IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 7, 2019, accepted August 22, 2019, date of publication September 4, 2019, date of current version October 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939483

Optimization Study of Line Planning for High Speed
Railway Based on an Improved Multi-Objective
Differential Evolution Algorithm

HUIXIN TIAN“, MINWEI SHUAI', AND KUN LI*?

Key Laboratory of Advanced Electrical Engineering and Energy Technology, School of Electrical Engineering and Automation, Tianjin Polytechnic University,
Tianjin 300387, China
2School of Economics and Management, Tianjin Polytechnic University, Tianjin 300387, China

Corresponding author: Huixin Tian (icedewl@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 71602143, Grant 61403277, and Grant
61573086, in part by the Tianjin Natural Science Foundation under Grant 18JCYBJC22000, in part by the Program for Innovative
Research Team in University of Tianjin under Grant TD13-5038, and in part by the Tianjin Science and Technology Correspondent Project
under Grant 18JCT PJC62600.

ABSTRACT The combination optimization of the train operation plan is an ongoing challenge: while
computing power has improved, it is difficult to obtain a complete train operation plan system. With the aim
of generating system-optimal operation strategies, a new collaborative optimization method is proposed for
line planning problem. Through a set of constraints, the problem is formulated as a two-objective model with
the objectives of economic benefits and market effects. An optimization approach with adaptive improvement
of control parameters based on the multi-objective differential evolution (MODE) algorithm is proposed to
solve the model, and a heuristic algorithm is designed to get a better initial solution. Finally, computational
results on benchmark multi-objective problems show that the improvements of the strategies are positive
and the optimization result of the improved algorithm has better stability. Meanwhile, based on a numerical
example of a practical case study involving a 397-kilometer railway corridor to demonstrate the effectiveness
of the proposed model and solution. As the basis of successive decisions, this method can adjust the number
of trains according to the passenger flow demand, which greatly saves operating costs.

INDEX TERMS Line planning, high-speed railway, collaborative optimization, multi-objective optimization

problem, MODE.

I. INTRODUCTION

Railway transport is the main means of transportation, and
it plays an important role in passenger services for long-
distance transportation for both China and the world due
to its advantages of high capacity, safety and resistance to
poor weather in comparison with other transportation modes.
Today, China is extensively developing the infrastructure of a
high-speed railway (HSR). In 2017, the total number of pas-
sengers sent across the country reached 3.084 billion people
in China, an increase of 270 million over the previous year,
and it grew by 9.6%. The target is to cover all provincial
capital cities across the country, with eight horizontal and
eight vertical lines in next several years, and the network
scale is much larger than any existing country in the world.
With the increasing demands for travel, high-speed train is
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becoming more and more popular. A high quality passenger
railroad system has a great impact on the resource utilization
efficiency of the railway traffic system and the convenience
of passenger travel, which means that the optimization of the
railroad system before the train operation is indispensable.
The operation of the high-speed train consists of the num-
ber and type of trains, train marshaling, the stop planning and
the timetable. It forms two kinds of combination optimization
methods: line planning and train scheduling. Generally, line
planning is a procedure of allocating trains with specific
travel demands of many origins and destinations to appro-
priate lines or line sections. Railway management typically
operates at three levels: strategic, tactic, and operational [1].
The railway planning process has many aspects, as shown
in Fig. 1. Over the last few decades, extensive research efforts
have been focused on scheduling problems and transporta-
tion services, especially with regard to the development of
mathematical formulations and solution algorithms. On the
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FIGURE 1. The railway planning process.

Operational level

one hand, just as Lin D said, in current research, we focus
on the work done at tactic level [2]. Some scholars pay
attention to the combination optimization of train scheduling
and train stop planning. For instance, a new collaborative
optimization method for both train stop planning and train
scheduling problems was studied by Yang et al. [3]. Qi J et al
proposed a collaborative optimization method for both train
stop planning and train scheduling considering the passen-
gers distribution [4]. Suh et al. [5], Zheng et al. [6], and
Jiang et al. [7] proposed a mathematical model based on skip-
stop operation separately. Yue Y et al proposed a mathemati-
cal model for optimizing a train timetable for an HSR system,
and also designed a column-generation based heuristic algo-
rithm to account for both passenger service demands and train
scheduling [8]. By considering passenger travel convenience,
D Chen et al proposed a multi-objective model, and designed
a hybrid genetic algorithm to solve the model [9]. Zyngier
D et al proposed a novel formulation for train scheduling
using Unit-Operation-Port-State Superstructure to maintain
consistency in system modeling [10].

On the other hand, line planning [11] is a key comment
in providing high-quality transport service. In the stage of
line planning one needs to specify the number of trains, type
of trains, the stop plan for each train, etc. [3], among them,
the stop plan for each train is usually performed as part
of the line planning process, and it is the primary strategic
level element in the railway planning process. In practice,
train stop planning is usually made on the predictions of
the potential passenger flow for different origin-destination
(OD) pairs, and the stop planning needs to be constantly
adjusted in order to satisfy the dynamic requirements.
Schobel A et al introduced some of the basic line plan-
ning models and algorithm for line planning [12]. Wang
L et al proposed a two-layer optimization model for high-
speed railway line planning [13]. Xiao J et al proposed
a model to optimize train formation plan which generates
the one-block train formation plan firstly and then com-
bines some one-block trains to form two-block trains based
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on the ant colony algorithm [14]. Xiao J et al proposed a
hybrid algorithm of genetic algorithm and tabu search to
solve the Train Formation Plan (TFP) network problem [15].
Qi J et al proposed a method for train operation zone,
stop planning and passenger distribution optimization prob-
lems on the basis of a train stop planning model based on
GAMS [16]. Yang X et al proposed a method that include
four indicators to find the critical stations in the urban rail
networks. And to obtain the final importance degree for
each station through a multi-agent based simulation and
min-max normalization [17]. The analysis of the importance
degree for each station helps to guide the generation of
the stop plan for each train. Specifically, a systematic line
planning includes the running route, the number of railway
rolling stock, train classes and the stopping plan. Therefore,
reasonable system optimization is beneficial to timetable
generation.

