
Received August 1, 2019, accepted August 15, 2019, date of publication September 4, 2019, date of current version September 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939492

Blockchain-Based Fair Payment Protocol for
Deduplication Cloud Storage System
SHANGPING WANG 1, YUYING WANG 2, AND YALING ZHANG 2
1School of Science, Xi’an University of Technology, Xi’an, China
2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China

Corresponding author: Yuying Wang (yuyingwang1110@gmail.com)

This work was supported by the National Natural Science Foundation of China under Grant 61572019.

ABSTRACT Today more and more enterprises and individuals are outsourcing their data to cloud storage
system. Data deduplication is one of the important technologies to reduce the storage cost of cloud storage
system. In a cloud storage system with deduplication technology, the client can outsource the data files to
the cloud storage server and pay for them. Fair payment is one of key issues in the cloud deduplication
storage system. At present, a variety of secure deduplication encryption schemes have been designed to
protect the privacy of client data. However, most existing fair payment solutions use traditional electronic
cash systems to generate payment tokens, which requires a trusted authority to prevent double-spending.
Trusted authorities will become bottlenecks in the payment system. Faced with this problem, in this paper,
we propose a new decentralized fair payment protocol for cloud deduplication storage system by utilizing
ethereum blockchain technology. The new protocol takes advantage of the decentralization of blockchain
technology, allowing direct transactions without the participation of trusted third parties. In the new protocol,
if a malicious situation occurs, the system can guarantee fair payment by pre-storing penalty money in the
smart contract. Safety analysis and experimental analysis show that our new protocol is feasible.

INDEX TERMS Cloud storage, deduplication, fairness, blockchain, ethereum, smart contract.

I. INTRODUCTION
In recent years, due to the rapid development of cloud com-
puting and big data technology, more and more enterprises
and individuals choose to outsource data to cloud service
providers. Many cloud storage systems use deduplication to
reduce costs by taking advantage of the redundancy of storing
data and avoiding storing the same data multiple times in
real life. However, in order to provide secure deduplication,
clients must trust the server not only to store their documents,
but also to encrypt them. Usually, traditional encryption tech-
niques make deduplication impossible. Suppose Alice and
Bob both have a file M, and they encrypt the file under the
key KA and KB respectively. Finally, the ciphertext FA and
FB are stored on the remote cloud storage server S. In this
case, it is difficult for S to detect that the two ciphertexts are
the same. In addition, even if it could be detected, it would be
difficult for S to store FA and FB in a short copy, thus allowing
Alice and Bob to decrypt the plaintext M. The convergent
encryption proposed byDouceur et al. [1] and its variants deal

The associate editor coordinating the review of this manuscript and
approving it for publication was Chunsheng Zhu.

with data security and privacy issues for secure deduplication.
However, most of the existing fair payment schemes in cloud
outsourcing storage adopt traditional payment mechanisms
and rely on trusted third parties, such as Banks. For example,
Google’s cloud platform offers a range of computing and
storage services, but bank accounts are required to register.
However, traditional payment schemes have disadvantages.
First, the bank is trusted by all users and servers and handles
all processes in a fair way. Second, the payment mechanism
needs to adapt to multiple Banks used by different partici-
pants and need to be updated at any time, which will become
the bottleneck of the payment system. Finally, users’ pri-
vacy and bank accounts may be violated. Therefore, the fair
payment in the cloud service environment has been studied
extensively.

In this paper, based on the cloud storage encryption
scheme, we improve the cloud storage encryption scheme
by introducing ethereum blockchain technology, and make
fair payment by using ethereum smart contract technology.
At the same time, we achieve the role of supervision, track the
behavior of data, and realize the decentralized fair payment.
Because all access records are recorded in the blockchain

127652 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8964-5328
https://orcid.org/0000-0002-5271-625X
https://orcid.org/0000-0002-1759-6678

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

network, and the blockchain is transparent. Our protocol uses
deduplication technology to reduce the cost of cloud storage
and to reduce server-side load.

Our contributions:
The contributions of this paper are as follows:
(1) A fair payment protocol based on Ethereum blockchain

for cloud storage system is proposed. Decentralized payment
is realized through the blockchain technology, and the fair-
ness of payment is guaranteed by the smart contract with pre-
existing penalty. There is no trusted third party in our system.
The payment process is decentralized by transferring tokens
in the blockchain network through ethereum smart contract
technology.

(2) On the one hand, deduplication technology is adopted
to provide effective and secure methods to reduce storage,
communication and computing overhead of cloud storage
servers and clients; on the other hand, according to ‘‘whether
files uploaded by the client are duplicated with existing files
on the cloud storage server’’ in deduplication technology,
the protocol provides two different payables, namely, ‘‘file
duplication’’, payable is b1; ‘‘file unduplicated’’, payable is
b2, where b1 < b2.

(3) The combination of the payment scheme proposed
in this paper and deduplication technology weakens the
client-side deduplication attack to some extent. Usually if
an attacker who knows the file tag Tag can convince the
storage service that it owns the file, so the server allows the
attacker to download the entire file. However, our payment
protocol requires that the server does not perform file storage
operations until the client pays. That is, even if the attacker
has a file tag, he still needs to make a payment, and then the
server returns file link pointer L. Therefore, this will limit the
attack behavior of deduplication attack to a certain extent.

(4) Under the Ubuntu linux system, smart contracts were
created and deployed through the Ethereum official test net-
work Rinkeby, and the corresponding performance and cost
were analyzed.

The rest of the paper is organized as follows. In the section
II, related work is presented. The section III introduces some
preliminaries. The section IV shows the system model of our
scheme. The specific construction of our scheme is described
in detail in section V. And the performance and security
analysis are discussed in section VI. Finally, the conclusions
and future research directions are given.

II. RELATED WORK
In order to achieve secure deduplication, some scholars pro-
pose the following schemes. In 2002, Douceur et al. [1]
proposed the convergence of encryption, so that duplicate
files are merged into one file space, even though these
files are encrypted by different users’ keys. That is, con-
vergent encryption provides the first clever solution for
secure deduplication. In 2013, Li et al. [2] proposed the
DeKey scheme to solve the problem of effective and reli-
able management of large convergence keys in convergent
encryption. In this scenario, users do not need to manage

any keys themselves, but instead securely distribute aggre-
gate key sharing across multiple servers. In the same year,
Bellare et al. [3] formalized a new cryptographic primitive
called message-locked Encryption (MLE), in which the key
that performs encryption and decryption itself comes from
the message. MLE provides a way to implement secure dedu-
plication. Abadi et al. [5] strengthened the security concept
proposed by Bellare M et al. by considering the plaintext
distribution that might depend on the common parameters
of the scheme. Abadi M et al. designed a completely random
scheme, which supports an equality testing algorithm defined
on ciphertext. A deterministic ciphertext component is con-
structed to support more efficient equality testing. In both
schemes, the overhead of ciphertext length is additional and
independent of message length.

In 2013, Keelveedhi et al. [6] addressed the vulnerability
of message-locked Encryption (MLE) to brute force attacks,
which can restore files to a known set, by proposing a frame-
work that provides secure deduplication storage to resist
brute force attacks, and implemented in a system called Dup-
LESS. In DupLESS, the client encrypts under message-based
keys that are obtained from the key server via an unrelated
PRF protocol. It enables clients to store encrypted data with
existing services, allowing services to deduplicate data on
their behalf, while maintaining strong confidentiality guar-
antees. DupLESS demonstrates that encryption for duplicates
can achieve performance and space savings similar to those
achieved by using a plaintext data storage service. These
secure deduplication solutions provide effective and secure
ways to reduce storage, communication, and computing over-
head for cloud storage servers and clients.

After deduplication encryption technology has been effec-
tively solved, the issue of fair payment between clients
and cloud storage servers has also attracted wide attention.
Carbunar and Tripunitara [7] first considered the payment
problem in outsourcing computing in 2010. Based on this,
they proposed a fair payment scheme based on the seg-
mentation selection protocol and secret sharing protocol.
However, this solution is very inefficient for practical appli-
cations. Later, the author proposed an improved new pay-
ment scheme [8], but the efficiency of this scheme was
not improved. It can also be regarded as a specific exam-
ple of conditional electronic payment [9], [10]. In 2012,
Chen et al. [11] first considered the third trust issue, that is,
worker W would not send the calculation results to outsourc-
ing company O. They adopted the same model, introducing
lazy and partial dishonest employees. Then, they proposed
a new fair payment scheme, which only uses the traditional
e-cash scheme to generate payment tokens. Their solution is
more effective than the previous one. In 2014, Chen et al. [10]
further proposed a conditional electronic payment system
based on restricted partial blind signature scheme.

Since the first introduction of blockchain by the Nakamoto
team [12] in 2008, the application of blockchain-based tech-
nology has penetrated into various industries, especially those
business fields where there are transaction intermediaries,

VOLUME 7, 2019 127653

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

which means that many service businesses will be decentral-
ized. The decentralized distributed structure of blockchain
can save a lot of intermediary costs in reality. Because
blockchain technology can be used as a tool for large-scale
collaboration between people without mutual trust, it can be
used in many traditional centralized fields to handle transac-
tions that were originally handled by intermediaries.

