
Received July 31, 2019, accepted August 21, 2019, date of publication September 4, 2019, date of current version October 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939410

MOBIUS: Model-Oblivious Binarized
Neural Networks
HIROMASA KITAI1, JASON PAUL CRUZ1, NAOTO YANAI 1, NAOHISA NISHIDA2,
TATSUMI OBA2, YUJI UNAGAMI2, TADANORI TERUYA 3, NUTTAPONG ATTRAPADUNG3,
TAKAHIRO MATSUDA3, AND GOICHIRO HANAOKA3
1Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
2Panasonic Corporation, Osaka 571-8501, Japan
3Cyber Physical Security Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan

Corresponding author: Naoto Yanai (yanai@ist.osaka-u.ac.jp)

This work was supported in part by the Secom Science and Technology Foundation and in part by the JST CREST under Grant JPMJCR19F6.

ABSTRACT A privacy-preserving framework in which a computational resource provider receives
encrypted data from a client and returns prediction results without decrypting the data, i.e., oblivious neural
network or encrypted prediction, has been studied inmachine learning. In this work, we introduce and explore
a new problem called the model-oblivious problem, where a trainer can delegate a protected model to a
resource provider without revealing the original model itself to the resource provider. The resource provider
can then offer prediction on a client’s input data, which is additionally kept private from the resource provider.
To solve this problem, we present MOBIUS (Model-Oblivious BInary neUral networkS), a new system
that combines Binarized Neural Networks (BNNs) and secure computation based on secret sharing as tools
for scalable and fast privacy-preserving machine learning. BNNs improve computational performance by
binarizing values in training to −1 and +1, while secure computation based on secret sharing provides fast
and various computations under encrypted forms via modulo operations with a short bit length. However,
combining these tools is not trivial because their operations have different algebraic structures.MOBIUS uses
improved procedures of BNNs and secure computation that have compatible algebraic structures without
downgrading prediction accuracy.We present an implementation ofMOBIUS in C++ using the ABY library
(NDSS 2015). Then, we conduct experiments using several datasets, including the MNIST, Cancer, and
Diabetes datasets, and the results show that MOBIUS outperforms SecureML (IEEE S&P 2017), which is
the only other work that can potentially tackle the model-oblivious problem, in terms of both accuracy and
computational time. Comparedwith TAPAS (ICML 2018) as a state-of-the-art BNN-based system,MOBIUS
is three orders of magnitude faster without downgrading the accuracy despite solving the model-oblivious
problem.

INDEX TERMS Model obliviousness, neural network predictions, privacy-preserving machine learning,
secure computation.

I. INTRODUCTION
A. BACKGROUND
Machine learning methods are widely used in various situ-
ations, such as healthcare, manufacturing, and financial ser-
vices. Consequently, privacy has become a serious concern
in the use of big data. Consider a prediction-as-a-service
application of machine learning with three entities, namely,
a trainer, a resource provider, and a client. A trainer trains
a model with plaintexts and then uploads the model to a

The associate editor coordinating the review of this manuscript and
approving it for publication was Mahmoud Barhamgi.

resource provider, e.g., a cloud service. A client can then
utilize such model by accessing the cloud and providing input
data to the resource provider for prediction. However, this
kind of system is insecure and impractical when the resource
provider is malicious. In general, the following two features
are important for a practical and secure use of machine
learning:

• Guarantee the privacy of a client’s input data from a
resource provider without downgrading prediction per-
formance.

• Guarantee the privacy of a trainedmodel from a resource
provider and from clients.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 139021

https://orcid.org/0000-0002-0817-6188
https://orcid.org/0000-0003-4362-4887


H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

To satisfy the first feature, different privacy-preserving
frameworks have been proposed to keep the input data of
clients private from resource providers [1]–[8], but a privacy-
preserving mechanism should be used in a prediction to
guarantee the privacy of a client and the input data. How-
ever, a privacy-preserving mechanism may downgrade the
throughput of a model and may thus not be used because
of poor performance. To solve this dilemma, a privacy-
preserving mechanism that does not downgrade perfor-
mance of a model is necessary.
Regarding the second feature, in contrast, no framework

that makes the model itself private, i.e., the resource
provider computing the prediction is oblivious about the
model, has been proposed.1

In general, training a model needs significant amounts of
data and heavy computations, and thus the model itself is
an important resource to a trainer. Several machine learning
systems provide prediction as a service in the cloud, but
the aforementioned problem regarding the second feature
implies that the resource provider who manages a cloud
server is highly trusted. For example, a resource provider
can maliciously use a model stored in a cloud server it owns
without permission from the trainer to provide any service.
Therefore, a trainer who owns a dataset and trains a model
has to completely trust a resource provider who provides a
prediction service. Otherwise, a trainer whowants tomaintain
privacy and does not completely trust a resource provider will
hesitate to outsource machine learning services. To solve this
problem, a model should be encrypted to prevent unautho-
rized entities, including the resource provider, from accessing
the model itself.

1) MOTIVATING EXAMPLE
The main goal of this work is to create a system that keeps
a trained model private from the clients and the resource
provider itself and allows the clients to keep their input data
private from the resource provider. We call this the model-
oblivious problem.
Figure 1 shows an example scenario describing the intu-

ition behind the model-oblivious problem. In this figure,
a hospital, a cloud server, and doctors represent a trainer,
a resource provider, and clients, respectively. The hospital
trains a model with datasets it collected, encrypts the model,
and then publishes the encrypted model on a cloud server,
such as AmazonEC2, to make it publicly available to doctors.
The cloud server can then execute a prediction for an input
provided by a doctor by using the encrypted model without
decrypting it. Since the model is encrypted, the cloud server
cannot extract information from it or use it for other purposes.

2) KEY QUESTION
The main technical challenge is solving the model-oblivious
problem without drastically downgrading throughput caused

1The techniques used by SecureML [9] can potentially be used to secure a
trained model, but this was not part of their motivation and was not discussed
in their paper. See Section IV for details.

FIGURE 1. Example scenario of model-oblivious problem.

by the use of additional secure computation. Intuitively, mak-
ing the computation of prediction oblivious about amodel can
be achieved by using secure computation in both the trained
model and the input for the prediction. However, making the
prediction oblivious about a model makes existing speed-
up techniques for oblivious prediction [4], [8] unavailable.
Consequently, solving the model-oblivious problem without
downgrading performance (relative to the performance of
related work) is difficult. We note that oblivious predic-
tion [1]–[8] and encrypted training [10]–[14] do not imply
the features of the model-oblivious problem.

B. CONTRIBUTION
In this work, we propose a new system named Model-
Oblivious BInarized neUral networkS (MOBIUS),2 which
enables scalable encrypted prediction and the use of an
encrypted model, i.e., making prediction oblivious about the
model. MOBIUS is scalable in the sense of being able to
support an easy construction using a well-known approach
for secure computation, and we will show a proof-of-concept
of such implementation. MOBIUS uses binarized neural net-
works (BNNs) [15] and secure computation based on secret
sharing as its main tools. BNNs are neural networks whose
values for weight matrices and activation functions are bina-
rized to +1 or −1. BNNs have an advantage over tradi-
tional neural networks in computational efficiency, since they
are operated on binarized values, rather than real numbers.
Secure computation based on secret sharing distributes input
data from a client as shares such that an individual share leaks
nothing about the original data, and it can evaluate the data
without reconstructing the data via the homomorphism of the
shares. A bit length of shares can be shortened in comparison
with conventional cryptography, and thus the resulting secure
computation can perform better than other cryptographic
tools, such as fully homomorphic encryption (FHE) [16].