In a large number of studies, train operation section, train
type, the number of trains, and train marshaling are all known
conditions, and the optimization results are difficult to adapt
to the dynamics of passenger travel. Therefore, as anovel idea
in literature, this study is different from previous research in
that it first systematically optimizes the line planning prob-
lem, including the number and type of the train, the train mar-
shaling and its stop patterns. In other words, above method
forms a static map about the operation of the train. In order
to achieve the above combinatorial optimization, the opti-
mization process includes two stages. First, in order to make
the individual’s code length consistent in each generation
of optimization process, the number of trains was adjusted
by neighborhood search. Meanwhile, when the number of
train is determined to be a certain value, each generation of
evolution will focus on finding the optimal solution for other
variables (train type, train marshaling and the stop pattern),
and this process will still determine whether the number of
trains is optimal. To put it in another way, a neighborhood
search is performed to determine if the number of trains needs
to be adjusted after a period of evolution. During the period,
the number of trains is a fixed value and is mainly optimized
for other decision variables.

In order to solve such a complicated optimization prob-
lem as described above, in this paper, we also proposed an
improved MODE algorithm. The improvement specifically
includes two parts, one of which is to enhance the adaptability
of the control parameters in the algorithm; the other is that
MODE algorithm can handle 0-1variables, not just real val-
ues. The population is divided into multiple populations, and
the parameters are adaptive during the optimization process
in the proposed algorithm. Therefore, the algorithm is called
multiple population adaptive multi-objective differential evo-
lution (MA-MODE).

Based on the improved algorithm, numerical examples are
implemented to demonstrate the effectiveness and efficiency
of our proposed methods and algorithm. Exactly, the effi-
ciency of the MA-MODE is measured by the inverted general
distance (IGD) and the Spacing (SP) in the optimization
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FIGURE 2. lllustration of feasible scenario.

process and the final optimization results are compared with
the non-dominated sorting genetic algorithm II (NSGA-II),
which proves its effectiveness. Then, the proposed model was
processed with MA-MODE and the results of the optimiza-
tion were compared with the MODE and the original scheme
of the Guangzhou High Speed Railway. The evaluation indi-
cators for the train operation plan shows that the operation
plan generated by proposed methods and algorithm has better
evaluation indicators.

In summary, we provide the following contributions to the
research of line planning:

(1) We introduce a method for optimizing the combination
of line planning problem using the model presented in
this paper.

(2) We propose a heuristic algorithm to generate an initial
stop planning.

(3) We design an improved algorithm MA-MODE to solve
the problem.

Il. PROBLEM STATEMENTS AND ASSUMPTIONS

A. PROBLEM STATEMENTS

In general, a route plan can be described as a train line from
an origin to a destination with a definite stop planning. The
number of trains and their station stop pattern must satisfy
the travel demands for each of the OD pairs. To illustrate the
concept of a ““train service plan”, in Fig. 2, the solid dot “@®”’
represent stop operation at current station, we illustrate four
scenarios of different train service plans for three trains and
four stations. Scenario 1 and 2 have a train which is all-stop
operation, so that, no matter the other two trains are skip-
stop trains or through trains, passengers can travel from any
station to any other station; in scenario 3, passengers traveling
from station 2 to station 3 cannot be served; and in scenario 4,
passengers from station 1 to station 3 can only transfer from
station 2. Because transfer may consume a lot of time and
energy of the passengers, neither scenario 3 nor scenario
4 is desirable. In practice, these trains also have different
marshaling numbers (including 8-car marshaled and16-car
marshaled in China). Meanwhile, at least two types of trains
with different speeds are operated on the high-speed railway
corridor; the two types of trains respectively represent “G”
and “D”, in which the train of type G is faster than the train
of type D.
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In the real-life operation planning, due to the volatility of
passenger flow, the plan is related to the number of trains,
train stop planning and train marshaling. Clearly, the train
stop planning is often formulated from predicted passen-
ger demands. When the change in passenger flow is small,
passenger demands can be satisfied by adjusting the train
marshaling, and when the passenger flow changers greatly,
it is necessary to meet passenger demands by changing the
number of trains.

B. MODEL ASSUMPTIONS
Some assumptions will be given in the following discussion
for the convenience of formulating the mathematical model:

Assumption 1: The number of passengers with travel
demand in each section will not change due to the change
of the train operation plan.

Assumption 2: In practice, passenger’s flow of each OD
pair is usually based on the predicted value of passenger. So,
we only assume that passenger’s flow of every OD pair is
known condition.

Assumption 3: In order to improve the quality of passenger
travel services, passengers do not need to transfer to their
destination.

Assumption 4: Because passengers consume amount of
time while traveling, to simplify the problem, all passengers
have the same time value.

Assumption 5: As high-speed trains generally operate at
full capacity, tickets for standing room are not accepted.
Therefore, if there is no ticket for the corresponding section,
passengers will be detained in this station.