In 2014, Andrychowicz et al. [13] showed how to use the
bitcoin system to obtain fairness in any two-party security
computing protocol. The significance is as follows: if one
party terminates the protocol after receiving the output,
the other party will receive economic compensation (bitcoin).
One possible application of such an agreement is fair contract
signing: each party is forced to complete the agreement or pay
a fine to the other. In 2016, Andrychowicz et al. [14] used
the bitcoin system to provide an attractive way to construct a
‘‘timed commitments’’ in which the committer has to reveal
their secrets within a certain time frame or to pay a fine.
This, in turn, can be used to achieve fairness in some multi-
party protocols. Secondly, they introduce the concept of
the multi-party protocols that work ‘‘directly on Bitcoin’’.
In 2017, Ateniese et al. [15] introduced auditable storage
based on reversible Bloom filter expansion, and demon-
strated how to combine it with zero- knowledge proof based
on bitcoin. However, the combination involves a trusted
third party, called a bitcoin arbitrator. In the same year,
Campanelli et al. [16] defined the concept of zero-knowledge
contingent service payment and realized the service payment
based on blockchain. Two advanced protocols are constructed
and implemented based on the retrievable service proof.
However, the proposed protocol is only conceptual, lacking
design details, and its efficiency needs to be improved due
to the use of an indistinguishable protocol [22] as a building
block.

Based on game theory and Ethereum smart contract,
Dong et al. [17] proposed a protocol to verify the correctness
of computation in cloud computing. However, assuming that
users are honest; the two clouds cannot collude. On the
other hand, in order to improve the transaction through-
put and latency in blockchain, the current work mainly
focuses on offline payment channels, which can be com-
bined with the payment channel network to achieve mul-
tiple payments without accessing the blockchain. In 2018,
Zhang et al. [18] introduced TKSE, a trusted keyword search
scheme based on encrypted data, without any third party.
In TKSE, an encrypted data index based on digital signatures
allows users to search for outsourced encrypted data and
check that the search results returned by the cloud meet
the pre-specified search requirements. In particular, it is the
first time that server-side verifiability has been implemented
to protect honest cloud servers from malicious data owners
in the data storage phase. In addition, using the blockchain
technique and the hash function, even if the user or the cloud
itself is malicious, the payment fairness of the search fee can
be realized without introducing a third party. In the same year,
Zhao et al. [28] used blockchain trading technology to realize

the decentralized fair payment of the ‘‘publish-subscribe’’
system.

In summary, the use of blockchain technology’s decen-
tralized, non-tamperable features into the payment solution
can solve the malicious problems of both sides. However,
blockchain technology has just emerged, and the fair payment
based on blockchain for cloud storage has not yet begun. It is
of great value and significance to study the decentralized fair
payment based on blockchain under cloud services.

III. PRELIMINARIES
A. SECURE DEDUPLICATION
Cloud computing provides a low-cost, scalable, location-
independent infrastructure for data management and storage.
The rapid adoption of cloud services has led to an increase
in the amount of data stored on remote servers, requiring
technologies that save disk space and network bandwidth.

Deduplication [3], [4], [21] is an important technology to
reduce the storage cost of cloud storage and management
system, that is, the server only stores one copy of each file,
regardless of how many clients request to store the file.
Many storage systems use deduplication to reduce costs.
Take advantage of the redundancy of stored data to avoid
storing the same data multiple times in real life. For example,
in a cloud storage system, suppose n clients share the same
copy of file F. If some actual storage costs are omitted, then
deduplication will change the storage cost of the file from
O(n · |F |) to O(n+ |F |), | · | is the bit length of the file.
In a typical cloud storage system with deduplication,

the client first sends only a hash of the file to the server,
which checks to see if the hash value already exists in its
database. If the hash is not in the database, the server requests
the entire file. Otherwise, since the file already exists on the
server (possibly uploaded by someone else), it tells the client
not to send the file itself, saving bandwidth and storage (this is
called client-side deduplication). Either way, the server marks
the client as the owner of the file, and since then, there is
no difference between the client and the original party that
uploaded the file. Therefore, the client can request recovery of
the file regardless of whether the client is required to upload
the file. Either way, if the client needs this duplicate data,
it will be charged. Although the server does not require the
client to upload this duplicate file, the client still needs the
server to return the file storage location. That is, the client
completes a stored procedure, but the server has the same file
and does not need to upload it.

It has been reported that business applications can achieve
deduplication rates from 1:10 to 1:500, resulting in savings
of more than 90% of disk and bandwidth. Deduplication can
be applied at the file level or at the block level, and file level
deduplication is used in this paper.

During deduplication, the client tries to identify dedupli-
cation opportunities that already exist on the client to save
bandwidth in uploading existing copies of files to the server.
However, in order to provide secure deduplication, clients

127654 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

must trust the server not only to store their documents, but
also to encrypt them. Usually, the traditional encryption tech-
nology makes deduplication impossible. Suppose Alice and
Bob both have a file M, and they encrypt the file under the
key KA and KB respectively. Finally, the ciphertext FA and
FB are stored on the remote cloud storage server S. In this
case, it is difficult for S to detect that the two ciphertexts are
the same. In addition, even if it could be detected, it would be
difficult for S to store FA and FB in a short copy, thus allowing
Alice and Bob to decrypt the plaintextM. Convergent encryp-
tion [1] provides the first clever solution to secure deduplica-
tion and its variants, designed to address data security and
privacy issues. At present, a variety of secure deduplication
encryption schemes have been designed to protect the privacy
of customer data. This paper uses convergent encryption to
ensure data security.

B. CONVERGENT ENCRYPTION
Convergent encryption (CE) [3] aims to provide data confi-
dentiality for deduplication. Here, the client derives a con-
vergent key K from each original data copy M , and uses
K to encrypt the data copy to get ciphertext C . In addition,
the client also derives a tag Tag for the data copy, which is
used to detect the copy. Here, we assume that tag correctness
attribute [38] is true. More precisely, if two copies of data
are the same, they have the same tag. To detect a replica,
the user first sends a tag to the server to check that the same
replica has been stored. Note that the convergence key and
the tag are independently derived, and the tag cannot be used
to derive the convergent key and destroy data confidentiality.
The encrypted copy of the data and its corresponding tag are
stored on the server-side. Formally, according to the defini-
tion of [3], the following is the definition of the convergent
encryption scheme used in the system.

A convergent encryption scheme (CE) is composed of a
four-tuple (KG,Enc,Dec,TG).
KG(M) → K . KG is an important generation algorithm,

input data M , and output convergent key K .
Enc(K ,M)→ C .Enc is a symmetric encryption algorithm

that outputs ciphertext C with K and M as inputs.
Dec(K ,C) → M . Dec is a decryption algorithm that

outputs a copy of the original dataM with K and C as inputs.
TG(M) → Tag(M). TG is a tag generation algorithm for

the original data copyM . (Normally, the input to the TG is the
ciphertext ofM , so TG(C)→ Tag(M)). In this paper, the file
ciphertext C is hashed using the hash function SHA-256 to
generate a file tag Tag to achieve tag unification.

C. SIGNATURE SCHEME
In the digital signature scheme, the sender first publishes its
public key pk, and then uses its private key sk to sign the
message. When a signed message is received by the receiver,
the sender’s public key can be used to verify the message.

Digital signature scheme is a set of probability polynomial
time algorithm (Gen, Sign, Verify), so that:

Gen(k) → (pk, sk).The key generation algorithm Gen
takes the security parameter k as input and outputs a pair
of keys (pk,sk), which are called public key and private key
respectively.
Sign(sk,m)→ σ .The signature algorithm Sign accepts the

private key sk and the message m from the message space as
input. It outputs a signature σ .
V erify(pk,m, σ)→ b.The deterministic verification algo-

rithm Verify enters the public key pk, message m, and signa-
ture σ . It outputs a bit b; b = 1 means valid, b = 0 means
invalid.

It is required that for each k , every (pk,sk) output ofGen(k),
and eachmessagem in the plaintext space, the signature of the
message m satisfies V erify(pk,m, σ) = 1.

D. PROOF OF OWNERSHIP
Cloud storage systems are gaining popularity. One promising
technique to reduce the cost of deduplication is to store only
one copy of the duplicates. Client deduplication attempts to
identify existing deduplication opportunities on the client and
to save bandwidth by uploading existing copies of files to the
server.

Harnik et al. recently found that client-side deduplication
introduces new security issues [40]. For example, the server
tells the client that it does not need to send the file, which
indicates that some other clients have exactly the same file,
which may be sensitive information. Specifically, an attacker
who knows the file tag Tag can convince the storage service
that it owns the file, so the server allows the attacker to
download the entire file.

To overcome such attacks, [4] introduces the concept of
proof of ownership (POW), which allows the client to effec-
tively prove to the server that the client holds a file, rather
than just some brief information about the file.

The concept of POW can be achieved by using a Merkle
tree-based retrievable protocol proof. That is, we first use the
Erasure Code to encode the file so that we can recover the
entire file from, for example, 90% of the encoded bits. Then,
we build aMerkle tree on the encoded files, and lets the server
asks a random selection of super-logarithmic leaves.

According to the erasure code properties, if the enemy is
missing any part of the file, then at least 10% of the leaves
are not aware of it. Moreover, if the file has a high min-
entropy [4] from the point of view of the adversary, it cannot
even guess the value of the 10% leaf, and there is no obvious
chance of success. Therefore, it is very likely to be caught.
Detailed POW scheme description references [4].

1) BASIC KNOWLEDGE
(1) E : {0, 1}M → {0, 1}M

′

is an erasure code [4] that can
erasure up to a α portion of the bit (for a certain constant
α > 0). Namely, the file F ∈ {0, 1}n is erasured with the
security parameters n. From any (1−α)M ′ position of E(F),
in principle, the original file F ∈ {0, 1}n can be completely
recovered.

