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ABSTRACT Prostate cancer is one of the most prevalent cancers among men. Early detection of this
cancer could effectively increase the survival rate of the patient. In this paper, we propose a Bi-attention
adversarial network for the prostate cancer segmentation automatically. The proposed architecture consists
of the generator network and discriminator network. The generator network aims to generate the predicted
mask of the input image, while the discriminator network aims to further improve the generator performance
with adversarial learning by discriminating the generator predicted mask and the true label mask. For
better improving the segmentation performance, we combine two attention mechanisms with the generator
network to learn more global and local features. Extensive experiments on the T2-weighted (T2W) images
have demonstrated our model could achieve state-of-the-art segmentation performance compared with other
methods.

INDEX TERMS Prostate cancer segmentation, adversarial learning, attention mechanism, generator net-
work, discriminator network.

I. INTRODUCTION
Prostate cancer becomes one of the most prevalent cancers
among men in the United States [1]. The early detection and
diagnosis of this cancer could efficiently increase the survival
rate of the patient. Currently, the most commonly used for
prostate cancer detection is by transrectal ultrasound (TRUS)
biopsy, and prostate specific antigen (PSA) blood test. Many
trial tests have proved that the PSA and TRUS could effi-
ciently reduce prostate cancer mortality by 20% - 30% [2].
Although the clinical examination of the PSA and TRUS has
been widely used, it is still limited by the low specificity and
degraded diagnosis. Meanwhile, several studies [3], [4] have
proved that the magnetic resonance imaging (MRI) could
be a potential modality to improve the diagnosis accuracy
with a noninvasive way. However, the prostate cancer diag-
nosis of MRI usually requires professional and experienced
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radiologists, and the diagnosis process is usually a labori-
ous and repeated work. Thus, the computer-aided detection
(CAD) system provides an alternative approach to help radi-
ologist achieve prostate cancer detection automatically.

Traditionally, the CAD system for prostate cancer detec-
tion is usually based on the hand-crafted features. According
to the ways that the hand-crafted features are used, these
methods can be further categorized into the supervised and
the unsupervised methods. The unsupervised methods such
as the thresholding [5], region growing [6], edge detec-
tion and grouping [7], Markov Random Fields (MRFs) [8],
Mumford-Shah functional based frame partition [9], level
sets [10], graph cut [11], mean shift [12], and their exten-
sions and integrations [13], [14] usually utilize constraints
about image intensity or object appearance. Supervised meth-
ods [15]–[18], on the other hand, directly learn from labeled
training samples, extract features and context information
to perform a dense pixel (or voxel)-wise classification. For
example, Chan et al. [19] proposed a multi-channel statistical
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classifier by combining information from three differentmag-
netic resonance methodologies. It combined co-occurrence
matrix (CM), support vector machine (SVM) and fisher
linear discriminant (FLD) for better prostate cancer detec-
tion. Liu et al. [20] designed an unsupervised segmentation
method for prostate cancer detection based on fuzzy MRFs
modeling. In addition, Ozer et al. [21] presented a Relevance
Vector Machines (RVM) for automatic prostate cancer local-
ization to produce more accurate and efficient segmentation
results. Yan et al. [22] segmented the prostate by putting
forward a method of utilizing a prior shape estimated from
partial contours. Although those hand-crafted methods have
achieved great success in this field, it still remains the chal-
lenges of defining the features manually and subjectively.

Recently, with the remarkable performance of the deep
learning methods in computer vision tasks, the analysis of
this method in medical image segmentation has also been
attempted [24], [25], [28], [29]. Litjens et al. [29] presented a
fully automated computer-aided detection system in segment-
ing the candidate regions and obtaining the likelihoods of
cancer. Guo et al. [28] put forward a deformable segmentation
method by unifying deep feature learning with the sparse
patch matching. Karimi et al. [24] proposed a two-step deep-
learning based method using two separated convolutional
neural networks (CNNs), and then a novel method [25] by
employing statistical shape was implemented to predict the
location of the prostate cancer. However, due to the seg-
mentation accuracy limitations of patch based methods [28],
region based methods [29], and even with some posterior
processions [25], all these methods still can not achieve a
satisfactory result to pixel-wise level.