Assumption 6: Finally, the same type of train has same
running time in the same section.

ill. MATHEMATICAL MODEL OF TRAIN OPERATION PLAN
A rigorous formulation to collaboratively optimize the
number of trains, train marshaling, train type and train stop
planning will be provided in this chapter. The following dis-
cussion mainly focuses on specifying each part of the model,
including parameters, decision variables, objective function,
and systematic constraints.

The railway industry has market attributes, corporate
attributes, and social welfare attributes in China. Therefore,
the formulation of the high-speed railway operation plan
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should consider both economic benefits and market effects.
The economic benefits refer to the operating income of
the trains operating in the railway sector, which is mainly
reflected in the operating costs and operating income. The
market effect refers to the degree of passenger travel satis-
faction, which is generally reflected in the cost of passenger.
The passengers’ expenses generally include fares and time.
In summary, a multi-objective optimization model is estab-
lished in this paper, including two objective functions: max-
imizing the economic efficiency and minimizing passenger
travel costs.

A. NOTATIONS AND PARAMETERS
In order to make the model clearer, it lists all the relevant
subscripts and parameters used in the formulation in Table 1.

B. DECISION VARIABLES

It focuses on generating optimal strategies for the number of
trains, train marshaling, train type and train stop planning
simultaneously in this paper. Thus, four types of decision
variables will be considered hereinafter, as shown in Table 2.

C. OBJECTIVE FUNCTION

As previously mentioned, the formulation of the high-speed
railway operation plan should consider both economic bene-
fits and market efficiency. The one of objective of the opti-
mization models is to maximize the profit.

The economic benefits of operating passenger trains in
the railway industry can be expressed through operating
income and costs. With this concern, the revenue of the ticket
is treated as operating income, the operating expenses of
trains and the service fees of station parking as the operating
expenses for high-speed trains. The objective function is
established as follows:

T, n—1 n

H
maxZ, = Z(Z(Z Z f#r(si,sj)

h=1 T=1 i=I1 j=j+1

n
- Rp(si, sj))_cffdli‘r —C Z}xl¢,f(s,-))) 1)

i=
Itis clear that formulation (1) is essentially the relationship
between passenger ticket revenue, operating costs and station
parking fees for each train in different types. Among them,
passenger ticket of different section can be formulated as

follows:

Ri(si, 57) = p(h)de; @)

According to the regulations of the China Railway Corpo-
ration, the tax rate for taxpayers who provide rail transport
services is 11% of value added tax (VAT). Therefore, high-
speed train operation can be formulated as follows:

Z=(1-w7 3

When the number of train stops increases, passengers can
choose more trains with travel requirements at each station,
but the service fees for train stops increase at the same time.
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TABLE 1. Subscript and parameters used in formulation.

Notations Definition
N Set of considered stations.
H Set of considered train type.
Si58 Index of stations, 5,8 € S .
n The total number of stations.
G Set of high-speed trains.
Set of relevant low speed trains compared with those in G
D
ejj Station section from station i to station j .
e Distance of station i to station j
h Index of train type.
Ty The number of trains of type /
T Index of trains.
T Train marshaling
¢(h) One-kilometer fare rate for trains of type / .
Ry Ticket prices for different stations
hr One-kilometer operating cost for trains of type / and the
C ]
! train marshaling is 7 .
Cél Station service fee for trains of type /4 .
i The speed of trains of type / .
hr For trains of type /4 , the train marshaling is 7 and the in-
1 ]
T .
dexisT .
d#ﬁ Single direction distance for l#’r .
f[?-T Number of passengers on l%’r .
t Stop time at the station.
tq Loss of time during train start and stop.
a The factor of time value.
P Fixed number of persons.
7] Seat occupancy rate.
Nog Total passenger flow of the day.

Therefore, the purpose of the optimization plan for high-
speed trains is to reduce the number of train stops and to
ensure the continuity of trains while meeting the needs of
passengers.

On the other hand, improving the market efficiency is an
important measure to enhance the image of the railway. The
market efficiency is usually measured by the travel cost of
the traveler. The travel cost includes both the ticket and time
loss. The time loss mainly includes the time consumption
caused by the train is running or stops at the station and
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TABLE 2. Decision variables in the optimization model.

Variable type | Variable Definitions

Set of train stop planning, =1, if train
stops at station; =0, otherwise.
Train type, =1, if train type is G; =0, if
Main decision h
train type is D.
variables

Train marshaling, =1, if the train is
T 16-car marshaled; =0, if the train is 8-car
marshaled.

Assisting decision The number of trains operating in this

variables section.

passenger detention when the tickets cannot meet the pas-
senger demand. In order to get closer to the actual process
of stopping at the station, consider the loss of time during the
start and stop of the train. Therefore, in this paper, we consider
that the two forms of ticket prices and time constitute the
travel cost of passengers. The objective function is estab-
lished as follows:

H Tn n—1 n
Cu=) QY D fypelsi-)RuCsi. 57))) “)

h=1 T=1 i=Il j=i+1
T n—1 n
dey

H
Cm=Y_ O O (> S (sio )5

h=1 T=1 i=I j=i+1
J J
+(le;.r(si)_z)'tk"i_(legvf(si)_l)'td))))) Q)

It is clear that formulation (4) is the cost of the ticket in
the travel cost, and formulation (5) is the time consumption
of passenger travel cost.

In the new development plan, unallocated passengers may
be present due to limited capacity, resulting in detention.
In order to maximize the benefits, the number of stranded pas-
sengers should tend to zero as much as possible. Therefore,
there will be a large penalty factor for the stranded passengers
as a time loss. With the above analysis, the other objective
of the optimization model in this paper is to minimize trav-
elers’ travel costs. The objective function is established as
follows:

min C = Cy + o(Cyn + Mfy) (0)

where notation w is the passenger time value factor, M is the
penalty factor, and fi is the number of stranded passengers.

