLBO, the number of teachers in a teaching group is set
to 9, the number of learning group in a class is set to 5, and ri
is 0.2, PG is 0.8.

A. COMPARISON OF CONVERGENCE SPEED
The stop criterion is set to FEs=10000 to evaluate the con-
vergence speed of the algorithm. To save space, we only give
the changes of mean values of function f3, f4, f8, f10 and f12
versus the number of function evaluation times (FEs). The
results are shown in Figures 1 to Figure 5.

FIGURE 1. Convergence performance of different algorithm on
30-dimensional function f3 (Rosenbrock).

From Figure 1 to Figure 5, we can find that ITLBO has
faster convergence speed than other algorithms except for
the Rotated Zakharov function, on which it is slightly slower
than CLP-TLBO, but its accuracy is better than CLP-TLBO.
Its convergence speed is the best in the remainder
unshown functions. The results show that ITLBO performs
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TABLE 1. Eighteen benchmark functions.

well in unimodal and multimodal functions optimization
problems.

B. COMPARISON OF CONVERGENCE ACCURACY
To show the convergence accuracy, we set the maximum
number of fitness evaluations (FEs) to 20000. The optimum
results got by the above algorithms are shown in Table 2.
From Table 2, we can see that ITLBO got minimum val-
ues on 15 problems and CLP-TLBO got minimum value
on 12 problems. The optimum values got by ITLBO and
CLP-TLBO are much smaller than that of TLBO and ETLBO
on functions f6, f7, f9, f10, f12, f13, which shows that the

increasing of CLP phase enhances the convergence accuracy
greatly. The process of group learning and the deterministic
sampling selection phase can enhance the accuracy of the
TLBO slightly.

V. TURBOFAN ENGINE START MODEL ADAPTATION
In this paper, a small twin spool mixed exhaust turbofan
engine was taken as an example to illustrate the start model
performance adaption process using ITLBO. To enhance the
optimization accuracy, the starting process was divided into
several periods according to the corrected rotor speed. For
each period, we optimize a series of scaling factors and
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TABLE 2. The mean best values and standard deviations of the functions.

FIGURE 2. Convergence performance of different algorithm on
30-dimensional function f4 (Griewank).

correct the corresponding rotor speed line. The key measured
parameters were weighted to evaluate the scaling factors.
The layout of the engine is shown in Figure 6. There are
five rotating components in the engine. The high-pressure
compressor (HPC) and the high-pressure turbine (HPT) are
on the high-pressure shaft. The fan, the low-pressure com-
pressor (LPC) and the low-pressure turbine (HPT) are on the
low-pressure shaft.

The performancemaps of the five rotating components will
be modified to adapt the model outputs to the test data. For
each component, there are three coefficients about pressure
ratio, flow rate and efficiency that need to be optimized. They
are listed in Table 3.

FIGURE 3. Convergence performance of different algorithm on
30-dimensional function f8 (Zakharov).

In Table 3, subscripts π , w and η respectively indicate the
pressure ratio, corrected flow rate and efficiency of compo-
nents. Subscripts F , LC, HC, HT, LT denote Fan, LPC, HPC,
HPT and LPT.

TABLE 3. Coefficients of components to be optimized.
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FIGURE 4. Convergence performance of different algorithm on
30-dimensional function f10 (Sphere).

FIGURE 5. Convergence performance of different algorithm on
30-dimensional function f12 (Rotated Zakharov).

FIGURE 6. The layout of the small twin-spool turbofan engine.

There are 15 parameters to be modified together. Taking
the fan map as an example. If the operating point got from the
performance map is denoted by πF , wF and ηF , the modified
operating point is πFxFπ , wFxFw and ηFxFη. Once these
coefficients are gotten, they are used tomodify the component
performance maps as shown in Figure 7.

For the complex of engine starting process, the adaption
cannot achieve satisfying accuracy by only one set of coeffi-
cients. So the starting process is divided into six segments
evenly according to the time as shown in Figure 8. Also
new speed lines are inserted to the performance maps to
separate the acceleration process as shown in Figure 9,
where the solid lines n1, n2, n3, n4 are the existing
speed lines and the rest dash lines are the inserted lines.

FIGURE 7. Scaling of the fan performance map.

FIGURE 8. Percentage speed of the low-pressure shaft.

FIGURE 9. Scaling of the fan performance map.

