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ABSTRACT Heterogeneous cloud radio access network (H-CRAN) needs more elegant design to achieve
higher energy efficiency and spectral efficiency than traditional cloud radio access networks. In this paper,
we propose an energy-efficient resource allocation algorithm by taking into account the impact of arrival
rates of various user traffic. Firstly, based on the power consumption model of the H-CRAN, the average
energy-efficiency of the whole network is adopted as the optimization objective with multiple constraints of
maximum transmit power, average power, and minimum data rate of each users, etc. In order to solve the
non-convex and non-deterministic polynomial time- hardness (NP-hard) problem, we transform the objective
function into analyzable multiple sub-problems by using fractional programming and norm approximation.
Secondly, by the Lyapunov optimization method, we turn the original problem into a problem of system
stability. Thirdly, we derive the closed expression of the optimal power allocation matrix and the optimal user
association matrix with the Lagrangian dual decomposition. We propose a two-layer iterative algorithm to
balance the power consumption and energy efficiency with a designed control factor. Both theoretical bound
of average energy efficiency and length of data queuing are derived. Finally, the comprehensive numerical
results demonstrate of convergence of the proposed algorithm and verify the performance gain by proposed
energy-efficient resource allocation scheme.

INDEX TERMS Heterogeneous cloud radio access network (H-CRAN), resource allocation, green commu-
nication, average energy efficiency, Lyapunov optimization.

I. INTRODUCTION
It is a trend that millions more base stations (BSs) and
billions more smart devices will be connected in the fifth
generation (5G) wireless network [1]. The higher demand
of functionality and data rate is challenging the power con-
sumption of 5G. According to statistics in [2], the rise of
power consumption in mobile communications rise up to
20% per year. Thus, the energy efficiency of 5G networks
is expected to be increased 100× times to reduce power
consumption [3]. Along with the explosive amount of data
traffic, the machine-type communication (MTC) is one of
the key areas in 5G. The massive MTC (mMTC) scenario
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specifies at least one million devices should be supported per
square kilometer [4]. Traditional access technologies are no
longer able tomeet the require with the numerous deployment
of sensors, accessories, and tools, which gives a rise to the
Internet of things (IoT). With exponential growth of the IoT
intelligent devices, the demand of massive calculation and
storage is challenging 5G wireless communication [5]–[7].
Heterogeneous cloud radio access network (H-CRAN) is one
of the most promising access technologies in IoT due to
its scalability, flexibility and compatibility. The H-CRAN
is composed of a series of remote radio heads (RRHs) and
central baseband units (BBUs). Macro BSs are connected to
the BBU pool through the backhaul of the X2/S1 interface,
and the RRHs are connected to the BBU pool through the
wireless fronthaul link. The interferences between RRHs can
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be handled and even eliminated by cooperation in BBU pool.
Control and data planes are separated [8]. Control functional-
ities are shifted to high power nodes (HPNs). RRHs are only
utilized for signal transmission and reception, and the remain-
ing important functions and procedures of the upper layers
are implemented in the cloud BBU pool [9]–[11]. In addition,
the centralized BBU pool facilitates the interaction of differ-
ent cells and regions, enabling efficient cooperation between
HPNs (e.g., macro or micro base stations) and low-power
RRH nodes.

Access technology is one of the significant issues in
H-CRAN. Due to the deployment of ultra-dense RRHs in
the hotspot area of HetNets, each user can access numer-
ous RRHs and HPNs, which introduces the complexity of
scheduling [12]. The association rules between HPNs/RRHs
and users have a great impact on performance of H-CRANs.
First, the cooperation between high-power HPN nodes and
low-power RRH nodes need to be scheduled. Second,
although the centralized cloud computing-based cooperative
processing techniques are considered in BBU pool, the cross-
tier interference between RRHs and HPNs are critical and
urgently need to be mitigated. To commercialize H-CRAN,
an optimization allocation strategy for user access is urgently
required. Furthermore, a typical feature of the forthcoming
5G is to provide diverse services withmultiple class of quality
of service (QoS) demand. Diverse requirements in three main
scenarios require different system performance [13]–[15].
Essentially, the arrival rate and their requirements for network
performance (e.g., maximum tolerable delay, minimum rate
requirement, probability of burst, etc.) vary with different
services. Therefore, the arrival rate is a significant factor to
be considered.