D. SYSTEMATIC CONSTRAINTS

“0-1” constraint: for the type of high-speed train, it is divided
into G and D. These two types are denoted by the 0-1variable
h = {0, 1}. h = 0 indicates that the type of train is D, and
h = 1 indicates that the type of train is G. Furthermore,
for the number of train marshaling, it has two types of 8-car
marshaled and 16-car marshaled. These two types are denoted
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by the 0-1 variable T = {0, 1}. ¢ = 0 indicates that the
train is 8-car marshaled, and T = 1 indicates that the train is
16-car marshaled. Last but not least, for train 7 at station s,
its states can only be stopped or not stopped. This state is also
denoted by the O-1variable x = {0, 1}. x = 0 indicates that
train 7 does not stop at station s, and x = 1 indicates that
train 7 stops at station s.

Passenger capacity constraints: to guarantee the safe oper-
ation on the railway line, trains marshaling usually consists
of two types in China, one is 8, the capacity is 600, and the
other is 16, the capacity is 1100, the same as shown in Table 4.
Then, the capacity constraints can be formulated as follows:

pry= 190 =0 ™)
1100, =1
Train capacity constraints: to ensure the convenience and
comfort of travelers, high-speed trains generally do not sell
ticket for standing room. Therefore, passengers at each station
cannot exceed the capacity of the train. The train capacity
constraint is expressed as follows:

J
1

n
/
Z Z f};r (si,sj) <p(t)y i=12,..
=1 j=i +1
Seat occupancy rate constraints: to guarantee a cer-
tain degree of economic benefits, occupancy rate needs to
meet certain standards. Occupancy rate constraints can be
expressed as below:
i
Z f}h,r(S[, S,)dl,,:{.[
ijeej T T
< ©))

04
,O(T)dl;{.r

IV. SOLUTION ALGORITHM

The optimization of high-speed train line planning is an
NP hard problem. As the number of trains station and
the number of trains increase, the solution space increases
explosively, and the difficulty of obtain the global optimal
solution increase in geometric progressing. Differential evo-
lution algorithm (DE) is a heuristic random search algo-
rithm based on population difference. Its unique competitive
survival strategy can dynamically track the current search
situation. It reduces the complexity of the genetic algo-
rithm (GA), and has the characteristics of simple structure,
easy implementation, fast convergence and strong robust-
ness. Considering the fact, this study uses the improved
MODE to solve the optimization model of high-speed
trains.

In the optimization model, the decision variables include
stop planning, train type, and train marshaling, which are all
0-1 variables. Meanwhile, the number of trains operating is a
positive integer variable. As shown in Table 3, the notation
N is used to indicate the number of trains operating, and
notation n is used to indicate the total number of stations.
Then, the individual code length L; of the train stop planning
is L1 = N - n, and the individual code length of the train
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FIGURE 3. Coding scheme for train stop planning.
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FIGURE 4. Coding scheme for train type.
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FIGURE 5. Coding scheme for train marshalling.

type L and the train marshaling L3 respectively is L 3 = N.
In summary, there are three individual coding schemes as
below:

(1) The train stop planning. When the code is 1, it means
that the train stops at the station. And when the code
is 0, it means that the train does not stop at the station.
The coding scheme is shown in Fig. 3.

(2) Train type. When the code is 1, it means that the train
type is G. And when the code is 0, it means that the
train type is D. The coding scheme is shown in Fig. 4.

(3) Train marshaling. When the code is 1, it means that
the train is 16-car marshaled. And when the code is O,
it means that the train is 8-car marshaled. The coding
scheme is shown in Fig. 5.

In addition, due to the dynamic nature of the passen-
ger demand, the number of trains is uncertain. However,
the number of trains N determines the dimensions of the
three individual coding schemes. If the number of trains is
randomly generated, the dimension of the population will
not be uniform and the algorithm will be difficult to operate
normally. Therefore, the number of trains was adjusted by
neighborhood search in the process of population evolution,
and the number of trains will gradually adjust from a large
value to a fixed value. Thus, we define the larger value
above as the maximum number of trains that can be received
per day in the study section. When the number of trains is
determined, the evolution of other optimization variables in
the population makes sense. Based on the above ideas, taking
into account the high demand of dynamic passengers flow at
the peak of the period, when generating the initial solution,
the maximum number of trains A that can be received per day
in the study section is used as the number of initial trains N.
Verified by calculation examples, the number of trains will be
gradually adjusted to the optimal area at the beginning of the
evolutionary iteration of the algorithm.

A. MODE ALGORITHM
DE is a heuristic random search algorithm based on pop-
ulation difference, its principle is very similar to GA. The
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framework of DE consists of three parts: mutation operation,
cross operation and selection operation. There are many
evolutionary patterns, which are mainly reflected in the differ-
ence between the difference vector and the base vector in the
mutation operation. Due to the fact that the number of trains
may change during the course of evolution iterations, the
stored Pareto efficiency is no longer applicable. Therefore,
we select DE/ rand/1 and DE/best/1 as mutation operations.
Formulation (10) is used in the mutation operation when
the evolution starts and the number of trains is changed.
Formulation (11) is used in the mutation operation when the
number of trains does not change.