2We published a paper with the same title as this manuscript in arXiv.
This manuscript is an improved version that includes additional experimental
results.

139022 VOLUME 7, 2019



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

MOBIUS guarantees that a prediction is oblivious about a
trained model against an honest-but-curious adversary.

Below we will briefly describe that some difficulties arise
when one attempts to apply secure computation techniques
directly to the original BNN as per [15]. We resolve this
by proposing improved BNNs that are efficiently compatible
with secure computation.

We present an implementation of MOBIUS based on
secret sharing and our improved BNNs using C++ and the
ABY library [17]. We conducted experiments using several
datasets, such as the MNIST dataset, and the results show
that MOBIUS can perform a prediction within 0.76 seconds
with 95.9% as accuracy. This performance is six times faster
than SecureML [9], which is the only other work that can
potentially address the model-oblivious problem, as well
as improvements in accuracy. Moreover, MOBIUS outper-
forms TAPAS [14] and FHE-DiNN [12], which are works
on privacy-preserving prediction based on BNNs, in terms
of both accuracy and computational performance despite
solving the model-oblivious problem. We demonstrate that
MOBIUS is three orders of magnitude faster than TAPAS
through experiments with several datasets, which have pri-
vacy implications. These results have been obtained even
without optimizing our implementation (See SectionVI-C for
details).

C. DIFFICULTIES AND OUR APPROACH
1) NEURAL NETWORKS
Traditional neural networks consist of full connection layers
and activation layers, which correspond to matrix multi-
plications (between input vectors and model matrices) and
non-linear operations, respectively. Batch normalization lay-
ers [18] are added so as to improve the prediction accuracy to
traditional networks. Binarized neural networks (BNN) [15]
consists of these three types of layers albeit in the binarized
forms, rather than real numbers as in traditional networks;
this was done so as to improve computational efficiency.
In particular, due its binarized forms, BNN of [15] chose
to perform batch normalization using the so-called shift-
based batch normalization (SBN) method, which is a boolean
operation involving bit shifting. Note that SBN somewhat
generally degrades the prediction accuracy from traditional
neural networks (although the experiments on specific net-
works in [15] achieved no accuracy loss.)

2) APPLYING SECURE COMPUTATION
Secret-sharing based secure computation can be executed
in boolean or arithmetic forms [17]. On-the-fly conversions
among these forms [17] are also available but they do not
come for free. For full connection and batch normalization
layers, naively, one may apply secret-sharing based secure
computation to the original BNN of [15] in the following
manners:
• Boolean shares for both types of layers. As matrix mul-
tiplications are arithmetic in nature, and it is known [17]
that using boolean shares for arithmetic computation

would result in computationally inefficient protocols,
we can conclude that this method would be inefficient.

• Arithmetic shares for full connection and boolean shares
for batch normalization. This method provides suitable
formats for respective layers; however, a costly conver-
sion for arithmetic-to-boolean shares (equivalent to bit
decomposition protocols in shared forms [19]) must be
applied; this again yields inefficient protocols.

• Arithmetic shares for both types of layers. This requires
computing shift-based computation for SBN in the form
of arithmetic shares. Intuitively, this involves secure
multiplication with the values that are powers of 2.
However, this would inherit the accuracy degradation
from the original BNN of [15].

To conclude, the above naive methods would result in either
inefficient or lower-accuracy protocols.

3) OUR APPROACH: IMPROVED BNNs
Our idea is to modify the original BNN of [15] so that it
would inherit the advantage on fast computation of BNN (due
to binarized forms) while also improve accuracy. We exe-
cute this idea by using arithmetic shares for both layers
and observing that we are not confined to multiply to only
the power of 2, as is the case in the shift-based method
for SBN, anymore. In other words, we can turn back to use
the ‘‘vanilla’’ batch normalization as in [18] instead of its
approximation in the shift-based method, where the former
would result in better accuracy in general (as we can use
any parameters instead of one the power of 2 as in the
SBN method).

The next problem arises as such a vanilla batch normal-
ization is performed in real numbers (not only integers),
and hence it is somewhat not fully compatible with secure
computation protocols, which are usually defined on integers.
We solve this bymultiplying the batch normalization parame-
ters (which are real numbers) by a constant and then rounding
them down to the nearest integers. We note that this kind of
approximation would generally cause correctness errors in
normal secure computation protocols; however, we observe
that, in our networks, each batch normalization layer will be
followed exactly by an activation layer, of which computation
will not by affected by approximating inputs, and hence the
rounding technique can be used.

D. RELATED WORK
SecureML [9] is the closest work to ours. The main motiva-
tion of SecureML is to provide scalable encrypted training,
and solving the model-oblivious problem is not one of their
goals. Although encrypted training does not imply the model-
oblivious problem, SecureML can potentially consider the
model-oblivious problem. We also note that encrypted train-
ing is out of the scope of our work.

As related work on combining BNNs with cryptography,
TAPAS [14] and FHE-DiNN [12] based on FHE have been
concurrently proposed. FHE-DiNN utilized discretized neu-
ral networks where domains are defined from −w to +w,

VOLUME 7, 2019 139023



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

but its experiments were conducted with −1 to +1 exactly
the same as BNNs. These works mainly aim to deploy fast
computation of FHE [16], [20] in BNNs, and they did not
consider the use of BNNs under modulo operation and the
model-oblivious problem.

For developments of secure computation based on secret
sharing, the state-of-the-art library is ABY3 [21] which is
secure against a malicious adversary who ignores a protocol
specification. Although our current implementation is secure
against an honest-but-curious adversary who follows a pro-
tocol specification, we can extend it to a secure implemen-
tation against a malicious adversary by re-constructing with
ABY3 as well as throughput.

We note that secure computation protocols with fixed-point
arithmetic are available [22], [23] and is potentially useful for
dealing with real numbers. Our method is similar in scaling
by a constant factor; the difference is that we use arbitrary
constants and use rounding, while the protocol in [22], [23]
use the constants that are power of 2 and use truncating. Note
also that the frameworks in [22], [23] are intended for general
protocols such as divisions, while ours is for the mere purpose
of applying to batch normalization.

Another approach for preserving privacy is differential pri-
vacy [24], which can prevent a trained model from leaking an
individual record by perturbing the records with randomized
noise. Given this capability, many works on neural networks
use differential privacy [11], [25]. There are also works on
further applications of differential privacy, e.g., data collec-
tion on an untrusted server [26], [27] or general function
release [28]. However, according to Dowlin et al. [10], the
notion of differential privacy is not useful in the predic-
tion phase. Moreover, preventing unauthorized entities from
accessing a model is outside the scope of differential privacy.

Related systems consider model extraction attack [29] as a
kind of malicious usage of a model. Model extraction attack
allows an adversary to abuse query APIs of a model to steal
the hosted model. However, this kind of attack is out of the
scope of model obliviousness because model obliviousness
does not protect information obtained via queries to a model.
To protect a model from model extraction attack, restriction
in the use of APIs [29] or query monitoring [30] may be
necessary.

II. PRELIMINARIES
In this section, we provide background on neural networks
and secure computation to help in understanding our work.

A. BINARIZED NEURAL NETWORK
Binarized neural networks (BNNs) [15] were proposed to
reduce overhead by minimizing data sizes. To do this, values
presented in neural networks are binarized to reduce the
required computational resources.