VOLUME 7, 2019 127655

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

(2) The Merkle tree provides a clean promise for large
buffers [4], so that later blocks of the buffer can be opened
and validated without providing the entire buffer. To construct
the Merkle tree, we split the input buffer into blocks, then
group the blocks in pairs, and hash each pair using a collision
resistant hash function. The hash values are then grouped in
pairs again, and each pair is further hashed, repeating the
process until only one hash value remains. This generates
a binary tree with the leaves corresponding to the blocks
of the input buffer and the roots corresponding to the final
remaining hash values. (When the number of blocks in the
input buffer is 2h, the resulting tree is a complete binary tree
of height h.)

UseMTH ,b(X) to represent the binaryMerkle tree of buffer
X , using the b-bit leaf node and the hash function H . In addi-
tion, letH be a collision resistant hash function with an output
length of n′ bits (e.g., SHA256, n′ = 256). For each node
n in MTH ,b(X), we use vn to represent the value associated
with that node. That is, the value of the leaf node is the
corresponding block of the buffer X , and the value of the
intermediate node n ∈ MTH ,b(X) is the hash vn = h(vl, vr),
vl, vr are the values of the left child node and the right child
node of n, respectively. (If a child of a node is missing from
the tree, its value is treated as null.)

For a leaf node l ∈ MTH ,b(X), the sibling path of l consists
of the value vl and the sibling path values of all the nodes in
the path from l to the root.
Given the subscript of leaf node l ∈ MTH ,b(X) and the

sibling path of l, we can calculate the values of all the leaves
on the l-root path in a bottom-up manner, by starting from
two leaf nodes and then repeatedly computing the value of
the parent node as a hash of the values of the two child nodes.

We say that a sibling path P = (vl, vn0, vn1, . . . , vni) of
MTH ,b(X) is valid, if i is indeed the height of the tree, and the
calculated root value in the sibling path is the same as the root
value of MTH ,b(X). Note that in order to verify that a given
sibling path is valid, it is sufficient to know the number of
leaves and the root value of MTH ,b(X).

2) BASIC STRUCTURE
According to [4], the following POWscheme is a strong proof
of ownership protocol with robustness (1− α)u.
(1) Let the parameter b = 256 be the leaf size of the Merkle

tree; ε, the desired robust boundary; and α, the erasure
recovery capability of the erasure code. We use the col-
lision resistant hash function H (·), and the erasure code
E(·) with a recovery capability of α.

(2) Once the M -bit file F is inputted, the verifier calculates
the code X = E(F) and the Merkle tree MTH ,b(X), and
holds only the root of the tree and the number of leaves
as the verification information.

(3) During the proof protocol, the verifier randomly selects
a u leaf index, l1, . . . , lu, u is the smallest integer that
makes (1 − α)u < ε.The verifier asks the prover for the
sibling path of all the leaves, and calculates the Merkle
root by using the returned sibling path, and determines

whether all the sibling paths are valid for the Merkle tree
MTH ,b(X).

(4) If all sibling paths are valid, the prover proves to the
verifier that it owns the file.

In this paper, to prevent unauthorized access, a secure proof
of ownership scheme, POW, is used so that when the server
discovers a copy, the client provides proof that it does have
the same file.

E. BLOCKCHAIN TECHNOLOGY AND ETHEREUM
Blockchain technology was introduced to the world by
‘‘bitcoin’’. Bitcoin is a P2P encrypted digital currency. Since
the establishment of Nakamoto Satoshi [12] in 2008, its
value and popularity have increased. In the case of bitcoin,
blockchain supports a payment system and a complete digital
currency, which is secure and decentralized. That is, it is a
user-driven peer-to-peer network with no central authority.
As bitcoin began to attract attention, developers took advan-
tage of the blockchain technology as an infrastructure
to create their own platform (in addition to the primary
use of bitcoin to facilitate the transfer of digital money).
On the one hand, some platforms use the bitcoin network
as infrastructure to notarize or certify the existence of dig-
ital documents, crowdfunding, dispute mediation, and spam
control. On the other hand, several platforms have emerged
in the form of tokens, a blockchain-based cryptocurrency
that aims to enhance bitcoin’s capabilities by implement-
ing its own features and functions. So far, there are almost
2,000 tokens, but the most attractive are ether [19],
litecoin [33] and dogecoin [34].

In this paper, we will use the ethereum platform. In 2013,
ethereum [19], [35] was proposed by Vitalik Buterin to cre-
ate a distributed computing platform based on blockchain,
with the ability to build and run decentralized applications
and smart contracts. Ethereum’s development was achieved
through online crowdfunding in mid-2014, and the platform
was launched in 2015. Ethereum has since gained consid-
erable attention and is a pioneer of blockchain 2.0 [35],
the next generation cryptographic space. As a cryptocurrency
based on the blockchain, it provides the same functions as
bitcoin: simple mobile payment, reliability, complete con-
trol over one’s own money, high availability, fast internal
payment, zero or low cost, protected identity and privacy.
However, ethereum offers an online transfer of digital cur-
rency that enables its users to build and deploy smart con-
tracts. So ethereum is a programmable blockchain.

F. ETHEREUM VIRTUAL MACHINE
The core of ethereum is the Ethereum Virtual Machine
(EVM) [19], which can execute code with arbitrary
algorithm complexity. Ethereum is ‘‘turing-complete’’, and
developers can use existing programming languages to cre-
ate applications that run on ethereum virtual machines,
such as JavaScript and Python. To maintain consistency
across the blockchain, each network node runs an ethereum

127656 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

virtual machine. The decentralized consistency allows
ethereum to be highly fault tolerant, with zero downtime, and
the ability to store data on the blockchain to remain constant
and censor resistant. Computing in ethereum virtualmachines
is paid for with ether (ETH), the currency used by ethereum.

G. ETHEREUM ACCOUNT
The basic unit of ethereum is the account. Ethereum uses
two types of accounts: external accounts (EOA) and con-
tract accounts. The external account EOA is controlled by
a corresponding private key, has an Ether balance, can send
transactions (forward Ether to another account or trigger a
contract code), and has no associated code. The external
account EOA is similar to a bitcoin address and consists of
hexadecimal digits, such as 0x990069a8450174f7a988ace-
7e3211309b5a23296, so the external account EOA is anony-
mous. A contract account has its own Ether balance and
associated code, and all actions are performed by the external
account through the transaction. Execution of the contract
code means receiving a transaction from the external account
EOA. The contract code can also be triggered by messages
from other contract accounts. Compared to Bitcoin scripts,
contracts execute Turing’s complete calculations and arewrit-
ten in high-level languages such as Solidity [36], Serpent,
and more. The behavior of a contract is entirely dependent
on his code and the transactions initiated to it, creating the
possibility for a decentralized system.

H. SMART CONTRACT
Smart contract [19], [20] is essentially a program written
in a certain computing programming language, which can
be run in the container provided by the blockchain system,
and at the same time, the program can be automatically run
under the activation of some external and internal conditions.
The combination of such features and blockchain technology
can not only avoid artificial malicious tampering with rules,
but also take advantage of the efficiency and cost of smart
contracts. Since the code of the smart contract is stored in the
blockchain, the operation of the smart contract is also in the
container provided by the blockchain system. Combined with
the cryptographic principle used by the blockchain technol-
ogy, the smart contract is naturally tamper resistant and anti-
counterfeiting features. The results produced by the smart
contract are also stored in the block, so that the execution
from the source, the execution process and the result are all
executed in the blockchain, which ensures the authenticity
and uniqueness of the release, execution and record of the
smart contract.

I. TRANSACTION INFORMATION
The smart contract [19], [20] deployment is essentially a
transaction initiated on ethereum. Ethereum transactions are
signed data packets that allow the transfer of ether from
one account to another. In addition to transmitting Ether,
transactions can trigger the execution of code in smart con-
tracts. Transactions include the initiation account address, the

TABLE 1. The specific parameters of the transaction information.

transaction destination account address, gasPrice, gasLimit,
the Ether value transferred, additional data fields, etc. (the
specific meanings of the transaction information parameters
are shown in Table 1 below). The originating transaction
account can place the data field into the additional data field
of the transaction, while in the smart contract, the binary
bytecode of the smart contract code is placed into the addi-
tional data field. In this scheme, wemainlymake fair payment
between client and cloud storage server through smart con-
tract. Each call to a smart contract is an Ethereum transaction
and can trigger the execution of the relevant code in the
contract.

IV. SYSTEM MODEL AND SECURITY REQUIREMENTS
Our scheme is improved on the cloud deduplication sys-
tem [21]. The original scheme [21] introduces the concept of
deduplication into common cloud storage schemes, and uses
traditional payment methods with trusted third parties for
transactions. And our scheme based on cloud storage dedupli-
cation, cancel the third party, introducing the ethereum smart
contract for both sides pay agreement. More importantly,
clients and cloud storage service providers use ethereum
smart contract to transfer and pay tokens, and every contract
call is recorded on the blockchain. Therefore, the information
transfer between the client and the cloud storage service
provider is tamper resistant and non-repudiation. The sym-
bolic annotations used in the scheme are shown in Table 2.

A. SYSTEM MODEL
The scheme has three roles, namely client, cloud storage
server and ethereum blockchain, where miners in ethereum
blockchain are not considered.