DE/rand/1 : vi*1 = X¥ + F(Xf - x¥) (10)
DE/best/1 : "“ =Xp,q +FXE —XE) D

where F is the scaling factor, k is current evolution genera-
tion. (X,.k —-X .k) is a random difference vector, and X .k, X ,f

1 n 3 est
are base vectors.

The cross operation is generating a new individual by
crossing the parent and the mutated individuals according to
the crossover probability CR. The cross operation is formu-
lated as below:

k1 f;"' rand < CR|j = randn(i)
u.. =

i - Xl]; (12)

otherwise

The selection operation is based on a dominant relation-
ship. There is another way to say, only individuals with high
economic benefits and good market effects will be selected.

B. ALGORITHM IMPROVEMENT
In the MODE algorithm, scaling factor F and crossover prob-
ability CR have great influence on the performance of the
algorithm. The efficiency of the mutation operation is largely
determined by the choice of the scaling factor F, and the
diversity of the population depends to a large extent on the
crossover probability CR. In the basic differential evolution
algorithm, the scaling factor and crossover probability are
fixed. However, in different evolutionary periods, the algo-
rithm has different requirements for convergence speed and
population diversity. At the beginning of evolution, popula-
tion diversity can generally be met. At this time, it is only
necessary to speed up the convergence of the algorithm; in
the later stage, in order to avoid falling into a local optimal
situation, the diversity of the population should be improved.
Therefore, if the control parameters are fixed or linearly
changed with the evolution algebra, individuals with different
degrees of evolution in each generation will be difficult to
fully evolve, thus, reducing the convergence speed of the
algorithm. In summary, we propose the adaptive control
parameters based on the differences in evolutionary degrees
of individual generations. Specific steps are described as
follows:

step 1: The individuals in the population are sorted accord-
ing to the value of fitness, and the population is divided into
three parts. According to the ranking results, the top 30% of
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the individuals are the better individuals, the last 30% of the
individuals are the poor individuals, and the middle 40% of
the individuals are the general individuals.
step 2: Calculate the average fitness f,,’;éan and the best
fitness fblm of each objective function j in the i generation.
step 3: Calculate the difference between fmean and fb - The
difference A can be expressed as follows:

obj

A= Z L/ best n-wan 13)

step 4: For different evolutionary generations, the selec-
tion of individual control parameters for different degrees of
evolution is different. In other words, we should consider the
individual’s strengths and weaknesses in the current popula-
tion and also consider the evolution of the current population.
Meanwhile, for multi-objective optimization, the quality of
an individual is determined by the quality of each objective
function. Therefore, we have devised a rule for individual
division. The details are as follows:

(1) When the individual fki is a poor individual. In this case,
the global search capability should be strengthened so
that poor individuals can quickly search for better areas.
At the same time, we must balance the evolution of
the current population. Therefore, the scaling factor F'
should satisfy the following equation. It is clear that F
increases with A*, and the larger A*, the closer F is to
Frax. It means that poor individuals can get a large F,
allowing individuals to quickly approach a better area.

obj
= D k) (14)
1
Fr = Fmax — (Frax _Fmin)(am
15
+'BMAXGEN) =

where Fiax, Fmin indicate the upper and lower limits
of the scaling factor F. «, 8 are the weights of the
degree of individual’s strengths or weaknesses and the
degree of the current population evolution. Since poor
individuals may appear at different stages of evolution,
B should be smaller and the maximum number of iter-
ations is expressed as MAXGEN .

(2) When the individual fki is a general individual. At this
point, both global search and local search capabilities
should be taken into account. Therefore, the scaling
factor F' should satisfy the following equation:

Fi = Fin
MAXGEN

) MAXGEN — 1 )

F,
+ (Finax MAXGEN

(3) When the individual fki is a better individual. In this sit-
uation, local search capabilities should be strengthened
and the evolution of the current population should also
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be considered. Therefore, the scaling factor ' should
satisfy the following equation:

2:1 best
— (Fmax — Fmin)(a|—|

Fk = Fmax
i

_ 17

+'3MAXGEN) (17

(4) In this paper, the self-adaptive improvement of
crossover probability can be expressed as follows:

obj | NP i
5 0 sk [ e

j=1\ k=1
- 18
% obj (18)

CR = CRmax - (CRmaX CRmin) (19)

X(Oél)
where «; is the adaptation coefficient of crossover
probability in generation #, and oy is the set of the
adaptive coefficients of the crossover probability from
the first generation to current generation. Notation NP
is population size.

(5) Since in the MODE algorithm, the scaling factor is
usually between (0, 1), this algorithm is mainly used
for real value optimization. However, in this paper,
the main decision variables are all 0-1 variables. When
using MODE algorithm to solve the optimization
model, the mutation operation needs to be improved so
that the MODE algorithm can apply to the optimization
of 0-1 variables. It can be expressed as follows:

1) The scaling factor processed as follows, so that it
mapped at 0 and 1.

1 d < F,
P ran <. k 20)
0 otherwise

1) Afterwards, the base vector, scaling factor, and differ-
ential vector in the mutation operation will all be 0-1
variables, the mutation operation can be expressed as
follows:

Vi = xE A F&xt A X 21

Refer to (21), the symbol ‘A’ is an XOR operation and
the symbol ‘&’ is an AND operation.

C. THE GENERATION OF INITIAL SOLUTION
A heuristic algorithm for generating an initial solution is
presented in this section.

Due to the characteristics of high-speed trains with less
stops and faster speeds, a heuristic method to generate initial
solutions was constructed to improve the quality of the initial
solution, making the initial train stop planning includes the
following characteristics: more trains are stopped at stations
with larger passenger traffic, and stations with less passenger
traffic also have a number of trains.
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1) STATION WEIGHTS

The weight of each station symbolized as w is based on the
ratio of the number of passengers received at each station to
the number of passengers received at all stations.