The original work on BNNs [15] described methods
to binarize three protocols, namely, full connection, batch
normalization, and activation, which are required in stan-
dard neural networks. Full connection computes matrix

multiplications between vectors and weight matrices. Batch
normalization makes the distribution for nodes uniform in the
training phase and contributes to speeding up both training
and prediction. Activation applies non-linear processing to
output vectors, and a sign function is utilized in BNNs.
Among the protocols described above, batch normalization
has adopted a bit-shift method to be computed in a binarized
form, which is different from well-known batch normaliza-
tion algorithms [18], because the operations in well-known
batch normalization algorithms require real numbers, conse-
quently creating a bottleneck in the computations.

B. CRYPTOGRAPHIC PRELIMINARIES
In this section, we describe the notations and terminologies
used in secure computation based on secret sharing.

1) SECRET SHARING
A t-out-of-n secret sharing scheme over a finite domain D
consists of the following two algorithms:

(JxK1, . . . , JxKn) ← Share(x): Share takes x ∈ D as
input, and outputs JxK1, . . . , JxKn ∈ D.
x ← Reconst(JxK1, . . . , JxKt ): Reconst takes

JxK1, . . . , JxKt ∈ D as input, and outputs x ∈ D.
In these algorithms, for i ∈ {1, . . . , n}, JxKi is called the i-th

share of x. We denote JxK = (JxK1, . . . , JxKn) as their short-
hand. Any less than t shares of x over the t-out-of-n secret
sharing scheme jointly give no information on x, whereas any
≥ t shares jointly determine x by using Reconst. Several
secret sharing schemes that have been proposed typically
have finite domains, e.g., the ring of integers ZM moduloM ,
where M is a positive integer greater than 1, and an `-length
binary string [31]. An i-th share of an `-dimensional vector
v = (x1, . . . , x`) over a domain D consists of i-th shares of
its components and is denoted by JvKi := (Jx1Ki, . . . , Jx`Ki).
Analogously, an i-th share of a matrix is defined in the
same way. Therefore, a secret sharing scheme over vectors,
matrices, and tensors, among others, can be defined.

2) SECURE COMPUTATION BASED ON SECRET SHARING
We define sub protocols of secure computation that we uti-
lized in our work. The following computations are defined
over the ring of integers ZM = {0, . . . ,M − 1} modulo M .
Several efficient implementations of the protocols have been
provided [17], [32].
• JcK ← ADD(JaK, JbK): ADD takes shares JaK and JbK
of a ∈ ZM and b ∈ ZM , respectively, as inputs, then
outputs a share JcK of a+ b = c ∈ ZM .

• JcK← ADDConst(JaK, b): ADDConst takes share JaK
of a ∈ ZM and b ∈ ZM as inputs, then outputs a share
JcK of a+ b = c ∈ ZM .

• JcK ← MUL(JaK, JbK): MUL takes shares JaK and JbK
of a ∈ ZM and b ∈ ZM , respectively, as inputs, then
outputs a share JcK of a× b = c ∈ ZM .

• JcK← MULConst(JaK, b): MULConst takes share JaK
of a ∈ ZM and b ∈ ZM as inputs, then outputs a share
JcK of a× b = c ∈ ZM .

139024 VOLUME 7, 2019



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

• JcK ← CMP(JaK, JbK): CMP takes shares JaK and JbK
of a ∈ ZM and b ∈ ZM , respectively, as inputs,
then outputs a share J1K if a < b over the integers,
J0K otherwise.

• JcK ← Half(JaK): Half takes a share JaK of a ∈ ZM as
input, then outputs a share J1K if a ≤ bM/2c over the
integers, J0K otherwise.

In our implementation, we utilize the ABY library [17],
which is based on a two-party setting (See Section VI-A for
details) and supports secure computation over the ring of
integers modulo M = 2m (m = 8, 16, 32, or 64). Here,
Half can be instantiated by the use of CMP although it is not
originally included in the ABY library.

C. SECURITY AND NETWORK SETTINGS
In this paper, we focus on the semi-honest adversary. More
precisely, we consider the adversary who follows protocols
but curiously learn client’s or trainer’s data. As mentioned
above, in our proposed protocol, there are three parties: the
client, the service provider, and the trainer, and note that there
are n servers in the cloud hosted by the service provider.
The trainer locally trains with plaintexts, i.e., non-

encrypted training, and constructs a model of a BNN. Then
the trainer computes shares of the model with respect to an
underlying t-out-of-n secure computation scheme, and then
uploads the resulting shares to the servers. Namely, the adver-
sary cannot learn the model as long as the adversary corrupts
less than t servers.
The client computes shares of its query of the prediction

on trainer’s model with respect to the underlying t-out-of-
n secure computation scheme, and then sends the resulting
shares to the cloud. More than t − 1 servers jointly compute
a protocol of the prediction with input the shares of model
and the shares of query, and then output its result. Namely,
the adversary cannot learn client’s query as long as the adver-
sary corrupts less than t servers.
However, similar to previous proposals [4], [9], we do not

aim to hide the size of client’s query, the network architecture
of trainer’s model, and which secure computation protocols
are used. The authors of MiniONN [4] suggested that such
information can be protected by adding dummy layers, which
can also be integrated with our proposed protocol.

Finally, we assume the use of secure channel, which can be
instantiated by the transport layer security (TLS) [33]. This
setting is the same as that in other literature [4], [9].

III. OUR MAIN IDEA
1) TECHNICAL PROBLEM
This work aims to create a system that achieves both the
performance and the security of a trained model by using
BNNs. The values in the operations of BNNs are binarized
into +1 or −1 and may seem to be compatible with the
algebraic structures of secure computation. However, the pro-
cesses of the original batch normalization [18] that improve
the performance of neural networks are linear operations

in real numbers, making them somewhat incompatible with
secure computation in integers.

2) TRANSFORMATION INTO INTEGERS
To solve the compatibility problem, we transform the param-
eters of batch normalization into linear operations in integers
by multiplying the parameters by a constant and rounding
them down to the nearest integers. Heuristically, we can
deduce that such transformation has small influence on the
accuracy because errors can be ‘‘reset’’ by using non-linear
processing in an activation function after the batch normal-
ization. In particular, the possibility that the truncation of
digits changes the sign of the output of batch normalization
(i.e., from positive to negative and vice versa) and influence
the activation function is negligible. The output of the batch
normalization in the output layer is identical to that of BNNs,
and themaximized value in these output vectors can be finally
obtained as a prediction result. The possibility that the index
of a maximized value is changed is negligible, and thus
the truncation of digits does not affect the prediction result.
In actual applications, the sizes of the parameters can be
chosen such that the decline in the accuracy in a trained
BNN model is minimal.

The method described above solves the incompatibility
problem between the algebraic structures of the operations
of BNNs and secure computation. Moreover, this method
achieves a higher accuracy than the bit-shift method in the
original BNNs [15] because the standard batch normaliza-
tion can clip distribution with a higher accuracy. Finally,
we can construct MOBIUS by combining an efficient and
scalable secure computation based on secret sharing and the
improved BNNs.

IV. BINARIZED NEURAL NETWORKS COMPATIBLE WITH
SECURE COMPUTATION
In this section, we describe our improved BNNs that will
be suitable for applying secure computation protocols, and
hence will be used in MOBIUS. The intuition on our
improved BNNs follows from Section I-C. Below we first
explain our approach on batch normalization with inte-
gers (rounding parameters), and then describe our improved
BNNs. We finally describe an instantiation on an architecture
for MNIST, which is a large database of handwritten digits,
as a concrete example of the proposed improved BNNs.