Client: request to upload the encrypted file to the cloud
storage server, and make the active payment when receiving
the payment from the cloud storage server.

Cloud storage server: our solution is to build on the dedu-
plication, that is, the cloud storage server needs to deter-
mine whether the file is duplicated or not. According to

VOLUME 7, 2019 127657

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

TABLE 2. The symbolic meaning in the scheme.

whether the uploaded files of the client are duplicated or not,
the scheme provides two different payables: ‘‘uploading files
duplicated’’, payable is b1; ‘‘uploading files not duplicated’’,
payable is b2, b1 < b2. The cloud storage server then sends
the corresponding amount payable. After the cloud storage
server confirms the payment from the client, the cloud storage
server performs the operation of uploading encrypted files
and performs different file uploading algorithms according
to whether the files are repeated or not. The specific file
upload process is shown in figure 2. After the encrypted file is
uploaded, the cloud storage server returns the payment receipt
and the file link pointer to the client.

Ethereum blockchain: The client and cloud storage
server deploy smart contract ServerContract, ClientContract
respectively, and smart contracts open storage data and inter-
face for acquiring data on Ethereum.

The description of the steps in the Figure 1 is as follows:
1© The cloud storage server S-CSP deploys the server

contract ServerContract to blockchain;
2© The client registers in the cloud deduplication system

for payment;
3© The cloud storage server S-CSP responds to the client’s

registration request, authorizes the client, and writes the
client’s address into the blockchain;

4© The cloud storage server S-CSP sends the registered
transaction number, S-CSP contract address, contract ABI,
and client contract code to the client through a secure channel.

FIGURE 1. System model.

5© The client requests to upload files to the cloud storage
server S-CSP;

6© The cloud storage server S-CSP returns the payable to
the client according to the request of the client through a
secure channel.

7© Before making payment, the client checks whether the
registration is successful or not according to the registered
transaction number;

8© The client checks whether the ethereum account has
enough funds to pay;

9© The client initiates the payment;
10© S-CSP obtains TxId of payment transaction information

through ethereum smart contract;
11© After the cloud storage server confirms receipt of pay-

ment, it returns the transaction receipt for the client;
12© The cloud storage server S-CSP performs file upload-

ing;
13© The cloud storage server S-CSP returns the signature σ

and the link pointer L to the file;
14© When the cloud storage server S-CSP has a malicious

situation, the client can initiate a penalty transaction fine to
get a penalty.

After understanding the overall architecture of the
blockchain-based cloud deduplication system fair payment
scheme, we now elaborate on the cloud deduplication of file
uploads. The specific process is shown in Figure 2.

1© The client uses convergent encryption scheme to
encrypt file F , and then uses tag generation algorithm to
generate the file tag Tag;

2© The client sends the file tag Tag to the cloud storage
server S-CSP;

3© After the cloud storage server S-CSP receives the file
tag, it checks whether the tag of the same file exists in the
table µTAB, and stores the record in the table;

4© The cloud storage server returns the check result of the
file tag to the client;

127658 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

FIGURE 2. Secure cloud deduplication process.

5© If the client receives the return result ‘‘no file dupli-
cate’’, the client will upload the ciphertext and file tag to the
cloud storage server; If the client receives the return result
‘‘file duplicate’’, the client will run the POW scheme to prove
that it owns the file stored in the cloud storage server;

6© The cloud storage server returns the corresponding sig-
nature σ and file link pointer L to the client after confirming
payment;

7© The client stores the convergent key K and file link
pointer L, and deletes file F at the same time.
The fair payment scheme of cloud deduplication system

based on blockchain consists of the following algorithms:
System setup:
Initializing convergent encryption scheme (KG,Enc,

Dec,Tag) to encrypt client data; Also, initialize the consensus
solution POW as a black box so that the client can prove to
the cloud storage server S-CSP that it has some specific data.

The cloud storage server S-CSP initializes public-private
key pairs (pkS−CSP, skS−CSP) and publishes public key to
all clients in the network. At the same time, two types of
storage systems are initialized: rapid storage system is used
to store tag table TAB(tag, link), tag means the file tag, and
link stores the corresponding file address (that is, the location
of the encrypted file in the file storage system); and the cor-
responding user information table µTAB(tag, num, user(ID,
time, state)), tag item is as described above, num refers to
the number of users sharing the same tag, user refers to the
user information, where ID refers to the user’s identity, time
records the time when the user uploads the file, and state
marks the status of the user’s file upload (If S-CSP does not
respond, state is 0, state is 1 when confirming the response,

and state is −1 when deleting the response). File storage
systems are used to store encrypted copies of data.

In Ethereum, the client IDt and cloud storage server S-CSP
create Ethereum accounts and deploy corresponding smart
contracts to the blockchain respectively, and publicize the
smart contract address and smart contract ABI (Application
Binary Interface, which contains several functions in JSON
format) for later work. The client registers with the cloud
deduplication payment system to make a payment.

File outsourcing:
The client calculates the file tag Tag and sends it to the

cloud storage server S-CSP; S-CSP checks if the same tag is
in the tableµTAB, stores the record, and sets state to 0. In turn,
S-CSP replies to the client with ‘‘file duplicate’’ or ‘‘no
file duplicate’’ and returns different payables to the client
depending on whether the same file exists.

After the cloud storage server S-CSP confirms payment
from the client, S-CSP performs file upload. If the response
received by the client is ‘‘no file duplicate’’, the encrypted
file and tag are uploaded to S-CSP, and S-CSP returns the
signature σ of the client and the link pointer L of the file,
and sets state to 1. In the case of ‘‘file duplicate’’, the client
proves to the cloud storage server S-CSP that it actually has
the same file by running the POW scheme (see section 2.4)
without actually sending the file. If POW passes, the cloud
storage server S-CSP returns the signature σ of the client and
the link pointer L of the file to the client, and sets state as 1.
If POW fails, S-CSP aborts the upload operation.

Payment phase:
When the client sends an upload file request to the cloud

storage server S-CSP, S-CSP returns different payables to
the client based on whether the same file exists. The client
transfers tokens by calling the method transfer(address _to,
uint256 _value) in the smart contract, that is, payment. The
cloud storage server S-CSP obtains the payment transaction
number TxId; after confirming the payment, the transaction
receipt is sent to the client.

If the cloud storage server S-CSP appears malicious,
the client can appeal to the S-CSP and ask it to return the link
pointer L of the file. If the appeal fails, the client can initiate
fine transactions that have been preset in the smart contract
to get the penalty.

File download:
The client IDt first sends a request to the cloud storage

server S-CSP containing an identity and a pointer to a file
link. Upon receiving the request, the S-CSP will check if IDt
is eligible to download the file. If it fails, S-CSP will send an
abort signal to IDt indicating that the download failed. Other-
wise, S-CSP returns the corresponding data. After receiving
data from S-CSP, the client IDt uses the convergent key K to
decrypt the data and recover the original file.

B. SECURITY REQUIREMENTS
Next, we will consider the safety performance of the system.

Confidentiality: In the blockchain environment, the pay-
ment process from the client to the cloud storage server is not

VOLUME 7, 2019 127659

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

affected by illegal modification. The client’s payment process
is confidential.

Authentication: In the fair payment system for cloud
deduplication based on blockchain, only authorized clients
can use the system to make payments.

Scalability: In a fair payment system for cloud deduplicati-
on based on blockchain, the number of clients should be
scal-able.

Integrity: Integrity means that if an honest client and an
honest cloud storage server execute an agreement, the honest
cloud storage server can get the payment from the client and
the honest client can receive the required data.

Fairness: When the malicious client executes the protocol,
if the client does not pay, the cloud storage server will not
perform file uploading and the client cannot get any required
data; when the malicious cloud storage server executes the
protocol, if it fails to return the result data to the client
in time, the client will appeal and require it to return the
required result data. If the appeal fails, the client will initiate
fine transaction to obtain the penalty from the cloud storage
server.

C. POTENTIAL ATTACKS
The following attacks may exist in the cloud deduplication
fair payment system.

Denial of service attack: An attacker could issue a large
number of upload file requests to the network layer to crash
the system.

Unfair upload attack: like the sybil attack, an attacker
forges a large number of client request file uploads, but the
client does not pay and does not require the server to return
results. In turn, the server causes a lot of useless work and
consumes resources.

Collusion attacks: Many clients may gather to request file
uploads without paying for them in order to consume server
resources. This is an extension of the unfair upload attack.

Re-Entry attack: The attacker has many malicious entries
into the network. When a malicious action on the client is
exposed, it can register as a new client.

V. SCHEME CONSTRUCTION
The fair payment protocol based on blockchain proposed by
us can be directly combined with most cloud storage systems
to realize decentralized fair payment in the cloud storage pay-
ment system. In the scheme, we added a group of authorized
users to the smart contract to prevent anyone from invoking
the smart contract to make payment. An unauthorized user’s
request for a payment call will be rejected by the smart
contract. Meanwhile, our scheme guarantees the fairness of
payment process through smart contract.

In this scheme, on the basis of cloud deduplication payment
system, Ethereum blockchain technology is introduced to
improve the cloud deduplication payment system scheme.
And the Ethereum smart contract technology is used for
payment. Through the blockchain network, payment is trans-
parent and publicly viewable.