2) ATTENUATION RATIO OF STOPS

Taking into account the characteristics of high-speed trains
operating at high speed and fewer stoppages at stations, and
the differences between the actual operation of train D and G
in China, attenuation ratios of different numbers of stops for
different types of high-speed trains symbolized as A are used
to limit the stops of high-speed trains.

3) THE NUMBER OF STOPS AT EACH STATION
In order to ensure that stations with small weights can have
trains to stop, and at the same time avoiding too many stops
for stations with heavy weights, it is necessary to record the
number of existing stops 7 at each station during the process
of initialization. According to the existing number of stops
at the station, reduce the probability of the station with a
significant weight, and increase the probability of a station
with a low weight.

In summary, the probability P;; that a train i stops at each

station j during the initial population can be expressed as:
i i

e A (22)

P = wjaré

ij j& AT 1

Refer to (22), )\f is used to indicate attenuation ratio of a train

which the type is T and has already stopped £ times. « is used

to extend the weight w to (0, 1], it can be expressed as follows:
1

“= max(w) 23)

D. NEIGHBORHOOD SEARCH STRATEGY
The neighborhood search strategy for two types of high-speed
trains is as follows:

1) Reduce train marshaling

For trains are 16-car marshaled, if the attendance is lower
than a certain threshold, the train marshaling is reduced to 8.

2) Increase train marshaling

For trains are 8-car marshaled, if the attendance is higher
than a certain threshold, the train marshaling is increased
to 16.

3) Reduce or increase the number of trains

For trains of the same type and formation number of 8
whose seating ratio is lower than a certain threshold, if the
sum of these train occupancy ratios is still lower than the
threshold, the train is deleted. Otherwise, when these trains
are deleted, a new train is reopened and its stop stations are
generated by the stop stations of the deleted trains. In other
words, if the frequency of a station in the deleted trains is
higher than a certain threshold, the station will serve as the
stop for the newly added train.

4) Splicing trains

For trains of the same type with the formation number of 8,
if they have the same parking plan, they will be spliced into
a new train which the number of train marshaling is 16.
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5) Add trains

For trains with a train formation number of 16, if the
attendance is higher than a certain threshold, add a new train
of the same type with a certain probability of 8 vehicles.

After the neighborhood search, the number of trains may
change accordingly. In this case, the value of fitness for each
objective function in the multi-objective model needs to be
sorted, and the number of trains with better fitness for each
target is selected as the number of trains to be optimized
afterwards. In addition, individuals with the same number of
trains in the neighborhood search process form a new pop-
ulation. If the reconstituted population is not satisfied with
the initially set number of populations, several individuals
are randomly generated for composing a new population, and
a set of non-inferior solutions is updated; if the number of
trains does not change, individuals with the same number of
trains in the neighborhood search process are merged with
the original non-inferior solutions, and non-inferior solutions
need to be re-screened.

V. EXAMPLE ANALYSIS IN TEST PROBLEMS

To test the performance of MA-MODE algorithm, experi-
ments based on benchmark test problems are carried out.
The MA-MODE algorithm is implemented using MATLAB
language and all the experiments are performed on a PC with
the Intel Core 7500U CPU (2.70GHZ for each single core)
and the Windows 10 operation system.

A. TEST PROBLEMS
4 bi-objective benchmark problems presented in the literature
are chosen as the test problems. These problems are often
used in many published papers dealing with evolutionary
algorithms for MOPs.

The bi-objective problems are the ZDT series: ZDTI,
ZDT2,7DT3 and ZDT6 [18].

B. PERFORMANCE METRICS

For the selected test problems, the true Pareto fronts of
them are known. In this paper, we adopt two performance
metrics that are often used in many research papers: the
inverted general distance (IGD) [19], [20] and the Spacing
(SP) [21], [22].

C. PARAMETER SETTING

Since the range of variables for test problems are between 0-1,
the scaling factor F cannot be too large. If the scaling factor
is too large, the variable is easily out of range and the search
process is equivalent to a random search. Therefore, Fiy,x =
0.36 and Fiyin = 0.01, and CRyax = 0.5, CRpyin = 0.3; and
o = 0.3,  =0.35; and NP = 300, MAXGEN = 250.

D. EXPERIMENTAL RESULTS

In this section, first, we analyzed the performance of the
MA-MODE in different evolutions. The IGD and SP results
of 20 independent runs for each problem in different evolu-
tions are shown in Table 3 and Table 4. From Table 3, as the
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TABLE 3. Algorithm performance analysis of different evolution (IGD).

100 150 200 250
Problems
Mean Std Mean Std Mean Std Mean Std
ZDT1 1.12E- 2 6.58E- 4 38E-3 1.48E - 4 2.0E-3 849E-5 1.37E- 3 486E- 5
ZDT2 1.66E - 2 1.02E- 2 42E-3 1.L1IE- 3 1.9E-3 1.46E - 4 1.34E- 3 392E-5
ZDT3 1.L12E- 2 1.3E- 3 58E-3 2.96E- 4 44E-3 2.62E- 4 38E-3 2.776E- 4
ZDT6 2.16E- 2 2.74E - 2 S5.1E- 3 2.16E- 3 3.6E-3 2.18E- 4 2.17E- 3 3.67E- 4
TABLE 4. Algorithm performance analysis of different evolution (SP).
100 150 200 250
Problems
Mean Std Mean Std Mean Std Mean Std
ZDT1 4.6E- 3 7A4E- 3 2.1E-3 249E- 4 2.1E-3 3.16E- 4 2.15E-3 2.83E- 4
ZDT2 3.6E-3 937E- 4 27E-3 931E- 4 2.6E-3 4.04E- 4 2.81E-3 47E- 4
ZDT3 1.08E- 2 SAE- 3 1.L1IE- 2 1.7E- 3 1.09E - 2 1.L1IE- 3 1.08E- 2 1.30E- 3
ZDT6 1.76E - 2 34E- 3 1.54E - 2 34F- 3 1.32E-2 1.83E- 3 1.14E- 2 144E- 3