Fully convolutional network (FCN) which uses a whole
image as input and predicts a pixel-wise level segmentation
result [34] has achieved great success in semantic image
segmentation. Ronneberger et al. took the idea of the FCNone
step further and presented an framework called U-Net [33],
which is a regular CNN followed by an up-sampling opera-
tion, where up-convolutions are used to increase the size of
feature maps. After that time, U-Net or FCN becomes the
popular backbone network of various medical segmentation
methods [27], [39]–[41]. Such as in [40] and [41], they
extended a two-dimensional (2-D) FCN into a volumetric
fully ConvNet (3D-FCN) to enable volume-to-volume seg-
mentation prediction. Milletari et al. [39] proposed a 3-D
variant of U-Net architecture called V-Net for prostate seg-
mentation. Tian et al. [27] designed PSNet, which is a fine
tuned FCN trained end-to-end in a single learning stage to
solve the voxels-unbalance problem. Despite the fact that
U-Net like methods can learn low-level and high-level fea-
tures, there are two limitations of these methods: (1) Unlike
traditional conditional random field (CRF) and graph cut
methods which are usually adopted for segmentation refine-
ment by incorporating spatial correlation, there is no guar-
antee of spatial consistency in the final U-Net segmentation
map [43]. (2) These approaches lead to excessive and redun-
dant use of computational resources, and similar low-level

features are repeatedly extracted by all models within the
network architecture.

In order to solve the above problems in U-Net, cur-
rent researchers try to improve the performance from the
following two aspects. On one hand, adversarial losses
as introduced by the discriminator in Generative Adver-
sarial Network (GAN) can take into account high order
potentials [42], and the spatial correlation either from low-
level or high-level features can be regularized globally.
Kohl et al. [30] adopted the GAN network architecture in [37]
to improve the prostate and the cancer region detection per-
formance and evaluated on the self collected dataset. On the
other hand, in order to automatically learn to focus on target
structures of varying shapes and sizes, an attention gate (AG)
model is applied into U-Net and termedAttention U-Net [36].
However, there are few methods which can solve the afore-
mentioned problems simultaneously. Moreover, the attention
gate model used in [36] only weighted the learned features
globally, and the features selected from a local view are also
key to the accurate segmentation.

To address the above challenges, in this paper, we propose
a Bi-attention adversarial network for the prostate cancer
segmentation, which can select features from global and
local views simultaneously, and the adopted GAN network
architecture can further ensure the spatial correlations for
all the features in the final segmentation map. Specifically,
the main designed architecture consists of the generator net-
work and discriminator network. The generator network aims
to generate the predicted mask of the input image and we use
U-Net as the backbone. The discriminator network aims to
further improve the generator performance with adversarial
learning by discriminating the generator predicted mask and
the true label mask. In order to weight the regional features
different region scopes, we propose two attention mecha-
nisms (i.e. channel attention and position attention) with the
generator network to improve the segmentation performance.
The channel attention mechanism is the utilization of the
previous work [31], which calculates the importance weights
of each channel, and then use them to highlight the more
useful channel features globally. For the position attention
mechanism, we aim at extracting more subtle and pixel-level
feature information of the input. Due to the skip connections
of the original U-Net provide more location and boundary
cues from the earlier layers, thus, in our designed model,
we combine the position attention mechanism with the skip
connection to further improve the ability to extract the subtle
and pixel-level feature information.

The main contributions of the proposed method are two
folds:

1) We propose a Bi-attention adversarial network for the
prostate cancer segmentation, which achieves competi-
tive segmentation results by combining attention mech-
anisms with the generator network of GAN. Through
this way, important features sharing strong spatial cor-
relations are selected thus good segmentation results
are obtained.
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FIGURE 1. The main architecture of the proposed Bi-attention adversarial network for segmenting the prostate cancer. The generator is to generate
the predicted mask while the discriminator aims to further improve the generator performance by discriminating the predicted mask and the true
label mask.

2) We propose to use channel attention and position atten-
tion simultaneously in one single network, thus key
features to prostate cancer region segmentation are
selected globally and locally.

II. PROPOSED METHOD
In this paper, we propose a novel Bi-attention adversarial
network for segmenting the prostate cancer. In the following
sections, we will illustrate the main modules of our proposed
model in details.

A. NETWORK STRUCTURE
The main architecture of our designed network is illustrated
in Figure 1, and it consists of the generator and the discrimi-
nator network, respectively.

For the generator, it aims to generate the predicted mask
of the input image. We use U-Net as the backbone of the
generator network, and it is composed of the encoder and
the decoder two stages to generate the predicted mask. For
the discriminator, it aims to further improve the generator
performance with adversarial learning by discriminating the
generator predicted mask and the true label mask.