A. NOTATIONS
For convenience, we summarize parameters used in subse-
quent sections as follows.

VOLUME 7, 2019 139025



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

Algorithm 1 BinaryFullConnection

Input: a ∈ Zdin×1 : input vector
W ∈ {−1, 1}dout×din : weight matrix

Output: c ∈ Zdout×1
Procedure:
1: c← Wa

B. BATCH NORMALIZATION WITH INTEGERS
In this section, we explain our approach to perform batch
normalization with integers. We refer the ‘vanilla’’ (or ordi-
nary) batch normalization to [18] and briefly recapitulate
it here. The ordinary batch normalization of [18] defines
γ(i), β(i), µ(i), σ(i), and ε as learned parameters. All param-
eters are real numbers while ε is a small positive value.
In the i-th layer, with an integer input x(i), it performs the

following computation and outputs

x̂(i) = γ(i)
x(i) − µ(i)√
σ 2
(i) + ε

+ β(i). (1)

By replacing coefficients, Equation (1) can be transformed
into x̂(i) = s(i)x(i) + t(i) where

s(i) =
γ(i)√
σ 2
(i) + ε

, t(i) = β(i) −
γ(i)µ(i)√
σ 2
(i) + ε

. (2)

By substituting s′(i), t
′

(i) for integers s(i), t(i) using an appropri-
ate integer q, which we call a scale parameter, we obtain an
alternative integer x̂ ′(i) for x̂(i) as follows:

x̂ ′(i) = s′(i)x(i) + t
′

(i)

(
s′(i) = bqs(i)c, t

′

(i) = bqt(i)c
)

(3)

Although the value of q can be determined layerwise or even
nodewise, the same q is used in every node for simplicity
in this paper. Intuitively, as the value q increases, the dete-
rioration of BNN prediction accuracy decreases. However,
the bit length of modulus M increases as q increases, con-
sequently increasing memory requirements and calculation
costs. Therefore, q should be as small as possible to maintain
high prediction accuracy.

C. IMPROVED BINARIZED NEURAL NETWORKS
In this section, we describe the binary full connection, batch
normalization, and activation algorithms used in the pro-
posed BNNs. The binary full connection algorithm is shown
in Algorithm 1. This algorithm takes an integer vector a and
a learned weight matrix W as inputs, then outputs the result
of matrix multiplicationWa.

The batch normalization algorithm is shown in
Algorithm 2. This algorithm takes an integer vector c, which
is usually an output of binary full connection, and batch nor-
malization parameters s′, t ′ as inputs, then outputs the result
of batch normalization. Batch normalization parameters s′, t ′

are obtained as described in Section IV-B.
The activation algorithm is shown in Algorithm 3. This

algorithm takes an integer vector b as input, then outputs a

Algorithm 2 BatchNormalization

Input: c ∈ Zd : input vector
s′, t′ ∈ Zd : batch normalization parameters

Output: b ∈ Zd
Procedure:
1: for i = 1 to d , b(i)← s′(i) ∗ c(i) + t

′

(i)

Algorithm 3 Activation

Input: b ∈ Zd : input vector
Output: a ∈ {−1, 1}d

Procedure:

1: for i = 1 to d , a(i)←

{
−1 (b(i) < 0)
1 (b(i) ≥ 0)

FIGURE 2. Architecture of the BNNs for MNIST dataset.

binary vector that represents the signs of each element of the
input vector b.

D. BINARIZED NEURAL NETWORKS FOR
MNIST DATASET
In Section IV-C, we described the algorithms used in the
proposed BNNs. To use BNNs for learning or predicting
data, we need to instantiate a concrete architecture and deter-
mine the entire procedure. We instantiate an architecture for
MNIST dataset image classification (See Section VI-B for
details on the MNIST dataset). Consider a typical architec-
ture with an input layer of size 784, two hidden layers of
size d , and an output layer of size 10, as shown in Figure 2.
In the hidden layers, the full connection, batch normalization,
and activation algorithms are executed in order. In the out-
put layer, only the full connection and batch normalization
algorithms are executed. In this architecture, even though the
maximum value index of the output vector is the result of the
prediction, we omit this process because the proposedmethod
is designed to return output vectors as the result of secure
computation.

The weight matrices W(1),W(2), and W(3) used in
algorithm 4 are learned parameters, and the batch normal-
ization parameters s′

(j), t
′
(j) can be calculated as described

in Section IV-B. In the case of d = 128, 1000 (d is
the size of hidden layers), we confirm experimentally that
the deterioration of prediction accuracy towards test data
is negligible when a scale parameter q = 10, 000. There-
fore, we use q = 10, 000 in all experiments in this
work.

139026 VOLUME 7, 2019



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

Algorithm 4 Binarized Neural Network for MNIST

Input: input ∈ Z784×1 : input vector
W(1) ∈ {−1, 1}

d×784, s′
(1)
∈ Zd×1, t′

(1)
∈ Zd×1,

W(2) ∈ {−1, 1}
d×d , s′

(2)
∈ Zd×1, t′

(2)
∈ Zd×1,

W(3) ∈ {−1, 1}
10×d , s′

(3)
∈ Z10×1, t′

(3)
∈ Z10×1

Output: output ∈ Z10×1 : output vector
Procedure:
1: c(1)← FullConnection

(
input,W(1)

)
2: b(1)← BatchNormalization

(
c(1), s

′
(1)
, t′
(1)

)
3: a(1)← Activation

(
b(1)

)
4: c(2)← FullConnection

(
a(1),W(2)

)
5: b(2)← BatchNormalization

(
c(2), s

′
(2)
, t′
(2)

)
6: a(2)← Activation

(
b(2)

)
7: c(3)← FullConnection

(
a(2),W(3)

)
8: output ← BatchNormalization

(
c(3), s

′
(3)
, t′
(3)

)

V. MOBIUS DESIGN
In this section, we describe the design of MOBIUS.
We first describe share generation of a trained model in the
pre-processing phase, and then show its main algorithms.

MOBIUS is composed of protocols we call secure full con-
nection, secure batch normalization, and secure activation.
The main sequences of these protocols are almost the same as
those described in the previous section, but we utilize secure
computation in the internal processes.

A. SECRET SHARING A MODEL
We first construct shares of parameters, which are learned in
plaintexts, except for that of batch normalization by utilizing
secret sharing described in Section II-B. In this construction,
let M be a modulus of the secret sharing. Moreover, for any
a, JaK is a secret share if a > 0 and JM C aK is a secret share
if a < 0. Hereinafter, we denote 0 ≤ a ≤ bM2 c as a non-
negative integer and bM2 c < a < M as a negative integer.
Learned weight matrices W(i) (i = 1, · · · ;L − 1) are

shared using secret sharing and are stored in each server in
a distributed manner. Parameters of the batch normalization
are computed using the computation in Section IV-B, and
its resulting parameters s(i), t(i) (i = 1, · · · ,L − 1) are
stored in each sever as shares by utilizing the secret sharing.
Finally, the size information (L, n(0), · · · , n(L)) of the shares
themselves are not shared, i.e., they are stored as plaintexts.