TABLE 5. Comparison results of IGD mean and standard deviation with

NSGA-IL.
NSGA-II MA-MODE
Problems
Mean Std Mean Std
ZDT1 1.82E- 3 3.6E- 4 137E- 3 4.86E- 5
ZDT2 3.07E-3 3.0E- 4 1.34E - 3 392E-5
ZDT3 8.12E- 3 3.0E-3 38E-3 2.776E- 4
ZDT6 6.35E- 3 22E-3 2.17E- 3 3.67E- 4

—— pareto front
* MA-MODE

0.8 1

04 06
f1

0 02

FIGURE 6. The comparison results of ZDT1 test problem.

number of evolutions increases, the IGD metrics decrease
significantly, especially between the 100" and 150" gener-
ation, but the difference between the 200" and 250" gen-
eration is small. Meanwhile, the stability of the results of
each generation also has a good effect. It is clear that, after
250 generations, each test problem obtains a set of uniform
Pareto-optimal solutions.

In order to show the effectiveness of the archive, we com-
pared our algorithm MA-MODE with the nondominated sort-
ing genetic algorithm II (NSGA-II) algorithm [24], with the
same number of evolutions and populations. The comparison
results of 20 independent runs for each problem are shown
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FIGURE 7. The comparison results of ZDT2 test problem.

! = pareto front
* MA-MODE
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FIGURE 8. The comparison results of ZDT3 test problem.

in Table 5. It can be seen that the MA-MODE algorithm has
obtained good results on all four test problems.

Finally, the comparison between the real Pareto front and
the optimal solution set found by MA-MODE algorithm is
shown in Fig. 6~ Fig. 9, and it can be seen that the optimal
solution found by the MA-MODE algorithm can approximate
the real Pareto front. Last but not least, the four test functions
take 41.9531s, 41.5625s, 13.484s and 32.495s, respectively.
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FIGURE 9. The comparison results of ZDT6 test problem.
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‘ y PlanB
‘ 14
FIGURE 10. Train operation sections and operation lines.
TABLE 6. Related parameter settings.
Parameter Parameter description Value
ty Stop time at the station. 3min
tq Loss of time during train start and stop. Smin
w The factor of time value. 0.4yuan / min
C The train operating cost 150yuan/km

The above experimental results show that the proposed
algorithm has good convergence and diversity, and can effec-
tively obtain the optimal solution of multi-objective function.
The optimized solution has better convergence, diversity and
uniformity.

VI. EXAMPLE ANALYSIS IN GUANGZHOU

HIGH -SPEED RAILWAY

In this section, an example in Guangzhou high -speed railway
is given to analyze the economy benefits and market effects
of the proposed model and algorithm. A high-speed railway
section with 15 train stations was constructed, of which
high-speed train does not stop at S3, S19, S12, S13. As shown
in Fig. 10, the solid dot ““®”’ represent the train could stop at
current station, and the hollow dot “()” represent the train
could not stop at current station. In addition, there are two
originating schemes for trains, one of which originates from
S1 and the other originates from S;. Assume that train D
and train G operate at the speeds of 200km/h and 300km/h.
In addition, it is assume that each stop made by a train D
costs ¢ yuan, each stop made by a train G costs ¢j yuan,
and ¢; = 2.5¢3 [9]. Other parameters are shown in Table 6.
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FIGURE 11. Number of passengers received at each station.
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FIGURE 12. Iterative solution process about number of trains.

Passenger’s flow of each OD pair is shown in Table 7,
and the number of passengers received at each station per
day is shown in Fig. 11. It can be seen from the Fig. 11,
station 2, 5, 8, 15 receives a large number of passengers.
An improved multi-objective differential evolution algorithm
that combines heuristic algorithm and neighborhood search
strategy was adopted, and MATLAB R2016b software pro-
gram was used to solve the example case. The parameters
of the MA-MODE algorithm were set to the following: pop-
ulation size popsize = 50, the maximum number of itera-
tions Maxgen = 1000, scaling factor regulation parameters
Frax = 0.9 and Fp,j, = 0.3, crossover possibility regulation
parameters CRp,x = 0.4 and CRpj, = 0.2. In addition,
the maximum number of trains A that can be received per
day in the study section is A = 40, attenuation ratio of a train
Ao = 0.7 and A1 = 0.5. Considering the actual operation pro-
cess, train D runs on the high-speed railway and also runs on
the ordinary railway, if the number of train D changes, it may
affect the train operation on ordinary railway. Therefore, the
number of train D remains a constant value. For instance,
after 150 iteration times, the number of trains converges to
a constant value using the MA-MODE in Fig. 12, but at
the same conditions, it needs 350 iteration times using the
standard MODE algorithm. In order to be more convincing,
we conducted 20 independent experiments on the two algo-
rithms, and recorded the number of iterations in which the
number of trains converges to a constant value. Then the
average of the 20 recorded values is obtained, the average
number of iterations of the MA-MODE algorithm is 160, and
the average number of iterations of the MODE algorithm is
285. Through the above analysis, the MA-MODE converges
at a faster rate. After 1000 iteration times, the result of Pareto

VOLUME 7, 2019



H. Tian et al.: Optimization Study of Line Planning for High Speed Railway Based on an Improved MODE Algorithm

IEEE Access

TABLE 7. Passenger’s flow of every OD pair.

