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ABSTRACT This paper presents a new statistical model for texture retrieval in the complex wavelet domain.
For this purpose, a finite mixture of Weibull distributions (MoWbl) is proposed to characterize the statistical
distribution of magnitudes of complex wavelet coefficients. Despite the ability of the mixture model on
capturing a wide range of distribution shapes, choosing an appropriate number of mixture components is
a challenging task. To this end, we adopt an unsupervised learning of the model parameters based on the
Figueiredo-Jain algorithm and maximum-likelihood estimates. As found in all retrieval statistical-based
frameworks, the presence of a similarity measure is trivial. Generally, the failure of a retrieval mixture
based system is closely related to the choice of the similarity measure that relies mainly on approximations
of some divergences and distances. To overcome this limitation, we propose a canonical form of Weibull
distribution which allows us to develop an analytic expression of Cauchy-Schwarz divergence (CSD) for
MoWhbl distributions. Experiments, conducted on three popular datasets, show that the proposed model
yields better performance in terms of goodness-of-fit, retrieval, and execution time compared to some related
statistical models for texture retrieval.

INDEX TERMS Texture retrieval, statistical analysis, finite mixture of weibulls, Cauchy-Schwarz diver-

gence.

I. INTRODUCTION

Besides visual content in images such as color and shape,
texture content is a very important feature for content-based
image retrieval systems. Various texture analysis tech-
niques [1]-[4] consider texture as the outcome of a deter-
ministic dynamical system subject to random noise. The
effectiveness of wavelet-based signatures has been recog-
nized for texture discrimination since wavelet analysis is sup-
ported by the visual cortex studies [5]. Randen and Husoy [6]
have compared various filtering approaches and have con-
cluded that statistical features yield better performance for
texture description than energy based methods. Indeed, since
a texture can be considered as a realization of a random
process, statistical-based models are more suitable to discrim-
inate between textures. Specifically, parametric distributions
have been successfully used in wavelet domain to describe
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the shape of normalized histograms. For instance, histograms
of wavelet coefficients provided by the orthogonal wavelet
transform (OWT) are distributed according to a generalized
Gaussian distribution (GGD) [7], [8]. Histograms of wavelet
coefficients are mostly non-Gaussian and have leptokurtic
forms [9]. Moreover, some histograms can be asymmet-
ric and may have a multimodal form such as the case for
wavelet packets [10]. In this situations, a finite mixture model
(FMM) [11] is suitable for a more accurate histogram fitting
and a more precise texture image description. Allili proposed
recently a finite mixture of generalized Gaussian (MoGGQG)
distributions for texture modeling [12] where they modeled
both wavelet detail and approximation subbands with a mix-
ture rather than a single generalized Gaussian distribution
(GGD). They showed that various histograms raise multi-
modal forms which are hard to fit using a single GGD.
Later on, they have modeled the histograms of the Contourlet
Transform (CT) in [13] to overcome some limitations of the

VOLUME 7, 2019


https://orcid.org/0000-0003-3402-6279
https://orcid.org/0000-0002-6741-4799

H. Rami et al.: Finite Mixture of Weibull-Based Statistical Model for Texture Retrieval

IEEE Access

DWT using the same MoGG model. Li et al. [14] proposed
a generalized Gamma mixture model (GI'MM) to analyze
high-resolution synthetic aperture radar (SAR) images. They
fit histograms of SAR images using an unsupervised learning
algorithm to estimate the parameters of the mixture model.
Recently, a Wishart mixture model (WMM) has been pro-
posed for change detection in PolSAR images [15]. The
polarimetric information in PoOISAR images is represented by
a complex vector and each data point in the image is repre-
sented by a covariance matrix. Hence, the Wishart mixture
model is a good choice to model these covariance matrices.
Biomedical imaging also benefits from the mixture distri-
butions such as Rayleigh mixture model (RMM) proposed
in [16] to characterize plaque in intravascular ultrasound
images.