B. MODEL-OBLIVIOUS PREDICTION
The construction of a prediction protocol for MNIST in
MOBIUS is shown in Algorithm 5. The secure full connec-
tion, secure batch normalization, and secure activation are
denoted bySecureFC,SecureBN, andSecureAct, respec-
tively.Moreover, for anymatrixX ,X(i,j) indicates an element

Algorithm 5 SecureBinaryNN for MNIST

Input: JinputK ∈ Z784
M : Shares of Input Vectors

Output: JoutputK ∈ Z10
M : Prediction Results

Procedure:
1:

r
c(1)

z
← SecureFC

(
JinputK ,

r
W(1)

z)
2:

r
b(1)

z
← SecureBN

(r
c(1)

z
,
r
s(1)

z
,
r
t(1)

z)
3:

r
a(1)

z
← SecureAct

(r
b(1)

z)
4:

r
c(2)

z
← SecureFC

(r
a(1)

z
,
r
W(2)

z)
5:

r
b(2)

z
← SecureBN

(r
c(2)

z
,
r
s(2)

z
,
r
t(2)

z)
6:

r
a(2)

z
← SecureAct

(r
b(2)

z)
7:

r
c(3)

z
← SecureFC

(r
a(2)

z
,
r
W(3)

z)
8: JoutputK← SecureBN

(r
c(3)

z
,
r
s(3)

z
,
r
t(3)

z)
Algorithm 6 SecureFullConnection

Input: JinputK ∈ ZdinM : Shares of Input Vectors
JWK ∈ Zdout×dinM : Shares of Weight Matrices

Output: JoutputK ∈ ZdoutM
Procedure:
1: for i = 0 to dout do
2: for j = 0 to din do
3:

r
X(i)

z
← MUL(JW(i,j)K, Jinput(j)K)

4:
r
output(i)

z
← ADD(Joutput(i)K, JX(i)K)

5: end for
6: end for

of the i-th row and j-th column and X(i) indicates an element
of the i-th column.

The secure full connection protocol is described in
Algorithm 6. The matrix multiplication between shares is
computed similarly as in Algorithm 1.

The secure batch normalization protocol is described in
Algorithm 7. Although the original batch normalization [18]
requires computations of root or division, the secure batch
normalization protocol can be performed with only addi-
tion and multiplication by performing the computation in
Equation (2) in advance.

The secure activation protocol is described in Algorithm 8.
This algorithm outputs+1 if the input is greater than or equal
to zero or −1 otherwise. As described above, a non-negative
integer is represented by {0, . . . , bM2 c} and a negative integer
is represented by {bM2 c+1, . . . ,M−1}. Therefore, the algo-
rithm is performed by a comparison operation with bM2 c + 1
in secure computation.

C. DETERMINATION OF MODULUS SIZE
To contain non-negative integers within

{
0, . . . , bM2 c

}
and

negative integers within
{
b
M
2 c + 1, . . . ,M − 1

}
, we need to

VOLUME 7, 2019 139027



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

Algorithm 7 SecureBatchNormalization

Input: JcK ∈ ZdM : Shares of Input Vectors
JsK , JtK ∈ ZdM : Batch Normalization Parameters

Output: JoutputK ∈ ZdM
Procedure:
1: for j = 0 to d do
2:

r
X(j)

z
← MUL(Jc(j)K, Js(j)K)

3:
r
output(i)

z
← ADD(JX(j)K, Jt(j)K)

4: end for

Algorithm 8 SecureActivation

Input: JbK ∈ ZdM : Shares of Input Vectors
Output: JaK ∈ ZdM
1: for j = 0 to d do
2: JX(j)K← Half(Jb(j)K)
3: JY(j)K← MULConst(JX(j)K, 2)
4:

r
a(j)

z
← ADDConst(JY(j)K,−1)

5: end for

determine the size of modulus M adequately. Such an ade-
quate modulusM can be computed through a maximized (or
minimized) value during execution of BNNs without secure
computation.

For convenience, we describe a computation with a net-
work model described in Fig. 2. Let s and t be param-
eters for batch normalization. The maximized value for
MOBIUS is identical to that of b in the second line of
Algorithm 5 and becomes (784 × x × smax + tmax) ∗ 2 + 1,
where x is the size of input data, i.e., 8 bits, and smax and
tmax are the maximized values for s and t , respectively.
When we conducted an experiment with a scale parame-
ter q = 10000 and 128 neurons, the values for smax and
tmax are 6 and 20233, respectively. Since the input data
is a gray-scale image with 0–255, we can set a modulus
as M = 222, which is greater than (784 × 255 × 6 +
20233) ∗ 2+ 1 ' 221.2.

D. SECURITY ANALYSIS
To show the security of our proposed protocol against semi-
honest adversary, we follow the same security discussion
described in SecureML [9]. Their security achievements are
different from our protocol, but the underlying adversarial
model and theoretical security notions are identical to ours.
Following the composition theorems [34], if building blocks
are secure, then there is a secure composition of the protocols.
We can then construct a secure construction of MOBIUS
against a semi-honest adversary by utilizing secure com-
putation, whose security can be proven against the semi-
honest adversary, in the operations described in Section II-B.
A construction against a malicious adversary can also be
created by utilizing a secure computation protocol against a
malicious adversary, such as ABY3 [21].

FIGURE 3. Flow of implementation of MOBIUS with arithmetic and Yao
shares.

VI. EXPERIMENT
In this section, we describe the implementation of MOBIUS
and the results of experiments using the MNIST dataset.

A. IMPLEMENTATION
1) LANGUAGE AND LIBRARY
MOBIUS is implemented in C++ with the ABY library [17]
for secure computation. The ABY library is a secure compu-
tation framework with two-party setting and contains three
types of shares, namely, arithmetic, boolean, and Yao. These
shares have different operations, and the ABY library pro-
vides efficient conversions between them. We refer the read-
ers to the paper [17] for details on the ABY framework.

We briefly describe several parts related to our implemen-
tation below. The arithmetic shares can be used in arithmetic
operations, such as addition and multiplication. Therefore,
the secure full connection and secure batch normalization are
implemented with arithmetic shares. In terms of share size,
the ABY library includes four parameters as a modulus M ,
i.e., 8, 16, 32, and 64 bits. Although we omit the details
due to space limitation, the MNIST dataset is available with
32-bit parameter as described in the previous section. The
secure activation requires a comparison operation of secure
computation, which can be computed with boolean or Yao
shares. In the ABY library, arithmetic shares cannot be
directly converted into boolean shares, i.e., the arithmetic
shares are first converted to Yao shares and then from Yao
shares to boolean shares. Therefore, since the conversion of
arithmetic shares to boolean shares requires two conversions,
we used Yao shares in the secure activation. Besides, accord-
ing to the benchmark of the ABY library [17], a comparison
operation using Yao shares can be computed faster than using
boolean shares. We therefore implemented the secure activa-
tion with Yao shares.

2) OVERVIEW OF IMPLEMENTATION
We show the implementation flows of shares in Figure 3 and
Figure 4. As described in the previous section, we utilized
Yao shares in the secure activation function even though
boolean shares can also be used. In the algorithms of the
original BNNs [15], secure activation should be performed
with boolean shares because of the bit-shift operations.

139028 VOLUME 7, 2019



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

FIGURE 4. Flow of implementation of MOBIUS with only Yao shares.

The extra conversion to boolean shares and the overhead oper-
ations of boolean shares may downgrade the computational
performance. Therefore, we considered two cases, namely,
implementation with both arithmetic shares and Yao shares
and that with only Yao shares.

The implementation of MOBIUS was created by simply
using the available ABY library and is therefore not opti-
mized unlike SecureML [9]. Therefore, the performance of
the following experiments can be improved by optimizing
our implementation. We plan to publish our source codes for
subsequent works. The training phase is out of the scope of
this work, and therefore a model is trained in advance. Shares
of the model and input from a client are generated by the
PutSIMDINGate function of the ABY library. Since the full
connection protocol requires matrix multiplication between
shares, it is implemented by PutMULGate for multiplica-
tion between shares and PutADDGate for addition between
shares. Similarly, the batch normalization protocol is based
on addition and multiplication between shares and hence is
implemented withPutMULGate andPutADDGate. Finally,
the activation protocol requires a sign function, and hence
is implemented with PutGTGate for comparing shares. To
compute the activation protocol, a comparison operation is
necessary and Yao shares are utilized. Therefore, the con-
version of arithmetic shares to Yao shares is unavoidable.
The comparison operation is faster when Yao shares, instead
of boolean shares, are used. Moreover, the conversion of
arithmetic shares to Yao shares is faster than that to boolean
shares.