The performance map adaptations are carried out from the
lower speed line to the idle speed gradually. Firstly, we mod-
ify the speed lines n1 and n5 according to the correction
coefficients obtained in the segment I, then we keep the
modified n1 and n5 unchanged, and modify the speed lines
n6 and n7 according to the correction coefficients obtained
in segment II. After that, we keep the four speed lines
unchanged and modify the speed lines n2 and n8 according to

VOLUME 7, 2019 136531



H. Feng, Q. Li: ITLBO Algorithm and Its Application to Aero-Engine Start Model Adaptation

the correction coefficients obtained in segment III, and so on.
The relative errors between the outputs of the model and the
start test data of the engine are taken as the objective function
to evaluate the coefficients.

O =
q∑
j=1

(
m∑
i=1

ai

∣∣∣∣XiT − XiSXiT

∣∣∣∣)j (11)

where q is the number of data points participating in the
evaluation, m is the number of output variables participating
in the evaluation, XiT is the ith test data, XiS is the ith model
output data, ai is a weighting factor.

In order to limit the maximum relative error, a penalty
factor is introduced to the objective function.

if
((∣∣∣∣N1T − N1S

N1T

∣∣∣∣ > 10%
)∥∥∥∥(∣∣∣∣N2T − N2S

N2T

∣∣∣∣ > 10%
) ∥∥∥∥

×

(∣∣∣∣P3T − P3SP3T

∣∣∣∣ > 10%
))

⇓

f (x) = 1.2O (12)

where N1, N2 and P3 represent low-pressure rotor speed,
high-pressure rotor speed and total pressure at the outlet of
high-pressure compressor respectively. Subscripts T and S
represent test data and model output data respectively.

When the relative error exceeds 10%, the fitness of the
individual is multiplied by 1.2 to reduce the probability of
the individual to be selected.

Because there are fifteen coefficients to be optimized,
f (x) is a fifteen-dimensional function. All fifteen coefficients
are ranged from 0.95 to 1.05 to ensure that the modified lines
are not changed much. The rest of the optimization control
parameters are the same as those in section 4.

The changes of fitness function of model performance
adaption in the segment I of Figure 8 are shown in
Figure 10 as an example, and the proposed ITLBO method
also shows advantages in convergence speed and accu-
racy, which means the model modified by ITLBO is more
accurate.

FIGURE 10. Convergence performance of different algorithm on engine
start model adaptation.

FIGURE 11. Adaptation results of N1.

After finishing all the speed line modification by using
ITLBO, a new set of component maps for rotating compo-
nents are got, and the start model performance adaption is
achieved. The comparison of start model output N1 to the
start test data before and after adaptation is given in Figure 11.
Figure 12-14 show the relative error of the start model outputs
to the start test data before and after adaptation. It can be
seen that the output of the start model after adaption is more

FIGURE 12. Adaptation results of N1 error.

FIGURE 13. Adaptation results of N2 error.
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FIGURE 14. Adaptation results of P3 error.

consistent with the test data and the maximum relative error
of each output reduces significantly. The maximum relative
error of N1 decreases from 17.2% to 7.8%. The maximum
relative error of N2 decreases from 14.2% to 5.75%. The
maximum relative error of P3 decreases from 20% to 5.34%.
So the capability of ITLBO to adapt the performance of start
model performance maps is validated.

VI. CONCLUSION
An improved TLBO algorithm is proposed to realize the
performance adaption of aero-engine start model. Inspired by
the teaching process of daily life, a collective lesson prepa-
ration phase is introduced to the TLBO algorithm, and the
dominant role of the teacher in class is manifested. Inspired
by the practical teaching environment, the random learning
phase is replaced by an S-shape group learning phase, and
a deterministic sampling selection phase was introduced to
the TLBO algorithm. The innovationsmentioned above effec-
tively improve the convergence speed and accuracy of the
TLBO algorithm on Benchmark functions tests, and benefit
the start model adaption by shorting the optimization time and
providing more accurate component maps.

The start process is segmented to several periods to
enhance the adaption accuracy. The speed lines relative to
each period are optimized separately and the start model per-
formance adaption is achieved from lower speed to idle speed
gradually. The maximum relative error of N1 decreases from
17.2% to 7.8%. The maximum relative error of N2 decreases
from 14.2% to 5.75%. The maximum relative error of
P3 decreases from 20% to 5.34%. The proposed ITLBO can
decrease the modeling error effectively.
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