Especially, to emphasize the features which are contributed
to the prostate cancer segmentation, we utilize two attention
mechanisms to allow the designed network to extract the
attention features globally and locally. More details about
those designed structures are presented in the following
sections.

B. GENERATOR NETWORK
The main backbone of our generator network is U-Net, which
has achieved great success in the medical image segmenta-
tion task. U-Net is composed of the encoder stage and the
decoder stage. At the encoder stage, the high-level contextual
information is extracted by using successive convolutions
and pooling layers, while the decoder stage upsamples the
extracted encoder high-level feature maps to original image

FIGURE 2. The structure of the generator network which including the
encoder and the decoder stages. In both encoder and decoder stages,
the channel attention layer is embedded after each convolution and
batch-normalization layer. And each position attention layer is
implemented with the skip connection in the backbone U-Net network.

size to form the final predicted mask gradually. The detailed
structure and parameters of the generator network are shown
in Figure 2, which adds the channel attention layer after
each convolution layer in both encoder and decoder stages,
and combines each position attention layer with the skip
connection. Here, we adopt four skip connections. With these
two specifically designed attention layers, the global informa-
tion is learned channel-wisely, and the subtle and pixel-level
feature information is learned locally. The detailed struc-
ture of the channel attention layer and the position attention
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FIGURE 3. The structure of the channel attention layer. The intermediate
feature F is first performed with global average pooling (GAP) and then
information is further aggregated through ReLU and Sigmoid activation
consequently. The obtained channel attention is used to weight F aiming
to select channel-wise important features globally as F̃ .

layer are introduced in Section II-B.1 and Section II-B.2,
respectively.

1) CHANNEL ATTENTION LAYER
Inspired by [31], which calculates the importance weights
of each channel, and then uses them to highlight the more
useful channel features. We implement our channel attention
layers in generator network such that the inter-dependencies
between the channels of its convolutional features are explic-
itly modeled by the channel attention layer. The detailed
structure of the proposed channel attention layer can be found
in Figure 3.
Denote the intermediate feature F ∈ RH×W×C (Here, H ,

W , and C is the height, the width and the channel of F ,
respectively.) of the generator network as:

F = [F1,F2, ...,Fi, ...,FC ], (1)

where Fi represents the ith channel feature map of F , i ∈
{1, 2, ...,C}. As illustrated in Figure 3, for each F , we first
perform a global average pooling (GAP in short) over it to
generate channel-wise statistics as z ∈ R1×1×C which is the
global averaged vector of F . Each zi is the ith channel statistic
which can be calculated as:

zi =
1

H ×W

H∑
x

W∑
y

Fi(x, y). (2)

After that, to fully capture channel-wise dependencies,
a gating mechanism with a sigmoid activation is adopted to
achieve information aggregation as:

z′ = σ (W2δ(W1z)) , (3)

where δ is the ReLU activation and σ is the sigmoid activation
function.W1 ∈ RC×C

r andW2 ∈ R
C
r ×C represent theweights

of the two fully connected layers, respectively. We set r = 4
as the bottleneck to reduce the dimension. Here, the ReLU
activation is used to ensure that multiple channels can be
emphasized while the sigmoid activation is employed to
model the nonlinear relationships among different channels.
By this way, the importance of each feature channel can be
learned and described by z′.

Finally, the channel attention features F̃ can be obtained
by multiplying F with z′ channel-wisely as:

F̃ = F ∗ z′ = [F1 ∗ z′1,F2 ∗ z
′

2, ...,Fi ∗ z
′
i, ..,FC ∗ z

′
C ].

(4)

FIGURE 4. The structure of the position attention layer. The intermediate
feature F is first convoluted with 1 × 1 × 1 kernel then activated by a
Sigmoid to form position attention for all pixels. After weighted with
position attention, the position attention feature F̂ is obtained with a
residual connection of F .

Through the channel attention, the designed generator
network can learn more global information by selectively
strengthening informative features and suppressing less use-
ful ones. Therefore, an effective global representation of the
input is obtained, and the performance of the segmentation
model is expected to be further improved by adding the
channel attention layers in both the encoder and the decoder
stages.