0D S Sy S; Sy Ss Ss S Sg So Sio Sty Sia Si3 Sty Sis
S 1 — 133 — 4 116 40 3 123 5 — — — 32 91
S2 — — — 758 5673 1440 247 5891 785 — 111 — — 749 5471
S, — — — — — — — — — — — — — —
Sy — — — — 137 76 2 94 7 — 0 — — 0 71
S — — — — — 259 | 135 | 1012 | 175 — 23 — — 134 858
Se — — — — — — 0 327 49 — 0 — — 28 185
S, — — — — — — — 69 0 — 0 — — 0 75
Sg — — — — — — — — 870 — 28 — — 141 1301
S, — — — — — — — — — — 0 — — 28 485
Sio — — — — — — — — — — — — — — —
Si — — — — — — — — — — — — — 0 19
NP — — — — — — — — — — — — — — —
NE — — — — — — — — — — — — — — —
Si4 — — — — — — — — — — — — — — 70
Sis — — — — — — — — — — — — — — —
TABLE 8. The evaluation indicators for the train operation plan.
Plan 4 C Stranded crowd number | The number of trains
Original scheme 7.1799 x10° | 2.8643 x10° 0 32
Optimize scheme(standard MODE)(1) | 7.5761 x10° | 2.6903 x10° 0 27
Optimize scheme(MA-MODE)(2) 7.5734 x10° | 2.6706 x10° 0 27
Optimize scheme(MA-MODE)(3) 8.1799 x10° | 2.6862 x10° 0 27
%108 Pareto front of the original scheme. Namely, the result of point 3 can
27 I dominate the result of point 1 clearly; and the result of point
T e T of 2 and the result of point 1 are not dominated by each other,
L o although the economic benefit of point 2 is 270 lower than
o ° point 1, but the passenger travel cost of point 2 is reduced
2.6 by 19700 compared with point 1. From the perspective of
market efficiency C, the result of point 2 is better than
2 3 4 5 6 7 8 9 point 1. In summary, the optimization result of MA-MODE
z x10%

FIGURE 13. Pareto solution set of two optimization methods.

solution set of two optimization methods is shown in Fig. 13.
It can be seen that the Pareto solution set of MA-MODE is
superior to the standard MODE. The Pareto solution set is
the optimal solution after the balance. Decision makers can
choose one of them based on their emphasis on different
indicators.

Specifically, we choose a pair of Pareto solutions for
comparison. The comparison results are shown in Table 8.
It can be seen that the selected non-inferior solutions (point 1,
point 2, and point3 in Fig. 13) can dominate the solution

VOLUME 7, 2019

is better than MODE. Moreover, the plan ensures a certain
degree of accessibility between OD pairs, thus this plan
meets the travel requirement of passengers. The result of
this Pareto solution (point 2) generated by MA-MODE is
shown in Fig. 14 (Time consuming 841s). It contains four
types of information for the trains, including the number and
type of trains, train marshaling (O: train is 8-car marshaled;
1: train is 16-car marshaled) and stop scheme of each train.
It can be seen there are more trains at station 5 and station 8.
Meanwhile, the number of stops for each train is fewer stops
and less than or equal to 6. In general, railway rolling stock is
one of the most expensive assets of railway operators [23].
The number of trains in the optimized scheme is smaller
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FIGURE 14. Optimization result.

than original scheme, which could save lots of operating
costs.

VIi. CONCLUSION

Aiming to provide a system-optimization framework for line
planning, this paper first integrated the number and the type
of train, train marshaling and stop planning together into
a fundamental collaborative optimization model on a high-
speed railway corridor. To establish the connection between
the train stop planning, train type, train marshaling and the
number of train, binary variables were introduced to deter-
mine whether a train stops at a station or not, whether a
train type is D or G, and whether a train is 8-car marshaled
or 16-car marshaled. Meanwhile, a positive integer variable
was introduced to indicate the number of train. Due to the
dynamic nature of the passenger demand, the number of
trains is uncertain. However, the number of trains determines
the dimensions of the individual coding schemes. Therefore,
the number of trains was adjusted by neighborhood search
in the process of population evolution. If the number of
trains has changed, the individuals that match the number
of trains changed will be saved during the neighborhood
search. Meanwhile, the population may need to be filled.
In addition, it is also necessary to screen the non-inferior
solution from the current population to replace the non-
inferior solution for the next iteration. On the other hand,
if the number of trains has not changed, the individuals with
the same number of trains are extracted and merged with
the non-inferior solutions, and the non-inferior solutions are
screened again. Through an optimization model that aims to
maximize the income of Railway Company and minimize
passenger travel cost, the collaborative optimization model
was realized. Meanwhile, we proposed MA-MODE to solve
this problem. Prior to this, the efficiency and convergence of
the MA-MODE were proved by some test problems. Then,
a real case study was performed on the Guangzhou high-
speed railway with the practical operation data. The computa-
tional results showed that this strategy can change the number
of trains according to the passenger flow demand, and give
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a reasonable operation plan, which greatly saves operating
costs.

Further research will focus on a better and quantified math-
ematical model to combine the train scheduling.
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