There are some of related work on user access and resource
allocation in H-CRAN [16]–[22]. In [16], the average energy
efficiency optimization problem for delay-aware traffic in
downlink C-RAN is studied. The original optimization prob-
lem is transformed by Lyapunov optimization method. The
optimal beamforming vector and cloud-based resource allo-
cation are obtained through WMMSE method. However, this
work is limited to the traditional C-RAN architecture and
does not take user traffic into account. An average energy effi-
ciency optimization problem under the traditional network
architecture is studied in [17]. The model of maximizing the
average energy efficiency under the conditions of average
transmit power and peak power is established, and the expres-
sions of the average energy efficiency of the system and the
delay with respect to the control factor are derived. However,
this work is limited to the traditional network structure and
can not be extended for the H-CRAN. The authors in [18]
explored the system energy efficiency optimization problem
under the C-RANs architecture. The authors assume that the
fronthaul links are heterogeneous and try to minimize the
system energy consumption. In [19], a sparse algorithm is
proposed based on beamforming with channel matrix. The
authors in [20] and [21]maximize overall network throughput
under a series of restrictions. However, [18]–[21] overlook

the impact of arrival rate on resource allocation and the sleep
mode of fronthaul link. The authors in [22] propose an energy
efficient radio resource management algorithm in H-CRAN.
The consumption model of H-CRAN is established and the
problem is solved by Lagrangian dual method. However,
in our work the problem is simplified by Lyapunov opti-
mization, which adapts a more concise factor to control the
performance of system.

In this paper, we propose an efficient resource alloca-
tion algorithm called Arrival Rate based Average Energy-
efficient (ARAE) dynamic resource allocation which
introduces the arrival rate of users under H-CRAN archi-
tecture. The optimization parameters are the association
matrix and power allocation matrix, and the optimization
objective is the system average energy efficiency. First,
the optimization problem is modeled under the constraints
of average power, maximum power, minimum data rate,
etc. For this non-convex and non-deterministic polynomial-
time hardness (NP hard) problem, we first transform the
objective function by fractional programming and norm
approximation. Then, by using the Lyapunov optimization
method, the original optimization is turned into a problem
of system stability. Finally, based on the Lagrangian dual
decomposition, the closed expressions of the optimal power
allocation matrix and the optimal user association matrix are
derived theoretically.With the help of gradientmethod, a two-
layer iterative algorithm is proposed. A control factor V is
introduced to balance the power consumption and energy
efficient of the system. More importantly, this paper theoreti-
cally analyzes the performance of the algorithm. The average
energy efficiency and the average data queue is proportional
to V with the rate O(1/V ) and O(V ), respectively.

The major contributions can be summarized as follows.
• We analyse and formulate the optimization problem of
maximising average energy efficient in H-CRAN under
the constrains of average power, maximum power, aver-
age arrival rate, minimum data rate, and limits of RBs.
The impact of arrival rate is considered in this problem.

• We propose an efficient dynamic resource allocation
algorithm under H-CRAN. The non-convex optimiza-
tion problem is converted by fractional programming
and norm approximation, and solved by introducing
Lyapunov optimization and Lagrangian dual decompo-
sition. We mathematically derive the closed expressions
of the optimal power allocation matrix and the opti-
mal user association matrix. Moreover, the theoretical
boundaries of average energy efficiency and average
arrival data queue length of the proposed ARAE algo-
rithm are given for analysis.

• An extensive system-level simulation is established to
evaluate the performance of ARAE algorithm. The sim-
ulation results are well analysed and show good conver-
gence. Different tradeoff can be achieved by control the
value of factor V .

The remainder of this paper will be organized as follows.
In Section II, we formally describe the system model.
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TABLE 1. Notations of parameters.

FIGURE 1. Network model.

In Section III, the proposed ARAE is devised. The perfor-
mance of the ARAE is discussed in Section IV. Simulation
results are presented in SectionV. Finally, SectionVI contains
the conclusion.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Different from the traditional network architecture, the power
consumption of the H-CRANs is mainly composed of three
parts: HPNs/RRHs consumption, fronthaul link consump-
tion, and BBU pool consumption. The notations of resource
allocation model are shown in Table 1.

Fig.1 shows a double-layer H-CRAN system, containing
one HPN and M RRHs. There are K users in the system and
each user can arbitrarily access the HPN/RRHs to transmit
data. The system has N resource blocks (RBs) to support
the communication. Assume that the scheduler in the cloud
acquires all information including channel state informa-
tion (CSI). All the users utilize orthogonal frequency division
multiplexed (OFDM) to access the HPN/RRHs and thus there
is no interference between users. Traffic data for each user
arrives randomly and independently, waiting for downlink
scheduling. Here we assume that the arrival rate obeys the
Poisson distribution with mean λ.
A detailed consumption model including network model,

transmission model, and consumption model is proposed
in [22]. The total system power consumption can be
expressed as

PT (t) =
∑
m∈M

Pm (t) , (1)

where

Pm (t) = Psm (t)+ (1m + ρm) pm (t)

+

(
PF,Am − PF,Sm

)
‖pm (t)‖0 . (2)