B. EXPERIMENTAL SETTING
1) MACHINE ENVIRONMENTS
We conducted experiments with the MNIST dataset using
the algorithms described in Section IV-D on two Ama-
zonEC2 c4.8xlarge machines, both of which are running
Linux and have 60 GB of RAM. The two machines are
hosted in the same region as a LAN setting. The bandwidth
is 1 GB/s, and the neural network has two hidden layers
with 128 neurons in each layer. This setting is identical to
that of SecureML [9]. We also utilize the sign function as
the activation function. The neural network is fully con-
nected. We them compare the performance of our proto-
col with SecureML and other state-of-the-art protocols with
cryptography [4], [12], [14].

FIGURE 5. Architecture of the BNNs for Cancer dataset.

2) DATASETS
We evaluated three datasets, namely, Cancer, Diabetes, and
MNIST datasets, which are the same datasets utilized in
TAPAS [14]. The Cancer andDiabetes datasets contain health
care information and therefore have privacy implications. The
MNIST dataset is the standard benchmark dataset. We shifted
the number of neurons for experiments with the MNIST
dataset, but not for experiments with the Cancer and Diabetes
datasets. These settings are identical to those of TAPAS.
Details of each dataset are described below.

a: CANCER
The Cancer dataset3 contains 569 data points with each point
containing 30 real-valued features. The prediction task is
to predict whether a tumor is cancerous or benign. Simi-
lar to TAPAS [14], we divided the dataset into a training
set and a test in a 70:30 ratio. For all real-valued features,
we divided the range of each feature into three equal-spaced
binaries and one-hot encoded each feature by its membership.
We then created a 90-dimensional binary vector for each
sample. We utilized a single fully connected layer from
90 to two neurons followed by a batch normalization layer.
An architecture of networks with the Cancer dataset is shown
in Figure 5.

b: DIABETES
The Diabetes dataset4 contains data of 100,000 patients with
diabetes. The prediction task is to predict one of three possible
labels regarding hospital readmission after release. Similar
to TAPAS [14], we divided patients into an 80/20 train/test
split. We bin categorical features similarly to the Cancer
dataset, and then obtained a 1704-dimensional binary data
point for each sample. We utilized a network consisting of a
fully connected layer from 1704 to ten neurons, a batch nor-
malization layer, an activation function, followed by another
fully connected layer from ten to three neurons, and a batch
normalization layer. An architecture of networks with the
Diabetes dataset is shown in Figure 6.

c: MNIST
The MNIST dataset contains 70,000 images of handwrit-
ten digits from 0 to 9. In particular, the MNIST dataset
has 60,000 training samples and 10,000 test samples, each
with 784 features representing 28×28 pixels in the image.

3https://tinyurl.com/gl3yhzb
4https://tinyurl.com/m6upj7y

VOLUME 7, 2019 139029



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

TABLE 1. Performance of MOBIUS with MNIST dataset in comparison with related work.

TABLE 2. Performance of MOBIUS with Cancer dataset in comparison with related work.

TABLE 3. Performance of MOBIUS with Diabetes dataset in comparison with related work.

FIGURE 6. Architecture of the BNNs for Diabetes dataset.

Each feature is a grayscale between 0–255. An architecture
of networks with the MNIST dataset is shown in Figure 2.

C. RESULTS
The experimental results are shown in Table 1, Table 2,
Table 3, Figure 7, and Figure 8. Table 1 shows a compar-
ison of different protocols based on capability to encrypt a

model, accuracy, and computational time. We also note that
we were not able to execute their prototypes even though
several source codes were obtained, and therefore we referred
to the values described in their papers. In Table 2 and
Table 3, we compared the performance of our system with
only TAPAS, which, to the best of our knowledge, is the
only other related work that used the Cancer and Diabetes
datasets. Figure 7 shows a comparison of MOBIUS and the
original BNNs based on prediction accuracy with respect to
the number of neurons with the MNIST dataset. Since the
accuracy of MOBIUS with arithmetic shares and Yao shares
is identical to that ofMOBIUSwith only Yao shares as shown
in Table 1, Table 2 and Table 3, we contain only a single and
common curve for MOBIUS in Figure 7. Likewise, Figure 8
shows a comparison of MOBIUS and the original BNNs
based on computational time for prediction with respect to
the number of neurons with the MNIST dataset. Since the
computational time of MOBIUS with arithmetic shares and

139030 VOLUME 7, 2019



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

FIGURE 7. Prediction accuracy of MOBIUS with MNIST.

FIGURE 8. Computational time of MOBIUS with MNIST.

Yao shares is faster than that of MOBIUS with only Yao
shares, we contain a single curve for MOBIUS in Figure 8.

As shown in Table 1, MOBIUS is the fastest system
that combines BNNs and secure computation based on
secret sharing despite having the capability to encrypt a
model. In comparison with other works based on BNNs,
i.e., TAPAS [14] and FHE-DiNN [12], MOBIUS with

arithmetic shares and Yao shares obtained better accuracy
and faster prediction by adjusting the number of neurons.
For example, compared with FHE-DiNN,MOBIUS is at least
twice as fast for 100 neurons and rigorously performs better
in terms of accuracy and computational time for 200 neu-
rons. By increasing neurons to 1000, MOBIUS also outper-
forms TAPAS in terms of accuracy and computational time.

VOLUME 7, 2019 139031



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

In comparison with GAZELLE [8], we can estimate a cost
to introduce model obviousness. In particular, according to
the authors of GAZELLE, GAZELLE utilizes the same envi-
ronment as that of SecureML, and hence MOBIUS costs
about twice as much in terms of computational time to
introduce model obviousness (although GAZELLE did not
clearly show its accuracy in their paper). Finally, we note that
the MOBIUS with only Yao shares could not return results
because of an error from the ENCRYPTO_utils library,5

which is a submodule of the ABY library, when the number
of neuron is greater than 600. We consider that the accuracy
of MOBIUS may be improved by optimizing our implemen-
tation.

In the comparison of MOBIUS and TAPAS for the Can-
cer dataset and the Diabetes dataset shown in Table 2 and
Table 3, MOBIUS based on arithmetic shares and Yao shares
showed better accuracy, and its computational throughput
was approximately 700 times faster for the Cancer dataset
and 2000 times faster for the Diabetes dataset. We note that
precise prediction for the Diabetes dataset is difficult and
even the accuracy of the original prediction, i.e., without
secure computation, is only 55.6% according to the authors
of TAPAS [14].

As shown in Figure 7,MOBIUS has better prediction accu-
racy than the original BNNs. Finally, as shown in Figure 8,
the computational time of MOBIUS seems to be linear with
respect to the number of neurons, although the computational
time becomes 100 times longer than the original BNNs.
We can thus approximately measure performance for any
number of neurons.