A. CONCRETE CONSTRUCTION
1) SYSTEM SETUP
The parameters needed to initialize the scheme in the system
setup phase.

(1) Initiate convergent encryption scheme (KG,Enc,
Dec,Tag) to encrypt client data and perform dedupli-
cation on the cloud server. The convergent encryption
scheme adopted by cloud deduplication payment system
is as follows: firstly, a hash function h is selected. For
file F , set the convergent key K equal to the hash of
file F , that is, K = h(M); ciphertext C is equal to
the use of convergent key K to encrypt file F , that is,
C = Enc(K ,M); Tag is equal to hashing ciphertext C ,
that is, Tag = h(C).

(2) In addition, the client initializes POW algorithm, specif-
ically, selects collision resistant hash function H and
erasure code E : {0, 1}M → {0, 1}M

′

, and specifies the
leaf size b = 256 of Merkle tree. It is used to prove to
the cloud storage server S-CSP that the client has files
already stored on the cloud storage server. Here, we use
the POW algorithm as a black box.

(3) The cloud storage server S-CSP initializes public-private
key pairs (pkS−CSP, skS−CSP), and issues the public key
to all clients in the network, and secrets the private key.

(4) Initialize the fast storage system to store tags table
TAB(tag, link) for effective duplicate checking; It is used
to store user information table µTAB(tag, num, user(ID,
time, state)) for effective repetition rate check. Initializes
a file storage system for storing copies of encrypted data,
that is, the file ciphertext C .

The tag in TAB table represents the file tag, and link stores
the corresponding file address. In the table µTAB, the tag
is as described above, num refers to the number of users
sharing the same tag, user refers to the user information,
where ID refers to the user’s identity, time records the time
when the user uploads the file, and state marks the status of
the user’s file upload to indicate whether the file upload was
successful or not.

If the client wants to store the file and make a query to
the cloud storage server S-CSP, the S-CSP stores the record
in the table µTAB and sets state to 0.If the S-CSP confirms a
response to the record, that is, the file was stored successfully,
then the status for this user is 1.If S-CSP responds to the
deletion of the record, that is, the file storage fails, the status
about the user is marked as −1.

(5) The file storage system is initialized toNULL. Note that
if the cloud storage server S-CSP has to provide different link
for different clients, it must also add a user identity entry to
the TAB table.

(6) In Ethereum, client IDt and cloud storage server S-CSP
create ethereum account ClientAccount and ServerAccount
respectively for later work.

(7) In the system setup stage, when building the smart
contract, in order to make the payment system more
secure and perfect, we introduce the cloud storage server

127660 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

ServerContract. The S-CSP strictly limits the access of users
in the payment system and takes the form of authorized user
set authorizeClients[newClientAddress]. The cloud storage
server S-CSP can add, modify and delete users through the
relevant function interface of the contract. (See algorithms
3 and 4 below for details)

(8) In order to ensure the payment fairness of the system,
we preset fine transaction in server S-CSP contract Server-
Contract. If the server is malicious and the client fails to
appeal, the client can initiate the fine transaction and get the
penalty. (See algorithm 5 in the following section for details)

2) FILE UPLOAD
Assume that the client IDt upload file is F . Then, in the file
upload phase:

(1) Once file F is entered, the client IDt calculates and
sends file tag Tag(M) = TG(C) to the cloud storage server
S-CSP. The S-CSP checks if the same file tag is in the
table µTAB. The S-CSP stores the client IDt record and sets
state to 0.
(2) In general, we consider public deduplication (rather

than private deduplication between individual user data) and
assume that users always upload different data to the cloud.
However, if the ‘‘file tag duplicated’’, the cloud storage server
S-CSP provides the client with a response; if ‘‘no file tag
duplicated’’, the cloud storage server S-CSP performs fine-
grained deduplication [2].

Once a file tag Tag(M) is received, the cloud storage server
S-CSP verifies that the same file tag exists. If the same file tag
exists, S-CSP responds to the client with ‘‘file duplicated’’;
otherwise, ‘‘no file duplicated’’. At the same time, S-CSP
will return different payables to the client based on whether
the files are duplicated, that is, ‘‘Uploading file is dupli-
cated’’, payable is b1; ‘‘Uploading file is not duplicated’’,
payable is b2.

After the cloud storage server S-CSP confirms payment
from the client, S-CSP performs file upload. If the response
received by the client is ‘‘no file duplication’’, the client
uploads the unique encrypted file and file tag to the cloud
storage server. Also, the S-CSP returns a signature σ to the
identity ID of the client IDt , and a file link pointer L pointing
to the corresponding file address stored in the link field.

If the response the client receives is ‘‘file duplicate,’’ the
client runs the POW algorithm (see section 2.4) to prove that
it actually has the same file F stored on S-CSP.

If POW passes, the S-CSP only returns a signature σ to
the client and a link pointer to the file L to the client, with
no further information to upload. Based on this, S-CSP will
change the state of the client to 1; If POW fails, S-CSP aborts
the upload operation.

3) PAYMENT PHASE
During the system setup phase, both the client IDt and the
cloud storage server S-CSP set up their own accounts in
ethereum and deployed corresponding smart contracts. When
the client sends an upload file request to the cloud storage

server S-CSP, S-CSP returns different payables to the client
based on whether the same file exists. The client trans-
fers the token by calling the method transfer (address _to,
uint256 _value) in the smart contract, that is, payment, where
the transaction details are in the receipt. The transaction
receipt includes the client address ClientAddress, the server
address ServerAddress, payable amount, the transaction num-
ber TxId: the transaction hash receipt.getTransactionHash (),
the block hash receipt.getBlockHash (), and the cost of gas
(receipt.getGasUsed()). The client can use the transaction
number TxId to trace each payment. The cloud storage server
S-CSP obtains the payment transaction number TxId; upon
receipt of payment, the receipt is sent to the client. The
detailed payment process is described as follows:

(1) Before the client makes payment, the system first
checks whether the client ID′ts ethereum address ClientAd-
dress has sufficient funds, and if so, deploys the contract to
the ethereum blockchain; otherwise, an exception is thrown
(see algorithm 1 for details). Among them, the payable due-
Payment are from the payable returned by the cloud storage
server to the client.

Algorithm 1 checklfUserHasEnoughFunds
Input: user
Output: bool
1: if user’s amount >= duePayment then
2: return true;
3: else
4: throw;
5: end if

(2) The client initiates the payment, and after checking that
there is enough funds, creates the smart contract ClientCon-
tract and deploys it to the Ethereum blockchain, and transfers
the token by calling the method transfer(address _to, uint256
_value) in the smart contract to make the payment (see the
algorithm 8 in the next section for details).

(3) The cloud storage server S-CSP obtains the pay-
ment transaction number TxId; after confirming the pay-
ment, S-CSP sends the transaction receipt to the client.
The transaction number TxId in the transaction receipt:
transaction hash receipt.getTransactionHash (); block hash
receipt.getBlockHash(); cost of gas(receipt.getGasUsed()),
obtained by algorithm 2.

More often, in our system, we consider two special cases:
the first one, the client is malicious because he did not pay
after receiving the payment request from the cloud storage
server; the second, the cloud storage server is not completely
trusted. After receiving the payment from the client, the file
link information and the receipt are not returned.

Case 1: our payment scheme requires the client to make
payment first, and then the cloud storage server will exe-
cute the client’s request for file upload after confirming
the payment, and finally send the file link information to
the client. Therefore, if the client does not pay, it cannot

VOLUME 7, 2019 127661

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

Algorithm 2 executeTransferRequest
Input: request
Output: receipt
1: if request is null then
2: throw;
3: else
4: get contract’ s address;
5: load contract;
6: receipt← contract ’s transfer (to, value);
7: return receipt.getTransactionHash(),
8: receipt.getBlockHash(), receipt.getGasUsed();
9: end if

receive any information about the stored file, and uploading is
meaningless.

Case 2: since our payment process is in the form of smart
contract, the client can trace the payment information. If the
client finds a malicious situation in the cloud storage server,
it can appeal to the cloud storage server.

In the long-term development of the system, the cloud
storage server should promptly handle client complaints and
return the file link information and receipt. If the client still
does not receive the file link information returned by the
server, the client obtains the pre-deposit of the server by
publishing a fine transaction.

4) FILE DOWNLOAD
The client IDt first sends a request to the cloud storage server
S-CSP containing an identity and a pointer to a file link. Once
receiving the request, the S-CSP checks whether the client
IDt is eligible to download file F . Specifically, the S-CSP
compares the identity information and file information in the
request with the stored information already in the file storage
system. If it fails, the S-CSP sends an abort signal to the client
IDt indicating that the download failed. Otherwise, the S-CSP
returns the corresponding data. Once the client IDt receives
the data from S-CSP, the client uses the convergent key K to
decrypt the data and restore the original file.
Remark 1: In our protocol, we assume that the blockchain

system contains enough honest miners, of which 51% attack
is unavailable. The blockchain is a secure environment with
sufficient bandwidth to prevent denial of service attack. For
malicious situations, smart contracts presuppose a penalty
transaction to get a penalty.
Remark 2: For unfair upload attacks and collusion attacks,

the cloud storage server will mark the malicious client to
the database. If it reaches a certain number of times, it will
be removed from the collection of authorized users of the
system.
Remark 3: One way to prevent client re-entry attacks is

to link the client’s IP address as its unique identity. In our
protocol, the blockchain is a secure environment where the
number of clients is scalable. Only authorized clients can use
the system to make payments.