Here PSm (t) = PB,Sm (t) + PR,Sm (t) + PF,Sm (t) is the total
static power consumption of RRHs, fronthaul link and cloud
BBU pools. ρm denotes the power consumption factor and
1m represents power conversion factor of HPN/RRHs in
active mode. pm (t) =

∑
k∈K

∑
n∈N αk,m,n (t) pk,m,n (t) is

the total power consumption ofmth RRH at slot t . The overall
achievable rate of the system can be formulated as

RT (t) =
∑
k∈K

∑
m∈M

∑
n∈N

αk,m,n (t)Rk,m,n (t) , (3)

where

Rk,m,n (t) =
W
N

log2

(
1+

pk,m,n (t) gk,m,n (t)
W · σ 2/N

)
, (4)

is the maximum achievable rate for user k and αk,m,n (t) ∈
{0, 1} is an association indicator between kth user and mth
RRH in nth RB. Indicator αk,m,n (t) = 1 if and only if the nth
RB of mth RRH is allocated to kth user.

To allocate resources efficiently, different from [24]–[26],
we define the objective function as the average power con-
sumption, which is the ratio of the total long-term sum of
transmission data RT to the total long-term system energy
consumption PT , i.e.,

ηEE =
RT (α,P)

PT (α,P)
= lim

t→∞

1
t

∑t−1

τ=0
RT (τ )

1
t

∑t−1

τ=0
PT (τ )

, (5)

where α = [α (0) ,α (1) , · · · ,α (t − 1)] and P =

[P (0) ,P (1) , · · · ,P (t − 1)] are the user association matrix
and power allocation matrix, respectively. Our target is to
find the optimal α and P to maximize ηEE , while satisfying
the constraints of average transmit power of HPN/RRHs,
instantaneous power peak, user arrival rate, minimum trans-
mit rate of users, and limits of RBs. The whole problem can
be formulated as

P1 : max
α,P

ηEE =
RT (α,P)

PT (α,P)

s.t. C1 : pm = lim
t→∞

1
t

τ=t−1∑
τ=0

E {pm (τ )} ≤ pavgm ,

∀m ∈M
C2 : pm (t) ≤ pmax

m , ∀m ∈M

C3 : lim
t→∞

1
t

t−1∑
τ=0

E {Ak (τ )}

≤ lim
t→∞

1
t

t−1∑
τ=0

E {Rk (τ )} , ∀k ∈ K

C4 :
∑
m∈M

∑
n∈N

αk,m,n (t)Rk,m,n (t) > Rmink ,

∀k ∈ K
C5 :

∑
k∈K

αk,m,n (t) ≤ 1, ∀m ∈M, ∀n ∈ N

C6 : αk,m,n (t) = {0, 1} , ∀k ∈ K, ∀m ∈M,

∀n ∈ N , (6)
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where constraint C1 means the average transmit power of
RRHs should be less than target pavgm . Constraint C2 restricts
the maximum transmit power of each RRH. To ensure all
users can be scheduled, constraint C3 means the average data
rate of users should lower than the achievable rate. C4 is
the constraint of minimum transmit rate of users. Constraints
C5 and C6 mean that each RB is allocated to at most one user.

It is worthy to point out that we focus more on a long-term
performance in C3. Hence the instantaneous arrival queue
may larger than achievable rate at some slot. This happens
when one’s arrival data queue is too large to manage at that
slot. However, the remaining data queue will be removed to
next slot. Finally, the average energy-efficiency performance
of the system achieves optimal since the average rate con-
strain of C3 is satisfied.

III. PROPOSED SOLUTION
Optimization objective inP1 is non-convex and NP hard [27].
In this section, P1 is transformed into a convex optimization
problem through fractional programming, norm approxima-
tion and Lyapunov optimization. With the help of Lagrangian
dual decomposition, we propose a resource allocation algo-
rithm based on arrival rate.

A. FRACTIONAL PROGRAMMING
Note that the optimization objective ηEE is a ratio of two
nonlinear functions, which leads to a dilemma of analysis.
We utilize fractional programming to turn the objective into
an equivalent linear form. Suppose the objective achieves the
maximum value ηoptEE when α, P are equal to optimal α∗, P∗,
respectively, i.e.,

ηEE =
RT
(
α∗,P∗)

PT
(
α∗,P∗) = max

α,P

RT (α,P)

PT (α,P)
. (7)

According to [31], the optimization objective ηEE achieves
its maximum value if and only if

max
α,P

RT (α,P)− ηoptEEP
T (α,P)

= RT
(
α∗,P∗)

− η
opt
EEP

T
(
α∗,P∗)

= 0, (8)

where α,P are the any feasible solutions that satisfy the
constraints of C1 ∼ C6. Therefore, the optimization problem
is equivalent to

max
α,P

RT (α,P)− ηoptEEP
T (α,P)

s.t. C1 ∼ C6. (9)