VII. CONCLUSION
In this work, we presented MOBIUS (Model-Oblivious
BInarized neUral networkS), a system that enables scalable
encrypted prediction and encryption of a trained model.
As our main technical contribution, we presented new algo-
rithms of BNNs that are compatible with secure computa-
tion by representing all parameters in integers and remov-
ing the bit-shift method used in the original BNNs [15].
We then designed the main construction of MOBIUS with
secure computation based on arithmetic shares and Yao
shares.We also conducted experiments using several datasets,
including the MNIST, Cancer, and Diabetes datasets, and
the results show that MOBIUS achieves higher computa-
tional performance and higher accuracy than SecureML, [9]
which is the only other system that considers the model-
oblivious problem. Even in comparison with TAPAS [14] and
FHE-DiNN [12], which are state-of-the-art protocols based
on BNNs, MOBIUS can achieve higher computational per-
formance and higher accuracy by adjusting the number of
neurons. As future work, we plan to conduct experiments on
more complicated datasets, such as CIFAR10. We also plan
to implement with ABY3 [21] as a state-of-the-art library for

5https://github.com/encryptogroup/ENCRYPTO_utils/blob/9bb8af36
cde8c23465c385145561bcba5adf217d/src/ENCRYPTO_utils/cbitvector.h

secure computation to achieve better computational perfor-
mance as well as security against a malicious adversary.

REFERENCES
[1] M. Barni, C. Orlandi, and A. Piva, ‘‘A privacy-preserving protocol

for neural-network-based computation,’’ in Proc. MM&Sec, Sep. 2006,
pp. 146–151.

[2] C. Orlandi, A. Piva, and M. Barni, ‘‘Oblivious neural network computing
via homomorphic encryption,’’ EURASIP J. Inf. Secur., vol. 1, Dec. 2007,
Art. no. 037343.

[3] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, ‘‘Machine learning classi-
fication over encrypted data,’’ in Proc. NDSS, Feb. 2015, p. 4325.

[4] J. Liu, M. Juuti, Y. Lu, and N. Asokan, ‘‘Oblivious neural network
predictions via minionn transformations,’’ in Proc. CCS, Oct. 2017,
pp. 619–631.

[5] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, ‘‘Deepsecure: Scalable
provably-secure deep learning,’’ May 2017, arXiv:1705.08963. [Online].
Available: https://arxiv.org/abs/1705.08963

[6] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi,
‘‘EzPC: Programmable, efficient, and scalablesecure two-party com-
putation for machine learning,’’ iACR ePrint Arch., MSR India,
Hyderabad, India, Tech. Rep. 2017/1109, 2017. [Online]. Available:
https://eprint.iacr.org/2017/1109

[7] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, ‘‘Chameleon: A hybrid secure computation frame-
work for machine learning applications,’’ in Proc. ASIACCS, Jun. 2018,
pp. 707–721.

[8] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, ‘‘Gazelle: A low
latency framework for secure neural network inference,’’ Jan. 2018,
arXiv:1801.05507. [Online]. Available: https://arxiv.org/abs/1801.05507

[9] P. Mohassel and Y. Zhang, ‘‘Secureml: A system for scalable privacy-
preserving machine learning,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19–38.

[10] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, ‘‘Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,’’ in Proc. ICML, Jun. 2016,
pp. 201–210.

[11] M. Chase, R. Gilad-Bachrach, K. Laine, K. Lauter, and P. Rindal, ‘‘Private
collaborative neural network learning,’’ iACR ePrint Arch.,Microsoft Res.,
Redmond, WA, USA, Tech. Rep. 2017/762, 2017. [Online]. Available:
https://eprint.iacr.org/2017/762

[12] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, ‘‘Fast homomorphic
evaluation of deep discretized neural networks,’’ iACR ePrint Arch.,
Orange Labs, Appl. Crypto Group, Cesson-Sévigné, France, Tech.
Rep. 2017/1114, 2017. [Online]. Available: https://eprint.iacr.org/
2017/1114

[13] S. Wagh, D. Gupta, and N. Chandran, ‘‘Securenn: Efficient and pri-
vate neural network training,’’ iACR ePrint Arch., Microsoft Res.,
Bengaluru, India, Tech. Rep. 2018/442, 2018. [Online]. Available:
https://eprint.iacr.org/2018/442

[14] A. Sanyal, M. Kusner, A. Gascon, and V. Kanade, ‘‘Tapas: Tricks to
accelerate (encrypted) prediction as a service,’’ in Proc. ICML 2018, 2018.
[Online]. Available: https://arxiv.org/abs/1806.03461

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,’’ Feb. 2016, arXiv:1602.02830.
[Online]. Available: https://arxiv.org/abs/1602.02830

[16] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattice,’’ in Proc.
STOC, May 2009, pp. 169–178.

[17] D. Demmler, T. Schneider, and M. Zohner, ‘‘ABY-A framework for
efficient mixed-protocol secure two-party computation,’’ in Proc. NDSS,
Feb. 2015.

[18] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. IML, Jul. 2015,
pp. 448–456.

[19] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, ‘‘Unconditionally
secure constant-rounds multi-party computation for equality, compari-
son, bits and exponentiation,’’ in Proc. Theory Cryptogr. Conf., 2006,
pp. 285–304.

[20] S. Halevi and V. Shoup, ‘‘Bootstrapping for HElib,’’ in Advances
in Cryptology (Lecture Notes in Computer Science), vol. 9056,
E. Oswald and M. Fischlin, Eds. Berlin, Germany: Springer-Verlag, 2015,
pp. 641–670.

[21] P. Mohassel and P. Rindal, ‘‘Aby3: A mixed protocol framework for
machine learning,’’ inProc. ACMSIGSACConf. Comput. Commun. Secur.,
Oct. 2018, pp. 35–52.

139032 VOLUME 7, 2019



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

[22] O. Catrina and A. Saxena, ‘‘Secure computation with fixed-point num-
bers,’’ in Financial Cryptography and Data Security (Lecture Notes
in Computer Science), vol. 6052. Berlin, Germany: Springer, 2010,
pp. 35–50.

[23] O. Catrina and S. de Hoogh, ‘‘Improved primitives for secure multiparty
integer computation,’’ in Security and Cryptography for Networks (Lecture
Notes in Computer Science), vol. 6280. Berlin, Germany: Springer, 2010,
pp. 182–199.

[24] C. Dwork, ‘‘Differential privacy,’’ in Proc. ICALP, in Lecture Notes in
Computer Science, vol. 4052. Springer, 2006, pp. 1–12.

[25] M. Abadi, A. Chu, I. Goodfellow, H. B. Mcmahan, I. Mironov, K. Talwar,
and L. Zhang, ‘‘Deep learning with differential privacy,’’ in Proc. CCS,
Oct. 2016, pp. 308–318.

[26] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, ‘‘Local privacy and
statistical minimax rates,’’ in Proc. FOCS, Oct. 2013, pp. 429–438.

[27] B. Ding, H. Nori, P. Li, and J. Allen, ‘‘Comparing population means under
local differential privacy: With significance and power,’’ in Proc. AAAI,
Apr. 2018, pp. 26–33.

[28] F. Aldà and B. I. Rubinstein, ‘‘The bernstein mechanism: Function release
under differential privacy,’’ in Proc. AAAI, Feb. 2017, pp. 1705–1711.

[29] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ‘‘Stealing
machine learning models via prediction apis,’’ in Proc. Usenix Secur.,
2016, pp. 601–618.

[30] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta, ‘‘Model extraction
warning in mlaas paradigm,’’ in Proc. ACSAC, Dec. 2018, pp. 371–380.

[31] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[32] D. Bogdanov, S. Laur, and J. Willemson, ‘‘Sharemind: A framework
for fast privacy-preserving computations,’’ in Proc. Computer Security—
ESORICS (Lecture Notes in Computer Science), vol. 5283. Berlin, Ger-
many: Springer, 2008, pp. 192–206.