B. CONTRACT CONSTRUCTION
This section mainly introduces the smart contract related
interface and algorithm logic used in this paper. The
Ethereum smart contract is written by solidity [36]. There
are always some special variables and functions in the global
namespace, which are mainly used to provide information
about the blockchain. In this paper, we mainly use the fol-
lowing special variables:
msg.sender: The sender of the message or transaction (the

current call). When the smart contract is deployed, it is the
address of the contract creator, and when the smart contract
is invoked, it is the address of the smart contract caller.
msg.value: The number of wei in the message sent.

1 ether = 1018wei. For subsequent usage, we use $msg.value
to indicate the number of wei attached to the message, and $
value to indicate the number of fixed wei.

1) SERVER CONTRACT
The contract is deployed by the cloud storage server S-CSP
and we call it the server contract ServerContract.

Server contract initialization: This process defines some of
the contract’s variables when the contract is created.

(1) Address type cloud storage server S-CSP variable,
which defines the address of the S-CSP.

(2) The authorized user variable authorizeClients of the
mapping type, which defines a mapping set from the autho-
rized user address to the bool value. The cloud storage
server S-CSP can add, modify, and delete collection elements
through the relevant functional interfaces of the contract.

In this paper, the smart contract ServerContract is cre-
ated and deployed by the cloud storage server S-CSP which
mainly provides the following function interfaces:

1. addClient (newClientAddress): The function can only
be executed by the contract creator (S-CSP). Each time the
client sends the S-CSP a registration request and its certificate
of identity (which can be done through a secure channel),
the external ownership account EOA of the client is autho-
rized through this function after the client’s identity is veri-
fied. (See Algorithm 3 for details)

Algorithm 3 addClient
Input: newClientAddress
Output: bool
1: if msg.sender is not S-CSP then
2: throw;
3: end if
4: if newClientAddress has exist then
5: return false;
6: else
7: authorizeClients [newClientAddress]← true;
8: return true;
9: end if

2. removeClient (oldClientAddress): The function can
only be executed by the contract creator S-CSP. When the
S-CSP needs to remove the client, it removes the client from

127662 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

Algorithm 4 removeClient
Input: oldClient Address
Output: bool
1: if msg.sender is not S-CSP then
2: throw;
3: end if
4: if oldClientAddress hasn’t exist then
5: return false;
6: else
7: authorizeClients[oldClientAddress]← false;
8: return true;
9: end if

the authorization set by passing the client’s external own-
ership account EOA to the function. (See Algorithm 4 for
details)

3. fine (client, fixedValue, startTime, daysAfter): The
function is created and deployed by the cloud storage server
S-CSP, but can only be executed by the client. When the
client finds that the S-CSP appears malicious, if the appeal
fails, the client will initiate a fine transaction after the time
daysAfter, and get the penalty of the S-CSP (See Algorithm 5
for details). Among them, the penalty fixedValue is set to a
fixed value.

Algorithm 5 fine
Input: client, fixed Value, startTime, daysAfter
Output: bool
1: if msg.sender is not client then
2: throw;
3: end if
4: if currentTime >= startTime + daysAfter then
5: require S-CSP’s balances >= fixed Value;
6: S-CSP’s balances – fixed Value;
7: client’s balances + fixedValue;
8: return true;
9: end if

4. withdraw (): The function can only be executed by
the contract creator S-CSP, so that S-CSP can withdraw the
contract account balance at any time. (See Algorithm 6 for
details)

Algorithm 6 withdraw
Input: null
Output: null
1: if msg. sender is not S-CSP then
2: throw;
3: end if
4: if contract ’s balance > 0 ether then
5: send contract’s balance to msg.sender;
6: end if

2) CLIENT CONTRACT
Contracts are deployed by clients IDt , and we call them client
contracts ClientContract.

Client contract initialization: this process defines some of
the contract’s variables when the contract is created.

(1) The client IDt variable of address type, which defines
the client’s address.

(2) A mapping type of user balance variable balances
that defines a collection of mappings from user addresses to
uint256 values. It is used to describe changes in the amount of
wallet between the cloud storage server and the client. Client
contracts mainly provide the following functional interfaces:

5. deposit(value): The function is used to store the ether to
the client contract. The smart contract balance is used for the
payment function of the client. (See Algorithm 7 for details)

Algorithm 7 deposite
Input: deposite value
Output: null
1: if $msg. value not equal deposite value then
2: throw;
3: end if
4: send $value to client contract address

6. transfer(_to, _value): The function is used to
make payments to the cloud storage server S-CSP. (See
Algorithm 8 for details)

In some cases, the contract creator needs to terminate the
smart contract to obtain the ether in the contract, so he needs
to call the self-destruct method self-destruct (Address). After
the contract is self-destructed, if anyone sends ether to this
contract address, the ether can no longer be redeemed andwill
disappear. Therefore, the smart contract in this paper cannot
easily implement the self-destruct contract method to avoid
economic losses.

Algorithm 8 transfer
Input: to,value
Output: bool
1: if msg.sender is not client then
2: throw;
3: else
4: require client’s balances >= $value;
5: client’s balances – $value;
6: S-CSP’s balances + $value;
7: return true;
8: end if

VI. ANALYSIS AND EVALUATION
A. SECURITY ANALYSIS
This paper combines Ethereum blockchain, cloud deduplica-
tion system, payment mechanism and smart contract technol-
ogy to realize the advantages of data storage and payment

VOLUME 7, 2019 127663

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

in traditional cloud storage system. The smart contract tech-
nology of ethereum has transformed the traditional payment
scheme of cloud deduplication system, no longer relying on
the third party, but realizing the payment interaction between
the client node and the cloud storage server node through
the smart contract technology. In this section, we discuss the
benefits, security, and privacy of this scheme.
Conclusion1: Convergent encryption is of semantic

security.
According to the security analysis of convergent encryp-

tion in literature [21], it is concluded that when encrypted
data copies are unpredictable, they are semantically secure.
That is, if the user does not have the file, they cannot obtain
ownership of the data from S-CSP by running the proof of
ownership protocol. Therefore, data is safe for adversaries
who do not have it.
Conclusion 2: Our scheme realizes fairness of payment.
Proof: In a traditional scheme, we need to rely on a trusted

third party to pay accordingly. However, the cloud storage
server may return incorrect result or return no results to save
resources. At this time, the client needs to obtain the payment
voucher from the third party, and then make a complaint, etc.,
resulting in the waste of resources and time. In this paper,
we propose a solution to ensure the fairness of the payment
process through smart contracts. Smart contracts can honestly
perform payment operations based on predefined logic and
return corresponding results.

First, the payment is made by the client. When the
server confirms that the payment is received from the client,
the server sends the file link information to the client, which
is to resist the malicious situation of the client; then, due
to the transparency and traceability of the payment scheme,
the scheme reduce server-side dishonesty. Therefore, the fair-
ness of both parties to the payment is realized.
Conclusion 3: The scheme realizes payment integrity.
Proof: In normal case, when the client IDt , and the cloud

storage server S-CSP execute the protocol, the cloud stor-
age server S-CSP will obtain the corresponding payment
ether/token, and the client will receive the file link informa-
tion and receipt.
Conclusion 4: The scheme realizes auditability.
Proof:When a malicious situation occurs on the client,

the client sends a file to the cloud storage server without
paying. Due to our payment system settings, if the client does
not pay, the server will not send file link information, that
is, the client will not get any results. Therefore, we mainly
discuss the malicious situation of cloud storage server. Here,
three time nodes are set, the final time of payment is t1,
the final time of client receiving the result is t2, and the final
time of complaint is t3, where t1 < t2 < t3. If the client
still does not receive the result from the cloud storage server
at time t2, it enters the appeal stage and requires the cloud
storage server to return the result. If the cloud storage server
returns the result and the client verifies correctly, the transac-
tion ends; otherwise, at the final time t3, the client initiates a
fine transaction and gets the penalty of cloud storage server.

Conclusion 5: The scheme realizes authentication.
Proof: In this system, only authorized clients can use the

payment system to make payment to the cloud storage server
S-CSP. On the one hand, when the client initiates a file upload
operation to the cloud storage server S-CSP, the system first
checks whether the client account is in the authorized user
set. If the client account is not in the authorized users of
the system, the system requires the client to register with the
cloud storage server S-CSP to obtain the authorization of the
S-CSP. After the client account is successfully authorized
by S-CSP, the cloud storage server S-CSP will send the
registered transaction number, the S-CSP contract address,
the contract ABI, and the client contract code to the client
through a secure channel, so as to facilitate the client to con-
duct the subsequent payment operation; If the client account
is in the collection of authorized users of the system, the client
can perform subsequent payment and file upload operations.
On the other hand, for attacks launched by malicious clients
that cause the server to do a lot of useless work and consume
resources, the cloud storage server S-CSP will mark the mali-
cious clients to the database. If it reaches a certain number of
times, it will be removed from the system authorized users.

B. VULNERABILITY ANALYSIS
Once deployed, smart contracts are difficult to modify, so if
there are security holes in smart contracts, it is difficult to
prevent attacks by hackers. In this case, it’s important to
ensure that you don’t write code that has any security threats.
Smart contracts belong to emerging things, so there are still
many defects and security holes.

The Decentralized Autonomous Organization (DAO) was
one of the major hacking incidents during ethereum’s
early development. The contract lost 3.6 million ethers and
resulted in a hard fork in ethereum’s network. Other vul-
nerabilities in smart contracts include Transaction-Ordering
Dependence(TOD), Timestamp Dependency, Error Handling
Exception, etc., which can cause significant losses. There-
fore, using secure analysis tools to analyze code is critical.