It is hard to predict the range of ηoptEE in advance. Similar
to [16] and [18], for slot t ∈ {1, 2, · · · }, we define the average
energy efficiency ηEE (t) as

ηEE (t) =

∑t−1

τ=0
RT (α (τ) ,P (τ ))∑t−1

τ=0
PT (α (τ) ,P (τ ))

. (10)

Especially, ηEE (0) = 0. The discrete variable αk,m,n (t) is
related in continuous domain. Now the optimization problem
P1 can be formulated as

P2 : max
α,P

RT (α,P)− ηEE (t)PT (α,P)

s.t. : C1 ∼ C5, αk,m,n (t) ∈ [0, 1]. (11)

B. NORM APPROXIMATION
Note that in (2), PT (t) has a L0-norm. Hence P2 is
non-convex and NP-hard [27]. To approximately represent
L0−norm by a continuous function [28]–[30], we use a pop-
ular approximation:

‖pm(t)‖0 ≈
∑
τ

(
1− e−β|pm(τ )|

)
, (12)

where pm (τ ) is the τ th row of pm, and the approximation
are strictly equal when β approaches zero. Thus the value
of β actually establishes a trade-off between accuracy and
smoothness. The larger β leads to a better approximation, and
the smaller β results in a smoother approximation.
Note that (12) still has an exponential form. By the first

order Taylor expansion series of (12), which is approximately
equal to

e−β|pm(τ )| ≈ 1− βpm(τ ). (13)

However, (13) holds only when 1 − βpm(τ ) is very close to
zero. Thus, β should be a dynamic value to avoid too many
local optimum (when β is too large) and no local optimum
(when β is too small). In this paper, β is updated by

β (τ + 1) =
1

pm (τ )+ ε
, (14)

where ε is a very small positive regularization factor for
controlling the accuracy and robustness of the approximate
solution.

It is worthy to point out that pm (τ )means the power of the
nth RB inmth RRH at slot τ . The larger value of pm (τ )means
the larger load the fronthaul link has. According to (21),
when pm (τ ) is decreasing, the corresponding β (τ) increases,
which will lead to a smaller value of pm (τ + 1) at slot τ + 1.
At last the fronthaul link is forced to the sleep mode as pm (τ )
goes to zero.

Combing (2), (12), (13), and (14), it yields that

PT (t) =
∑
m∈M

[
PSm (t)+ φmpm (t)

]
, (15)

where φm = 1m + ρm + βm
(
PF,Am − PF,Sm

)
stands for the

effective power conversion factor of HPN/RRHs. Then the
optimal problem P2 becomes

P3 : max
α,P

RT (α,P)− ηEE (t)PT (α,P)

s.t. : C1 ∼ C5, αk,m,n (t) ∈ [0, 1]. (16)
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C. LYAPUNOV OPTIMIZATION
Note that C3 is a constraint about the queue of arrival rate
and the average power of BS, we can transform P3 with the
help of Lyapunov optimization. Lyapunov optimization, as an
effective method, has been widely used to solve the problem
between queue and system stability [24], [25]. The key point
of Lyapunov optimization is to introduce control factors and
establish quadratic Lyapunov functions. The optimal objec-
tive and the system stability are generally two contradictory
factors and need a compromise. The system stability can be
adjusted conveniently through jointly optimizing the valusers
of control factors. Here are some basic assumptions:

1) STABILITY ASSUMPTION
A queue U (t) is stable if and only if

lim
t→∞

E {|U (t)|}
t

= 0. (17)

2) INDEPENDENT AND IDENTICALLY DISTRIBUTED (I.I.D)
ASSUMPTION
At slot t ∈ {1, 2, · · · }, power allocationmatrixP (t) and asso-
ciation matrix α (t) are independent and randomly choose a
value from its space respectively.

3) BOUNDEDNESS ASSUMPTION
The expectation of the overall power PT (t) and the achiev-
able rate RT (t) are bounded, i.e.,

PTmin ≤ E
{
PT (t)

}
≤ PTmax ,

RTmin ≤ E
{
RT (t)

}
≤ RTmax . (18)

Since the practical limitation, we also assume that there exists
a positive integer θ , such that

E
{
y2m (t)

}
≤ θ,

E
{
R2k (t)

}
≤ θ,

E
{
A2k (t)

}
≤ θ, (19)

where ym(t) is the difference of actual power at slot t . The
detailed definition will be discussed next.