2) POSITION ATTENTION LAYER
In original U-Net, the skip connections between the encoder
and the decoder stages can provide the location and boundary
cues from the earlier layers. However, in medical image
segmentation, local information plays a vital role to obtain
an accurate segmentation result, thus, in our designed model,
we propose the position attention and implement with the skip
connection to further improve the ability to extract the subtle
and pixel-level feature information. The detailed structure of
the proposed position attention layer can be found in Figure 4.

Here, we consider the input feature as:

F = [F1,1,F1,2, ...,Fh,w, ...,FH ,W ], (5)

where Fh,w ∈ R1×1×C denotes the feature at the position
(h,w) on feature map F .
During the position attention operation, we first apply a

convolution with a size of 1 × 1 × 1 to F . By this way,
we fuse features of all the channels as Fp ∈ RH×W . To this
end, the attention is focused on the feature position selection,
and the features contributed most to the segmentation per-
formance are expect to be emphasized spatially. A sigmoid
activation σ is adopted to Fp to form the weight matrixWp of
all pixel positions.

Wp =
eFp

1+ eFp
(6)

After that, we perform a element-wisemultiplication between
F andWp, meanwhile, a residual connection is utilized to gain
the final position attention features F̂ .

F̂ = F ·Wp + F

= [F1,1 · wp(1,1),F1,2 · wp(1,2), ...,FH ,W · wp(H ,W )]+ F,

(7)

C. DISCRIMINATOR NETWORK
The main structure of our designed discriminator network is
illustrated in Figure 5. It contains seven convolution layers
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FIGURE 5. The structure of the discriminator network, which contains
seven convolution layers and three max-pooling layers. In order to
discriminate between the predicted mask and the ground truth mask, and
also utilize the information of the original image, we concatenate the
original image with the predicted mask and the ground truth mask,
respectively. And the two concatenated images are the input of the
discriminator network.

and three max-pooling layers. Especially, the LeakyReLU
is used as the activation during the training. In order to
discriminate between the predicted mask and the ground truth
mask, and also keep the information from the original image,
we concatenate the original image with the predicted mask
and the ground truth mask, respectively. The two groups of
concatenated images are as input and then fed into successive
convolution and pooling layers to extract high-level features,
and the final layer with a sigmoid activation is utilized to pre-
dict the binary label. If the predicted score is above 0.5, then
the discriminator network regards those inputs as real (1),
otherwise as fake (0).

D. LOSS FUNCTIONS
During the network training process, the aim of the generator
network G is to generate the similar data based on the true
label mask, while the aim of the discriminator network D is
to distinguish the generated ones and the real data as possible

as it can. Thus, the final training loss could be regarded as a
min-max game, and it can be formulated as:

Lfinal = Ex,y∼pdata(x,y)[logD(x, y)]
+Ex∼pdata(x)[log(1− D(x,G(x)))], (8)

where x denotes the original image and y represents the true
label mask. Notably, we combine x with G(x) to train the
network as the conditional GAN [32].
1) Generator Loss: The loss LG for the generator network

is a binary cross-entropy loss, and it can be formulated as:

LG = −
1
N

N∑
i=1

pilog(ti)+ (1− pi)log(1− ti), (9)

where pi is the predicted label map, and ti represents the true
label map of the original image.
2) Discriminator Loss: The loss LD for the discriminator

network is similar to the generator network by using the
binary cross-entropy loss.

Finally, we perform addition operation of LG and LS to gain
the final loss of the network:

Lfinal = LG + λLD, (10)

where λ is the weight parameter to balance those two losses
to be comparable. Discussions about how this parameter
affects the final segmentation performance are provided at the
experimental Section III-G.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATA INTRODUCTION
The experimental data consist of 120 patients from the Shang-
hai Tenth People Hospital, Tongji University and we use
the images of MR T2-weighted with fat saturation as our
experiment modality. The voxel size is 0.9 × 0.6 × 3.5mm3

of the T2-weighted image. The images were acquired with
3.0 Tesla (T) whole-body unit MR imaging system 9Magne-
tom Verio 3.0T, Simens Medical Company). All the prostate
cancer annotations are confirmed by the biopsy pathology.
For better segmentation performance, we first crop the region
of interest based on the connected component analysis. Then,
we resize all the cropped images and masks to 256× 256 as
the input to the designed network.