SECURIFY [41], [42] is a security scanner of ethereum
smart contracts, created by ICE center, ETH Zurich and
ChainSecurity AG, a top provider for smart contract audits.
The contract bytecode is first converted into their own custom
language, and then compared with a validation module to
verify whether its semantics are satisfied. Finally, the secu-
rity report is generated. Figure3 shows the security analysis
report for the smart contract. Problems with smart contracts
are classified, and info displays detailed reports. The red
box said Violation: the contract is guaranteed to violate the
vulnerability, orange said Warning: the contract may, but us
not guaranteed to violate the vulnerability. We use SECU-
RIFY security scanner to analyze security before deploying
the smart contracts. Figure3 (a) and Figure3 (b) are security
analysis reports for the client contract and the server contract,
respectively. The security scanner shows that the contract we
used without any Violation.

127664 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

TABLE 3. Comparison of the four schemes.

FIGURE 3. (a) Safety analysis report for the client contract. (b) Safety
analysis report for the server contract.

C. PERFORMANCE ANALYSIS
In this section, we compare the performance of our proto-
col with similar protocols that already exist. Table 3 shows
the comparison between the four schemes. First of all,
the four schemes are all about payment under cloud services.
Secondly, our scheme is based on the blockchain system,
which does not require a trusted third-party currency system
(bank). The schemes in [11], [21] both require a currency
system for payment transactions. However, there are bottle-
necks in third-party currency systems. If the transaction load
in the system is too heavy, which will lead to the failure of the
payment transaction, then the third-party currency system is
impossible to complete the task. However, the payment trans-
action process of our scheme is on the blockchain network.
As the blockchain network is a decentralized and peer-to-peer

network, so there is no bottlenecks for payment transactions.
Moreover, each payment transaction is untampered and trace-
able in our scheme. Scheme 42 uses the blockchain system
to replace the traditional currency system to complete the
payment transaction, but a trusted third party is still required
to supervise both parties to achieve fair payment. Our scheme
achieves fair payment without the need for any trusted third
party. Firstly the scheme in [18] realizes the fair payment
without the need of a trusted third party, but it realizes the
fairness by the way of the client paying the deposit. However,
our scheme does not require the client to pay a deposit, which
is more practical in practice. Secondly, our scheme not only
achieves fair payment without a trusted third party, but also
achieves safe and effective cloud storage by combining dedu-
plication technology. Finally, our scheme requires the cloud
storage server S-CSP to return the corresponding receipt to
the client, and both parties can trace each payment process
according to the transaction number, so as to realize the
transparency and verifiability of the payment process.

D. EXPERIMENTAL EVALUATION
In order to analyze the feasibility and performance of this
scheme, we implement a prototype. The specific configura-
tion of the experimental platform and environment is: Intel
core i5-3230@2.60GHz processor, 4GB RAM, and the sys-
tem are Windows10 and Linux Ubuntu 16.04LTS. The pro-
gramming languages are Java and Solidity. External helper
is web3j. Web3j is a lightweight Java development library
for integrating Ethereum functionality, which is implemented
in the Java version of the Ethereum JSONRPC interface
protocol. Web3j provides a package of smart contracts for
solidity that enables packaged objects generated by web3j to
interact directly with all methods of smart contracts.

The implementation of this paper is based on the two oper-
ating systems, the Ethereum blockchain is deployed in the
Linux ubuntu16.04 LTS established in the virtual machine.
The smart contract was developed by the Solidity program-
ming language and deployed on the private chain created by
the Ethereum Geth client under the Linux ubuntu 16.04 LTS
system.

Under the Windows 10 system, use the development envi-
ronment of the Remix IDE to develop and test. This devel-
opment environment can be connected to the Ethereum Geth

VOLUME 7, 2019 127665

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

client via IP to deploy the smart contract on the Geth client.
After the compilation is successful, use the web3j to generate
the JavaBean from the smart contract to the Maven project
in eclipse. By relying on some jar packages of web3j, the
interaction between the client and the S-CSP for the smart
contract is realized, which makes the fair payment algorithm
of this paper better by using the smart contract.

Taking the literature [21] as an example, the scheme is
applied to fair payment algorithm and experiment. Because
of the high value of the Ethereum, it is necessary to test in
the Ethereum private chain or the open test chain before the
smart contract is deployed on the Ethereum main chain. The
gas costs some operations on smart contracts are deployed
for testing on Rinkeby, the test network of the Ethereum
network. However, considering the experimental operability,
the efficiency comparison of the solution is deployed for
testing on the local private chain of the Ethereum network.

Compared with the traditional payment encryption
scheme, the execution of the algorithm in this chapter has
additional consumption mainly reflected in the gas consump-
tion of the method call in the smart contract.

TABLE 4. The smart contract cost (gasprice = 1 Gwei, 1 ether = 160 USD).

There are additional drains on the creation and execution
of smart contracts, and Table 4 lists the gas costs and costs of
some operations on smart contracts.

Considering the wide application and circulation of tokens
at present, this experiment uses the ERC20 standard to pro-
duce tokens and Ether for testing respectively. Next we ana-
lyze the cost of creating and executing the function of the
smart contract. First, in April 2019, 1 ether ≈ 160 USD and
set 1 gasPrice ≈ 1 Gwei, 1Gwei = 109wei = 10−9ether .
Table 4 shows the cost of some of the operations of

the smart contract, with little change in the cost of mul-
tiple executions. The cloud storage server S-CSP’s smart
contract creation operation is created only once, consum-
ing 662,390 gas, and costs about $0.11. Each client’s smart
contract creation operation is created only once, consum-
ing 763,098gas and costing about $0.12. When the cloud
storage server S-CSP adds an authorized client, the cost of
performing the addClient operation is about $0.007. When
the cloud storage server S-CSP removes the authorized client,
it costs about $0.008 to perform the removeClient operation.
When the client receives the payment request from the cloud
storage server S-CSP, the transfer operation will cost about

$0.008. When the client finds that the cloud storage server
S-CSP is maliciously affected and fails to appeal, it will
cost about $0.008 to perform fine operation after the time
daysAfter. These costs are based on prototypes deployed on
the blockchain and can be reduced using optimized code.
If the input size of these functions is minimal, the cost can
be further reduced.

FIGURE 4. Run time of algorithm under different number of payment.

The abscissa in Figure 4 is the number of payments at
the same time, the number is 5, 10, 15, 20; the ordinate
is expressed as the running time of the fair payment algo-
rithm. The broken line of the blue diamond shape indicates
the change trend of the execution time of the algorithm in
the literature [21] with the increase of the payment; and the
broken line of the orange square indicates the change rule of
the execution time of the algorithm as the payment grows.
Similarly, the execution time of the original algorithm
increases as the payment increases. The running time of the
algorithm is almost consistent with the trend of the running
time of the original algorithm. Since the protocol of this chap-
ter is based on blockchain, it is slightly higher in efficiency
than the original scheme.

VII. CONCLUSION
In this paper, we propose a decentralized fair payment scheme
based on blockchain technology. Our proposed protocol can
be applied as follows: when Mary plans to buy something in
an online mall, she needs to register as a user of the online
mall and then add her favorite item to the shopping cart and
pay for it. In the meantime,Mary will receive a receipt for this
order. The merchant then sends Mary the items for this order.
Then Mary received the purchase. At this point, a normal
payment process is completed. However, if the merchant does
not send the goods to Mary after Mary pays, then at time A,
Mary can appeal to the merchant and ask the merchant to
send the goods. If Mary receives the purchase, the payment
process is completed; Otherwise, at time B, Mary initiates a
fine transaction to get the merchant’s pre-existing penalty on
the blockchain network. Our scheme improves the traditional
payment system based on trusted third party by using the
smart contract technology of ethereum. In order to prevent
the trusted third party from reaching the bottleneck due to the

127666 VOLUME 7, 2019

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

excessive visits of users, the decentralized payment scheme
is realized through the interaction between the client node
and the cloud storage server node. On the one hand, based
on the smart contract under ethereum blockchain, the system
solves the problem of fairness of payment under malicious
circumstances and the opaque payment process in traditional
payment, and the payment process is traceable. On the other
hand, the system weakens the attacks that occur on the client
to some extent by combining our fair payment scheme with
deduplication. Experiments have shown that the cost of mak-
ing a payment to a cloud storage server by a client is minimal.

The shortcoming of the scheme in this paper is that the
decentralized structure is not complete. The scheme is based
on cloud storage platform. Future work can replace cloud
storage platform with a decentralized storage platform, such
as InterPlanetary File System IPFS [37], Storj [32], etc.,
including the study of decentralized fair payment schemes.

REFERENCES
[1] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,

‘‘Reclaiming space from duplicate files in a serverless distributed file
system,’’ in Proc. 22nd Int. Conf. Distrib. Comput. Syst., Jul. 2002,
pp. 617–624.

[2] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, andW. Lou, ‘‘Secure deduplication
with efficient and reliable convergent key management,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart, ‘‘Message-locked encryption
and secure deduplication,’’ in Proc. Annu. Int. Conf. Theory Appl. Crypto-
graph. Techn. Berlin, Germany: Springer, 2013, pp. 296–312.

[4] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Proofs of own-
ership in remote storage systems,’’ in Proc. 18th ACM Conf. Comput.
Commun. Secur., Oct. 2011, pp. 491–500.