A virtual power queue Ym (t) is defined to convert constrain
C1 to the stability of the queue Ym (t). Considering the mean-
ing of actual power, Ym (t) should satisfy

Ym (t + 1) = max {Ym (t)+ ym (t) , 0} , ∀m ∈M, (20)

where ym (t) = pm (t) − Pavgm . Under the help of Ym (t),
we have the following Lemma 1.
Lemma 1: If Ym (t) is stable under an certain allocation

algorithm, then the algorithm satisfies constrain C1.
Proof: The proof is presented in Appendix A.

Lemma 1 turns constrain C1 to the stability of queue Ym (t).
Denote Q (t) = [Q1 (t) ,Q2 (t) , · · · ,Qk (t)] as the actual

data queue at slot t . Due to the actual meaning, Qk (t) should
satisfy

Qk (t + 1) = max
{
Qk (t)−

Rk (t)
W

, 0
}
+
Ak (t)
W

. (21)

Note that both Qk (t) and Ym (t) have the same form, then
we define a joint matrix of actual data queueQ (t) and virtual
power queue Ym (t) as2(t) = [Q (t) ,Ym (t)]. The quadratic
Lyapunov function is defined as

L (2 (t)) =
1
2

{∑
k∈K

Q2
k (t)+

∑
m∈M

Y 2
m (t)

}
, (22)

and the Lyapunov penalty function is defined as

1L (2 (t))− V
[
RT (t)− ηEE (t)PT (t)

]
= L (2 (t + 1))− L (2 (t))− V

[
RT (t)− ηEE (t)PT(t)

]
.

(23)

Based on Lyapunov penalty function, we have the follow-
ing Lemma 2.
Lemma 2: Lyapunov penalty function has an upper bound

E {1L (2 (t)) | 2(t)}

+ VE
{
ηEE (t) PT (t)− RT (t) | 2(t)

}
≤ Lm +

∑
m∈M

Ym (t)E
{
pm (t)− Pavgm | 2(t)

}
−

∑
k∈K

Qk (t)E {Ak (t)− Rk (t) | 2(t)}

+ VE
{
ηEE (t) PT (t)− RT (t) | 2(t)

}
. (24)

Proof: The proof is presented in Appendix B.
According to Lemma 2, minimize Lyapunov penalty func-

tion is equivalent to

P4 : max
α,P

∑
k∈K

Xk (t)Rk (t)−
∑
m∈M

Zm (t) pm (t)

s.t. : C2, C4, (25)

where

Zk (t) = Ym (t)+ VφmηEE (t) , (26)

Xk (t) = Qk (t) /W + V . (27)

D. LAGRANGIAN DUAL DECOMPOSITION
According to [32], the duality gap of the optimization prob-
lem is approaching to zero when the number of RBs is large.
We use Lagrangian dual decomposition method to solve P4.
The Lagrangian dual function can be written as

g (µ, γ ) = max
α,P

L (α (t) ,P (t) ,µ, γ )

s.t. : αk,m,n ∈ [0, 1], (28)
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where

L (α (t) ,P (t) , µ, γ )
=

∑
k∈K

Xk (t)Rk (t)−
∑
m∈M

Zm (t) pm (t)

+

∑
k∈K

µk

(∑
m∈M

∑
n∈N

αk,m,n (t)Rk,m,n (t)− Rmink

)

−

∑
m∈M

γm

(∑
k∈K

∑
n∈N

αk,m,n (t) pk,m,n (t)− Pmaxm

)
.

(29)

Parameter µk and γm are Lagrangian multipliers. The dual
form of P4 is

P5 : max
µ,γ

g (µ, γ )

s.t. : µ ≥ 0, γ ≥ 0. (30)

Note that the optimization object in P5 is convex and can
be decomposed to a series independent subproblems

g (µ, γ ) = max
{α,P}

[
∑
n∈N

gn (µ, γ )−
∑
k∈K

µkRmink +
∑
k∈K

γmPmaxm ],

(31)

where

gn (µ, γ ) = max
{α,P}

∑
k∈K

∑
m∈M

[(µk + Xk (t)) αk,m,n (t)Rk,m,n(t)

− (γm + Zm (t)) αk,m,n (t) pk,m,n (t)]. (32)

Thus the optimal solution of power allocation is given by

p∗k,m,n (t) = max
{
B0
ln 2
·
µk + Xk (t)
γm + Zm (t)

−
B0σ 2

gk,m,n (t)
, 0
}
,

(33)

and the optimal indication matrix α (t) is given by

α∗k,m,n =

{
1, k = argmax

k∈K
Tk,m,n (t) , Tk,m,n (t) > 0

0, others,
(34)

where

Tk,m,n (t) = (µk + Xk (t))Rk,m,n
(
p∗k,m,n (t)

)
− (γm + Zm (t)) p∗k,m,n (t) . (35)

Bothµk and γm can be computed through the gradient descent
method. In nth iteration, µk and γm are updated by

µk (n) = µk (n− 1)− δµ (n) · ∇µk (n) , ∀k ∈ K (36)

γm (n) = γn (n− 1)− δγ (n) · ∇γm (n) , ∀m ∈M (37)

where δµ (n) and δγ (n) is the learning rate of µk and γm,
respectively.