B. IMPLEMENTATION DETAILS
The designed model is implemented based on Tensorflow
deep learning library on a workstation with NVIDIA GTX
1080 GPU. The initial learning rate is 10 × 10−4, and it
decays by 0.0005 after 20 epochs. The parameters of the
network are initialized by Gaussian Distribution, and we use
Adamoptimizer to optimize the network. The input size of the
original image is 256 × 256. We use random flip, rotation,
and cropping to augment the training data. The network
training is conducted by an alternating fashion: the generator
network first generates the predictedmasks by using themini-
batch data, and then we feed the predicted masks into the
discriminator network to update the parameters. After that,
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TABLE 1. The effectiveness of different attention modules in our model.

the generator network is updated by training another new
mini-bath data.

C. EVALUATION METRICS
In this paper, we use accuracy (AC), sensitivity (SE), jaccard
index (JA), and dice coefficient (DI) as the basic metrics to
evaluate our designed model. Denote TP the true positive,
FP the false positive, TN the true negative, and FN the false
negative.

AC =
TP+ TN

TP+ FP+ TN + FN
(11)

SE =
TP

TP+ FN
(12)

JA =
TP

TP+ FP+ FN
(13)

DI =
2 ∗ TP

2 ∗ TP+ FP+ FN
(14)

D. THE EFFECTIVENESS OF DIFFERENT
ATTENTION MODULES
In order to show the effectiveness of different attention mod-
ules in our model, we perform the following experiments.
We compare our proposed model with our generator with-
out the channel attention layer and position attention layer
(N-ChlPsnAtt), the generator network only with the channel
attention layer (ChlAtt), and the generator network only with
the position attention layer (PsnAtt). The detailed comparison
results can be seen in Table 1. From this table, we can see,
with the single designed attention mechanism, the perfor-
mance of the model could be improved compared with the
N-ChlPsnAtt. Moreover, with channel attention module only,
our method achieves higher AC and SE values, but lower JA
and DI values. That further validates that the proposed chan-
nel attention module and the position attention module are
complementary to each other. Hence, the best performance
is gained by using the two attention mechanisms together.
By employing those two attention modules, our model could
learn more global and local attention representations which
further improve the segmentation performance of the pro-
posed model.

Detailed visualization examples of different attentionmod-
ules are shown in Figure 6. From this figure, we can see that
the segmented masks of our method are more close to the
ground truth compared to N-ChlPsn. Moreover, our PsnAtt
method tends to detect more detailed boundaries, while our

FIGURE 6. The visualization some segmentation results of different
attention modules of our method.

TABLE 2. The effectiveness of our channel attention at the encoder and
the decoder stages of the generator respectively.

TABLE 3. Comparisons with position attention layers at different skip
connection combinations of U-Net.

ChlAtt method puts their attention on the global structure of
the cancer region.

E. THE EFFECTIVENESS OF CHANNEL ATTENTION AT THE
ENCODER AND THE DECODER STAGES
Then, we compare the performance of the generator
with/without the designed channel attention at the encoder
and the decoder stages respectively. We name the generator

VOLUME 7, 2019 131453



G. Zhang et al.: Bi-Attention Adversarial Network for Prostate Cancer Segmentation

FIGURE 7. The effects of different loss weights with different evaluation metrics: AC on the top left, SE on the top right, JA on the bottom left and
DI on the bottom right.

network only with the channel attention layer during the
encoder phase as E-ChlAtt and the generator network only
with the channel attention layer during the decoder phase as
D-ChlAtt. We keep the position attention during these groups
of comparisons untouched.

And the comparison results can be seen from Table 2.
The result shows that the overall performance of the the
E-ChlAtt and the D-ChlAtt could gain better performance
than the N-ChlPsnAtt, it further proves the effectiveness
of the channel attention mechanism.Meanwhile, it seems that
the overall performance of E-ChlAtt is a little higher than
the D-ChlAtt. It could be explained that the encoder stage
tends to provide more global representations compared with
the decoder stage. Overall, the combination of the E-ChlAtt
and the D-ChlAtt achieves the best result. Thus, in this paper,
we use the channel attention mechanism in both encoder and
the decoder stage to improve the final performance.