[5] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
‘‘Message-locked encryption for lock-dependent messages,’’ in Proc.
Annu. Cryptol. Conf. Berlin, Germany: Springer, 2013, pp. 374–391.

[6] S. Keelveedhi, M. Bellare, and T. Ristenpart, ‘‘DupLESS: Server-aided
encryption for deduplicated storage,’’ presented at the 22nd USENIX
Secur. Symp. (USENIX), 2013, pp. 179–194.

[7] B. Carbunar and M. Tripunitara, ‘‘Fair payments for outsourced computa-
tions,’’ in Proc. 7th Annu. IEEE Commun. Soc. Conf. Sensor Mesh Ad Hoc
Commun. Netw. (SECON), Jun. 2010, pp. 1–9.

[8] B. Carbunar and M. V. Tripunitara, ‘‘Payments for outsourced computa-
tions,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2, pp. 313–320,
Feb. 2012.

[9] L. Shi, B. Carbunar, and R. Sion, ‘‘Conditional e-cash,’’ in Proc. Int.
Conf. Financial Cryptogr. Data Secur. Berlin, Germany: Springer, 2007,
pp. 15–28.

[10] X. Chen, J. Li, J. Ma, W. Lou, and D. S. Wong, ‘‘New and efficient con-
ditional e-payment systems with transferability,’’ Future Gener. Comput.
Syst., vol. 37, pp. 252–258, Jul. 2014.

[11] X. Chen, J. Li, and W. Susilo, ‘‘Efficient fair conditional payments for
outsourcing computations,’’ IEEE Trans. Inf. Forensics Security, vol. 7,
no. 6, pp. 1687–1694, Dec. 2012.

[12] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[13] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
‘‘Fair two-party computations via bitcoin deposits,’’ in Proc. Int. Conf.
Financial Cryptogr. Data Secur. Berlin, Germany: Springer, 2014,
pp. 105–121.

[14] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
‘‘Secure multiparty computations on bitcoin,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2014, pp. 443–458.

[15] G. Ateniese, M. T. Goodrich, V. Lekakis, C. Papamanthou, and
E. Paraskevas, ‘‘Accountable storage,’’ in Proc. Int. Conf. Appl. Cryptogr.
Netw. Secur. Cham, Switzerland: Springer, 2017, pp. 623–644.

[16] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, ‘‘Zero-
knowledge contingent payments revisited: Attacks and payments for ser-
vices,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2017,
pp. 229–243.

[17] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
‘‘Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Oct./Nov. 2017, pp. 211–227.

[18] Y. Zhang, R. H. Deng, J. Shu, K. Yang, and D. Zheng, ‘‘TKSE: Trust-
worthy keyword search over encrypted data with two-side verifiability via
blockchain,’’ IEEE Access, vol. 6, pp. 31077–31087, 2018.

[19] G. Wood, ‘‘ETHEREUM: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, Tech. Rep., 2014, pp. 1–32.
doi: 10.1017/CBO9781107415324.004.

[20] Ethereum Blockchain App Platform. [Online]. Available:
https://www.ethereum.org/

[21] M. Miao, T. Jiang, and I. You, ‘‘Payment-based incentive mechanism
for secure cloud deduplication,’’ Int. J. Inf. Manage., vol. 35, no. 3,
pp. 379–386, Jun. 2015.

[22] J. Yuan and S. Yu, ‘‘Secure and constant cost public cloud storage auditing
with deduplication,’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS),
Oct. 2013, pp. 145–153.

[23] I. Bentov andR. Kumaresan, ‘‘How to use Bitcoin to design fair protocols,’’
in Proc. Int. Cryptol. Conf. Berlin, Germany: Springer, 2014, pp. 421–439.

[24] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,’’ in Proc. Annu.
Cryptol. Conf. Berlin, Germany: Springer, 2010, pp. 465–482.

[25] W. Song, B. Wang, Q. Wang, C. Shi, W. Lou, and Z. Peng, ‘‘Pub-
licly verifiable computation of polynomials over outsourced data with
multiple sources,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 10,
pp. 2334–2347, Oct. 2017.

[26] (2017). Google Cloud Platform. [Online]. Available:
https://cloud.google.com/free/docs/frequently-asked-questions

[27] V. Buterin, ‘‘A next-generation smart contract and decentralized applica-
tion platform,’’ White Paper, 2014.

[28] Y. Zhao, Y. Li, Q. Mu, B. Yang, and Y. Yu, ‘‘Secure pub-sub: Blockchain-
based fair payment with reputation for reliable cyber physical systems,’’
IEEE Access, vol. 6, pp. 12295–12303, 2018.

[29] Y. He, H. Li, X. Cheng, Y. Liu, C. Yang, and L. Sun, ‘‘A blockchain
based truthful incentive mechanism for distributed P2P applications,’’
IEEE Access, vol. 6, pp. 27324–27335, 2018.

[30] M. R. Dorsala, S. Chapram, and V. N. Sastry, ‘‘Fair protocols for verifiable
computations using Bitcoin and Ethereum,’’ in Proc. IEEE 11th Int. Conf.
Cloud Comput. (CLOUD), Jul. 2018, pp. 786–793.

[31] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and
J. Herrera-Joancomartí, ‘‘A fair protocol for data trading based on
Bitcoin transactions,’’ Future Gener. Comput. Syst., to be published.

[32] C. Gray. (2014). Storj Vs. Dropbox: Why Decentralized Storage is the
Future. [Online]. Available: https://bitcoinmagazine.com/articles/storj-vs-
dropbox-decentralized-storage-future-1408177107/

[33] Litecoin. Accessed: Jul. 20, 2018. [Online]. Available: https://litecoin.org/
[34] Dogecoin. Accessed: Jul. 10, 2018. [Online]. Available: http://dogecoin.

com/
[35] M. Ulieru, ‘‘Blockchain 2.0 and Beyond: Adhocracies,’’ in Banking

Beyond Banks and Money. Springer, 2016.
[36] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryptocur-

rency and Blockchain Programming for Beginners. New York, NY, USA:
Apress, 2017.

[37] J. Benet, ‘‘IPFS—Content addressed, versioned, P2P file system,’’ 2014,
arXiv:1407.3561. [Online]. Available: https://arxiv.org/abs/1407.3561

[38] Memopal: Online Backup. [Online]. Available: http://www.memopal.com/
[39] H. Huang, X. Chen, Q. Wu, X. Huang, and J. Shen, ‘‘Bitcoin-based fair

payments for outsourcing computations of fog devices,’’ Future Gener.
Comput. Syst., vol. 78, pp. 850–858, Jan. 2018.

[40] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Side channels in cloud
services: Deduplication in cloud storage,’’ IEEE Security Privacy, vol. 8,
no. 6, pp. 40–47, Nov./Dec. 2010.

[41] A. Mense and M. Flatscher, ‘‘Security vulnerabilities in Ethereum smart
contracts,’’ in Proc. 20th Int. Conf. Inf. Integr. Web-Appl. Services,
Nov. 2018, pp. 375–380.

[42] [Online]. Available: https://securify.ch/

VOLUME 7, 2019 127667

http://dx.doi.org/10.1017/CBO9781107415324.004

S. Wang et al.: Blockchain-Based Fair Payment Protocol for Deduplication Cloud Storage System

SHANGPING WANG received the B.S. degree in
mathematics from the Xi’an University of Tech-
nology, Xi’an, China, in 1982, the M.S. degree
in applied mathematics from Xi’an Jiaotong Uni-
versity, Xi’an, in 1989, and the Ph.D. degree in
cryptology fromXidianUniversity, Xi’an, in 2003.
He is currently a Professor with the Xi’an Univer-
sity of Technology. His current research interests
include cryptography and information security.

YUYING WANG received the B.S. degree in net-
work engineering from Hebei Normal University,
Shijiazhuang, China, in 2017. She is currently pur-
suing the M.S. degree with the Xi’an University
of Technology, Xi’an, China. Her research inter-
ests include information security and blockchain
technology.

YALING ZHANG received the B.S. degree in com-
puter science from Northwest University, Xi’an,
China, in 1988, and the M.S. degree in com-
puter science and the Ph.D. degree in mechanism
electron engineering from the Xi’an University of
Technology, Xi’an, in 2001 and 2008, respectively,
where she is currently a Professor. Her current
research interests include cryptography and net-
work security.

127668 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	SECURE DEDUPLICATION
	CONVERGENT ENCRYPTION
	SIGNATURE SCHEME
	PROOF OF OWNERSHIP
	BASIC KNOWLEDGE
	BASIC STRUCTURE

	BLOCKCHAIN TECHNOLOGY AND ETHEREUM
	ETHEREUM VIRTUAL MACHINE
	ETHEREUM ACCOUNT
	SMART CONTRACT
	TRANSACTION INFORMATION

	SYSTEM MODEL AND SECURITY REQUIREMENTS
	SYSTEM MODEL
	SECURITY REQUIREMENTS
	POTENTIAL ATTACKS

	SCHEME CONSTRUCTION
	CONCRETE CONSTRUCTION
	SYSTEM SETUP
	FILE UPLOAD
	PAYMENT PHASE
	FILE DOWNLOAD

	CONTRACT CONSTRUCTION
	SERVER CONTRACT
	CLIENT CONTRACT

	ANALYSIS AND EVALUATION
	SECURITY ANALYSIS
	VULNERABILITY ANALYSIS
	PERFORMANCE ANALYSIS
	EXPERIMENTAL EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	SHANGPING WANG
	YUYING WANG
	YALING ZHANG