The whole proposed ARAE dynamic resource allocation
algorithm is shown in Algorithm 1.

Algorithm 1 Proposed Algorithm ARAE
For each slot t , compute Qk (t),Ym(t), ηEE (t),H(t)
Initialize ε1, ε2, ηEE = 0, βm and other const
Initialize iteration i = 1
while i ≤ ITER_MAX1 do
if
∣∣∣β(i)m − β(i−1)m

∣∣∣ /β(i−1)m ≤ ε1 then

return β∗ = β(i), {α∗,P∗} = {α(i),P(i)
};

else
while j ≤ ITER_MAX2 do
j = 1;
Compute P j, αj according to (33), (34);
if P j and αj converge then
{α(i),P(i)

} = {α(j),P(j)
};

break;
else
j = j+ 1;
Compute gradient, update µk and γm;

end if
Update βm according to (14);
Compute Xk (t) and Zm(t);

end while
end if

end while
return {α∗,P∗}, ηEE (t + 1);

IV. PERFORMANCE ANALYSIS
To analyze the theoretical performance of proposed ARAE,
we need the following lemma 3. The detailed proof can be
found on [33] and [34].
Lemma 3: Assume that the expectation of arrival rate is λ.

For any ε > 0, if P1 has any solution satisfying C1 ∼ C6, and
the boundedness assumptions (18) and (19) hold, then for any
δ > 0, there exists an optimal allocation strategy, such that

E
{
RT∗(t)

}
≤ E

{
PT∗ ((t))

} (
η
opt
EE + δ

)
, (38)

E
{
y∗m (t) | 2(t)

}
= E

{
y∗m (t)

}
≤ δ, (39)

E
{
R∗k (t) | 2(t)

}
= E

{
R∗k (t)

}
≥ λ+ ε, (40)

where y∗m(t), R
∗
k (t), R

T∗(t), PT∗(t) are the optimal value for
the optimal allocation strategy.

Under Lemma 2 and Lemma 3, the theoretical performance
of ARAE is analyzed, as specified in Theorem 1.
Theorem 1: If an allocation strategy generated by ARAE

satisfies Lemma 2 and Lemma 3, then
(1) The virtual power queue Ym (t) satisfies Lemma 1.
(2) The average energy efficiency ηEE satisfies

ηEE ≥ η
opt
EE −

Lm
VPTmin

. (41)

(3) The length of average data queue Q (t) satisfies

Q (t) ≤
Lm + V

(
RTmax − η

opt
EEP

T
min

)
ε/W

. (42)

Proof: The proof is presented in Appendix C.
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TABLE 2. Default simulation parameters.

Equation (41) indicates that the average energy efficiency
ηEE can asymptotically achieve the optimal value ηoptEE by
increasing the value of V . Meanwhile, (41) and (42) show
that the average power efficiency and the average actual data
queue is proportional to V with the rate O(1/V ) and O(V ),
respectively. This is mainly because there is a nonlinear rela-
tionship between the transmission power and the achievable
rate, which means that the system has more impact on ηEE
with the increasing of V . Moreover, the increase of ηEE
will lead to a decrease of the transmission power and the
achievable data rate, resulting in the increasing length of data
queue.

V. NUMERICAL RESULTS
In this section, a system-level simulation is established.
We verify the correctness of the ARAE algorithm and the-
oretical derivations in section IV. Then the impact of control
factor V and two important energy factors are evaluated. The
default simulation parameters are shown in Table 2 [24],
[35], [36]. The simulation is compared with a baseline
algorithm [16]:

• Joint Resource Scheduling (JRS) for Delay-Aware
Traffic Algorithm [16]: The JRS algorithm proposes
an EE joint resource scheduling scheme for delay-aware
traffic. Since JRS does not contain the factors 1m and
ρm, they are evaluated in different arrival rates.

Assume that the HPN/RRHs and the cloud BBU pool are
connected by fiber, and the capacity of the fronthaul link is
not limited. The high-power HPN is located in the center of
hexagon cell and is responsible for controlling signaling and
data transmission. The low-power RRHs and users are evenly
distributed in the simulation area.

FIGURE 2. System energy efficiency against V .

FIGURE 3. System power consumption against V .

Fig.2 shows the relationship between the average energy
efficiency ηEE and the control factor V . As V increases, ηEE
increases with the speed O(1/V ) roughly, which verifies the
correctness of the theoretical derivation (41). In addition, ηEE
decreases with the increasing of arrival rate λ for a fixed V .
The reason is that the system needsmore energy to support the
data traffic for a larger λ. Hence the total energy consumption
increases, and leads to a reduction of ηEE .