F. THE COMPARISONS WITH POSITION ATTENTION
LAYERS AT DIFFERENT SKIP CONNECTIONS
In this section, we perform the comparisons for the position
attention layer at different skip connections. We name the
generator network with the position attention layer during the
first skip connection as PsnAtt-1, the second skip connection
as PsnAtt-2, the third skip connection as PsnAtt-3, and the
fourth skip connection as PsnAtt-4. We also performed the
comparisons for the position attention layer with different
skip connection combinations. The PsnAtt-ij denotes the
combination of ith skip connection and jth skip connection,

FIGURE 8. Comparison with different data samples. The sizes of the
experiment data samples are 25%, 50%, 75%, and 100%, respectively.

and the PsnAtt-ijk represents the combination of ith skip con-
nection, jth skip connection and kth skip connection, where
i, j, k ∈ {1, 2, 3, 4}.
The detailed comparison results are illustrated in Table 3.

For single skip connection, the PsnAtt-3 and the PsnAtt-4
tend to be the most effective ones. It could be explained
that the previous layers usually contain more subtle and
pixel-level features which further improve the performance
of the model. For different skip connection combinations,
the best result is achieved by combing the four skip con-
nections simultaneously, while other combinations generally
have similar performances. Through this experiment, we can
conclude that adding more skip connections could boost the
overall performance of the model.
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TABLE 4. Comparisons with state-of-the-arts.

FIGURE 9. Examples of the segmented results for different models.

G. RESULTS OF DIFFERENT LOSS WEIGHTS
In this section, we conduct comparable experiments to
explore the effect of different loss weights. Different value of
the loss weight λ would give a weighted adjustment of each
loss function, and therefore further influence the final perfor-
mance of the model. The detailed comparison result of dif-
ferent loss weights is depicted in Figure 7. The experimental
results with different evaluation metric 9AC, SE, JA and DI)
all show that the model increased the performance till the loss
weight λ from 0.1 up to 0.6. However, given the heavy weight
(λ > 0.6) of the λ could also have an unfavorable influence
on the segmentation performance. Thus, the final value of
λ is set to 0.6 empirically for achieving a compromising
result.

H. COMPARISON WITH DIFFERENT TRAINING
DATA SAMPLES
As illustrated in Figure 8, we analyze the model perfor-
mance with different training data samples. The sizes of the
experiment training data samples are 25%, 50%, 75%, and
100%, respectively. The best result performance is achieved
by 100% data samples with 86.4% AC, 93.2% SE, 75.7% JA
and 85.9% DI, respectively. The result also shows that with
more data samples, the better performance of the model could
achieve. That is reasonable due to more data samples could
provide more diverse feature representations, which helps the
network improve the final segmentation ability. We will try to
collect more data to enhance the overall performance in future
works.
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I. COMPARE WITH STATE-OF-THE-ARTS
To evaluate the performance of our designed model, we com-
pare our method with state-of-the-art segmentation methods.
Except for U-Net [33], FCN [34], Attention U-Net [36] and
GAN [37], we add two more classical semantic segmentation
methods SegNet [35] and Deeplab V3+ [38] for thorough
comparisons. For a fair comparison, we re-implement the
U-Net, FCN, SegNet, Attention U-Net, GAN, Deeplab V3+.

The detailed comparison result is illustrated in Table 4. The
result demonstrates that our proposed model could achieve
competitive results especially in AC, JA, andDI. Although SE
is not gained the best result, it can be explained that the struc-
ture of the Deeplab V3+method with spatial dilated pooling
could learn more multi-scale features. Meanwhile, the com-
parison between GAN and our proposedmodel further proves
the effectiveness of our designed attention mechanisms.

Figure 9 shows some predicted examples of state-of-the-
art models. We compare U-Net, FCN, SegNet, Attention
U-Net, GAN, and Deeplab V3+. Compared with the tra-
ditional segmentation models (U-Net, FCN, SegNet), our
model could gain some obvious improvements. Such as in the
last row, extra regions are detected by these methods, while
our method successfully filters out these distracts. Compared
with Attention U-Net, GAN and Deeplab V3+, our method
can achieve a more accurate boundary and shape of the
cancer region. For example, in the second and the forth rows,
AttentionU-Net andGANmodels fails to get the exact shapes
of the cancer region, and Deeplab V3+ seems to over-fit
the cancer region. Only the detection result by our method
is close to the ground truth. That could be explained that
with our two designed attention mechanisms more global and
local subtle representations are provided to further boost the
identification of the prostate cancer regions.

IV. CONCLUSION
In this paper, we propose a Bi-attention adversarial network
for prostate cancer segmentation. Compared with other state-
of-the-art methods, our model could extract more global and
local attention features with the channel attention layer and
position attention layer by adversarial learning strategy. In
the future work, we will try on different MRI modalities to
segment the prostate cancer automatically.
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