[33] E. Rescorla and T. Dierks, The Transport Layer Security (TLS) Protocol
Version 1.2 RFC, document 5246, 2008. [Online]. Available: https://rfc-
editor.org/rfc/rfc5246.txt

[34] E. Kushilevitz, Y. Lindell, and T. Rabin, ‘‘Information-theoretically secure
protocols and security under composition,’’ SIAM J. Comput., vol. 39,
no. 5, pp. 2090–2112, Sep. 2010.

HIROMASA KITAI received the B.Eng. degree
in engineering science from Osaka University,
Japan, in 2018, where he is currently pursuing
the master’s degree with the Graduate School of
Information Science and Technology. His research
interests includemachine learning and information
security.

JASON PAUL CRUZ received the B.S. degree in
electronics and communications engineering and
the M.S. degree in electronics engineering from
the Ateneo de Manila University, Quezon City,
Philippines, in 2009 and 2011, respectively, and
the Ph.D. degree in engineering from the Graduate
School of Information Science, Nara Institute of
Science and Technology, Nara, Japan, in 2017.
He is currently a Specially Appointed Assistant
Professor with Osaka University, Osaka, Japan.

His current research interests include role-based access control, blockchain
technology, hash functions and algorithms, and Android programming.

NAOTO YANAI received the B.Eng. degree from
the National Institution for Academic Degrees and
University Evaluation, Japan, in 2009, and the
M.S.Eng. and Dr.E. degrees from the Graduate
School of Systems and Information and Engineer-
ing, University of Tsukuba, Japan, in 2011 and
2014, respectively. He is currently an Assistant
Professor with Osaka University, Osaka, Japan.
His research interests include the areas of cryptog-
raphy and information security.

NAOHISA NISHIDA received the M.E. degree
from the University of Electro-Communications,
Tokyo, Japan, in 2016. He then joined Panasonic
Corporation, where he has been a Researcher,
since 2016. His research interests include
the applications of secure computation and
blockchain.

TATSUMI OBA received the master’s degree in
engineering from the Tokyo Institute of Technol-
ogy, Japan, in 2012. He has five years of experi-
ence in developing and applying machine learning
algorithms. He has been a Security and Machine
Learning Researcher with Panasonic Corporation,
since 2016. His current research interests include
anomaly detection, sequential data modeling, and
privacy-preserving machine learning.

YUJI UNAGAMI received the B.E. and M.E.
degrees in industrial and management systems
fromWasedaUniversity, in 2004 and 2006, respec-
tively. In 2006, he joined the Corporate Research
and Development Division, Matsushita Electric
Industrial (now Panasonic) Company Ltd., Osaka,
Japan. His research interests include cryptography
and information security.

TADANORI TERUYA received the M.E. degree
and the Ph.D. degree in engineering from the
University of Tsukuba, Japan, in 2009 and 2012,
respectively. He was a Postdoctoral Researcher
with the Faculty of Engineering, Information and
Systems, University of Tsukuba, from 2012 to
2013, and the National Institute of Advanced
Industrial Science and Technology (AIST), Japan,
from 2013 to 2016. He has been a Researcher with
AIST, since 2016. His research interests include

cryptography and information security, especially practical aspects based on
elliptic curves and lattices, and the applications of secure computation.

NUTTAPONG ATTRAPADUNG received the
bachelor’s degree (Hons.) in electrical engineer-
ing from Chulalongkorn University, Thailand,
in 2001, and the master’s and Ph.D. degrees in
information and communication engineering from
The University of Tokyo, in 2004 and 2007,
respectively. From 2007 to 2008, he was granted
a JSPS Postdoctoral Fellowship. He has been
with the National Institute of Advanced Indus-
trial Science and Technology (AIST), Japan, since

2008, where he is currently the Leader of the Cryptography Platform
Research Team, Cyber Physical Security Research Center. His research inter-
ests include theoretical and applied cryptography, especially cryptographic
schemes with advanced functionalities such as attribute-based encryption.
He received the Ericsson Young Scientist Award, in 2010, and the Young
Scientists’ Prize from The Commendation for Science and Technology by
theMinister of Education, Culture, Sports, Science, and Technology (MEXT,
Japanese Government), in 2017.

VOLUME 7, 2019 139033



H. Kitai et al.: MOBIUS: Model-Oblivious Binarized Neural Networks

TAKAHIRO MATSUDA received the bachelor’s,
master’s, and Ph.D. degrees in information and
communication engineering from The University
of Tokyo, in 2006, 2008, and 2011, respectively.
He has been with AIST, since 2011, where he is
currently a Senior Research Scientist. His research
interests include the foundations of cryptogra-
phy, in particular encryption and digital signature
schemes with enhanced security and functionality
properties. He received the 2016 Docomo Mobile

Science Award (Advanced Technology Award of Excellence).

GOICHIRO HANAOKA graduated from the
Department of Engineering, The University of
Tokyo, in 1997. He received the Ph.D. degree
from the University of Tokyo, in 2002. In 2005,
he joined AIST, where he is currently the Leader
of the Advanced Cryptosystems Research Group,
Information Technology Research Institute. He
engages in the Research and Development for
encryption and information security technologies,
including the efficient design and security evalua-

tion of public key cryptosystems. He received numerous awards, including
the DoCoMoMobile Science Award from the Mobile Communication Fund,
in 2016, the Wilkes Award from the British Computer Society, in 2007,
the Best Paper Award from the Institute of Electronics, Information andCom-
munication Engineers (IEICE), in 2008, and the Innovative Paper Awards at
the Symposium on Cryptography & Information Security (SCIS), IEICE,
in 2012 and 2014.

139034 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	MOTIVATING EXAMPLE
	KEY QUESTION

	CONTRIBUTION
	DIFFICULTIES AND OUR APPROACH
	NEURAL NETWORKS
	APPLYING SECURE COMPUTATION
	OUR APPROACH: IMPROVED BNNs

	RELATED WORK

	PRELIMINARIES
	BINARIZED NEURAL NETWORK
	CRYPTOGRAPHIC PRELIMINARIES
	SECRET SHARING
	SECURE COMPUTATION BASED ON SECRET SHARING

	SECURITY AND NETWORK SETTINGS

	OUR MAIN IDEA
	TECHNICAL PROBLEM
	TRANSFORMATION INTO INTEGERS


	BINARIZED NEURAL NETWORKS COMPATIBLE WITH SECURE COMPUTATION
	NOTATIONS
	BATCH NORMALIZATION WITH INTEGERS
	IMPROVED BINARIZED NEURAL NETWORKS
	BINARIZED NEURAL NETWORKS FOR MNIST DATASET

	MOBIUS DESIGN
	SECRET SHARING A MODEL
	MODEL-OBLIVIOUS PREDICTION
	DETERMINATION OF MODULUS SIZE
	SECURITY ANALYSIS

	EXPERIMENT
	IMPLEMENTATION
	LANGUAGE AND LIBRARY
	OVERVIEW OF IMPLEMENTATION

	EXPERIMENTAL SETTING
	MACHINE ENVIRONMENTS
	DATASETS

	RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	HIROMASA KITAI
	JASON PAUL CRUZ
	NAOTO YANAI
	NAOHISA NISHIDA
	TATSUMI OBA
	YUJI UNAGAMI
	TADANORI TERUYA
	NUTTAPONG ATTRAPADUNG
	TAKAHIRO MATSUDA
	GOICHIRO HANAOKA