In Fig.3, as the control factor V increases, the total energy
consumption decreases. This is mainly because the power and
the maximum achievable rate are in a nonlinear relationship.
From (22) the definition of Lyapunov’s penalty function,
it can be referred that the increase of the control factor V
indicates that the system wants a higher energy efficiency,
and the total energy consumption needs to be reduced. Hence
the system can achieve asymptotically optimal performance
through the adjustment of V . In addition, as the arrival rate λ
increases, the total energy consumption increases as well in
order to support the larger traffic.

As shown in Fig.4, the length of average data queue Q (t)
increases with the speed of O(V ) roughly as V increases.
Fig.2 and Fig.4 indicate that there is a tradeoff between
ηEE and Q (t), which can be expressed by (O(1/V ),O(V ))
quantitatively. Therefore, if the network should work in an
ideal or predefined stable state for a long time, a suitable
control factor V must be chosen. Specifically, if the system
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FIGURE 4. Average arrival data queue length against V .

FIGURE 5. Energy factor ρm against average EE.

FIGURE 6. Energy factor 1m against average EE.

requires higher energy efficiency, V should be larger; con-
versely, if the system is delay-sensitive, the corresponding V
should be smaller.

Fig.5 shows that ηEE decreases with the increase of ρm.
That is because ρm stands for the ability of processing sig-
nals of BBU pool. The BBU pool will need more energy to
processing the same signal as the increasing of ρm, leading to
a lower performance of ηEE . The performance of a lower λ
can achieve much higher ηEE than higher λ, e.g., 41% better

in ηEE between λ = 10 and λ = 20 when ρm = 3. However,
this gap shrinks with the weaker ability of processing signals
in BBU pool. Hence the ability of BBU pools is one of key
issues in H-CRAN.

Fig.6 illustrates the relationship between factor 1m and
ηEE . It is observed that a larger 1m leads to a worse per-
formance of ηEE . Since 1m represents energy conversion
ability of HPN/RRHs in active mode, and a small 1m means
the HPN/RRHs are more efficient in converting energy for
transmission. That is, less power will be needed to trans-
mit the same data traffic in HPN/RRHs. In addition, for a
fixed 1m, the increase of λ leads to a poorer performance of
ηEE . That is because for the same level of conversion ability,
the overload will lower the energy efficient if a larger traffic
rate is required.

VI. CONCLUSION
In this paper, we discuss the resource allocation problem in
H-CRAN. A resource allocation algorithm has been proposed
based on arrival rate. The power consumption model is estab-
lished, and the original optimization problem is transformed
by fractional programming, norm approximation, and Lya-
punov optimization. The solution is based on the Lagrangian
dual decomposition and gradient descent method. The simu-
lation results show the validity of theoretical derivation and
the influence of control factor V . The total power consump-
tion cuts down by controlling the value of V , which has a
significant impact of green communication.

APPENDIX A
PROOF OF LEMMA 1
According to (20), Ym(t + 1) ≥ Ym(t) + ym(t). Calculating
expectation for t ∈ {0, 1, · · · ,K } on both side, we have

E {Ym (K )} ≥
K∑
t=0

E {pm (t)} − KPavg. (43)

One constructs the inequality

lim
K→∞

E {Ym (K )}
K

≥ lim
K→∞

1
K

K∑
t=0

E {pm (t)} − Pavg (44)

via dividing both sides of (43) by K and letting K → ∞.
Combine Jensen’s inequality

0 ≤ |E {Ym (K )}| ≤ E {|Ym (K )|} (45)

and

lim
K→∞

E {|Ym (K )|} /K = 0, (46)

the expectation

lim
K→∞

|E {Ym (K )}| /K = 0 (47)

is obtained according to squeezed theorem. Hence,

lim
K→∞

K−1∑
t=0

E {pm (t)} ≤ Pavg. (48)

Lemma 1 has been proved. �
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APPENDIX B
PROOF OF LEMMA 2
Obviously the inequality{
max [Q− R, 0]2 + A

}2
≤ Q2

+ R2 + A2 − 2Q (R− A)

(49)

always holds. Applying (49) to (21) by taking square on both
sides and calculating the sum of all users, it yields that∑
k∈K

(
Q2
k (t + 1)− Q2

k (t)

2

)

≤

∑
k∈K

R2k (t)+ A
2
k (t)

2W 2 −

∑
k∈K

Qk (t)
W

(Rk (t)− Ak (t)) .

(50)

Similarly, the virtual power queue Ym(t) satisfies∑
m∈M

(
Y 2
k (t + 1)− Y 2

k (t)

2

)

≤

∑
m∈M

(
pm (t)− P

avg
m
)2

2
−

∑
m∈M

Ym (t)
(
pm (t)− Pavgm

)
.

(51)

Hence, the difference of quadratic Lyapunov function holds

L (2 (t + 1))− L (2 (t))

≤

∑
m∈M

(
pm (t)− P

avg
m
)2

2
+

∑
k∈K

R2k (t)+ A
2
k (t)

2W 2

+

∑
m∈M

Ym (t)
(
pm (t)− Pavgm

)
−

∑
k∈K

Qk (t)
W

(Rk (t)− Ak (t)) (52)

by combining (50) and (51). Applying (52) to the expectation
of (23) yields

E {1L (2 (t)) | 2(t)}
+VE

{
ηEE (t) PT (t)− RT (t) | 2(t)

}
≤ Lm +

∑
m∈M

Ym (t)E
{
pm (t)− Pavgm | 2(t)

}
−

∑
k∈K

Qk (t)E {Ak (t)− Rk (t) | 2(t)}

+ VE
{
ηEE (t) PT (t)− RT (t) | 2(t)

}
, (53)

where

Lm ≥
1
2

∑
m∈M

E{pm (t)− Pavgm | 2(t)}
2

−
1

2W 2

∑
k∈K

E
{
R2k (t)+ A

2
k (t) | 2(t)

}
. (54)

Then Lemma 2 has been proved. �

APPENDIX C
PROOF OF THEOREM 1
Applying (38) and (40) to (53) yields

E {1L (2 (t)) | 2(t)}
+VE

{
ηEE (t) PT (t)− RT (t) | 2(t)

}
≤ Lm − ε

∑
k∈K

Qk (t)
W
− VηoptEEE

{
PT∗ (t)

}
+VηEE (t)E

{
PT∗ (t)

}
≤ Lm − Vη

opt
EEE

{
PT∗ (t)

}
+ VηEE (t)E

{
PT∗ (t)

}
(55)

by letting δ → 0. Since 1L (2 (t)) has an upper bound θ ,
i.e., 1L (2 (t)) ≤ θ , the difference of E {L (2 (t))} is also
bounded by

E {L (2 (t + 1))} − E {L (2 (t))} ≤ θ (56)

via calculating difference in (55). Calculating the sum for t ∈
{0, 1, · · · ,K } to obtain that

E {L (2 (K ))} − E {L (2 (0))} ≤ Kθ. (57)

Note that the inequality E
{
|Ym (K )|2

}
≥ E2 {|Ym (K )|}

always holds, and then applying (57) to (22) yields

E {|Ym (K )|} ≤
√
2Kθ + 2E {L (2 (0))}. (58)

The stability constrain

lim
K→∞

E {|Ym (K )|}
K

= 0 (59)

is achieved via dividing both sides on (58) by K and let
K → ∞. So far, it has been proved that the Ym (t) is stable
and satisfies Lemma 1.

On the other hand, a similar inequality

E {L (2 (K ))} − E {L (2 (0))}

+VE

{
K−1∑
t=0

E
{
ηEE (t)PT (t)

}
−

K−1∑
t=0

E
{
RT (t)

}}
≤ K

[
Lm − Vη

opt
EEE

{
PT∗ (t)

}]
+VE

{
PT∗ (t)

} K−1∑
t=0

ηEE (t) (60)

can be obtained by calculating expectations for different slot
t as (55). Note the fact that

lim
k→∞

[
1
K

K−1∑
t=0

E
{
ηEEPT (t)

}
− lim

k→∞

K−1∑
t=0

E
{
RT (t)

}]
= ηEEPT − RT = 0, (61)

it is sufficient to derive

Lm
V
− η

opt
EEE

{
PT∗ (t)

}
+ E

{
PT∗ (t)

}
ηEE ≥ 0 (62)
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via dividing both sides of (60) by VK and letting K → ∞.
Indeed, (62) is equivalent to

ηEE ≥ η
opt
EE −

Lm
VPTmin

. (63)

Similarly,

E {L (2 (K ))} − E {L (2 (0))}

+VE

{
K−1∑
t=0

E
{
ηEE (t)PT (t)

}
−

K−1∑
t=0

E
{
RT (t)

}}

≤ K
[
Lm − Vη

opt
EEE

{
PT∗ (t)

}]
−
ε

W

K−1∑
t=0

∑
k∈K

E {Qk (t)}

+VE
{
PT∗ (t)

} K−1∑
t=0

ηEE (t) . (64)

If both sides on (64) are divided by εK/W and let K → ∞,
then

Q (t) ≤
Lm + V

(
RTmax − η

opt
EEP

T
min

)
ε/W

. (65)

The Theorem 1 has been proved. �
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