In arecent work [17], we proposed to use Cauchy-Schwarz
divergence (CSD) [18] for MoGG models to obtain a closed-
form expression of the similarity measure. This choice has
been inspired by the work of Nielsen [19] where several
closed-form expressions of CSD have been computed for
numerous distributions that belong to the exponential family
such as Laplacian, Rayleigh and Bernoulli. Although GGD
is not part of the exponential family, we fixed the shape
parameter to obtain a closed-form expression of the CSD.
Indeed, we stressed out how a CSD is such a promising
alternative for KLD since its mathematical expression allows
a closed-form expression in case of MoGG with a fixed shape
parameter. Starting from these interesting properties of the
CSD, we aim to take advantage of the finite mixture mod-
eling without being confronted to the approximation of the
divergence between two finite mixture distributions. In order
to achieve this, we choose to model histograms of mag-
nitudes of complex wavelet coefficients. Complex wavelet
transforms have gained attention in recent years because they
provide interesting properties that are not present in real
valued coefficients such as the shift invariance of the mag-
nitude and a large orientation selectivity [20]-[23]. As any
information retrieval problem, finding the appropriate sta-
tistical distribution that describes well the data is subject to
many research studies. Complex coefficients have the advan-
tage of providing two sources of information, magnitudes
and phases. Commonly in the literature, magnitudes have
been characterized using different positive distributions such
as Weibull [24], Gamma distribution [25] and Generalized
Gamma distribution [23]. Since magnitudes are positive val-
ues, it is obvious that all of this positive distributions are
more suitable than a GGD to take advantage of the expo-
nential family distributions and model the marginal behavior
of complex wavelet coefficients histograms as well. Addi-
tionally, Weibull distribution has been successfully used to
model magnitudes of complex wavelet coefficients in some
previous texture retrieval models [22], [24], and [26]-[28].
Angles of complex coefficients are generally exploited using
circular distributions such as Wrapped Cauchy and von Mises
to characterize the relative phase [29], [30]. From all of
these reasons stems our motivation to model magnitudes

VOLUME 7, 2019

of complex wavelet coefficients using a finite mixture of
Weibull (MoWhbl) distributions to retrieve textured images.
The proposed MoWbl model characterizes the normalized
histograms of the magnitudes of complex wavelet coeffi-
cients issued from the dual-tree complex wavelet transform
(DTCWT [31]) and the magnitudes computed with hori-
zontal and vertical detail sub-bands of a discrete wavelet
transform (DWT [7]). Based on the unsupervised algorithm
proposed by Figueiredo and Jain [32], we develop equations
for the minimum message length (MML) based estimators
for a finite mixture of Weibull distribution to obtain the
optimal parameter set including the number of components.
Since the Weibull distribution can be part of the exponential
family, we propose herein a canonical parametrization for
the Weibull distribution. This technique has also been used
in [15] for Wishart distribution except that this distribution
is only applicable in case of covariance matrices modeling.
Thanks to this parametrization, we develop a closed-form
expression of CSD between MoWbl models. An in-depth
experimental process has been applied to the proposed model
to assess its goodness-of-fit, its retrieval accuracy and its sim-
ilarity measurement execution time. Texture retrieval experi-
ments have been conducted on three popular texture datasets;
VisTex [33], Brodatz [34] and ALOT [35] datasets.

To sum up, the main contribution of this paper is twofold:
i) We propose a Weibull mixture model for magnitudes of
complex wavelet coefficients which parameters are estimated
using a new MLE based unsupervised learning. ii) By provid-
ing a canonical form of the proposed model, we compute an
analytic expression of Cauchy-Schwarz divergence between
two mixtures of Weibull distributions.

This paper is organized as follows. In Section II, we elab-
orate the parameters estimation algorithm for the MoWbl
distribution model. The proposed closed-form expression of
CSD is detailed in Section III while Section IV focuses on
the results of several retrieval experiments on textured images
datasets. Finally, Section V concludes the paper.

Il. MIXTURE OF WEIBULL DISTRIBUTIONS MODEL
The Weibull distribution function which is a two-parameter
function is expressed mathematically as:

B=1 _x
ple =2 (2) e (M)

where 8 > 01is a shape parameter, « > 01is a scale parameter.

In statistics, a mixture density is a probability density
function which is a convex linear combination of probability
density functions. The mixture of Weibull distributions can
be defined as a weighted sum of Weibull probability density
functions:

M
pex1©) = mip(x|6) )
i=1

where 7; represents the weight of the ith Weibull component
within the mixture, also called the mixing weight, and
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0; = («, Bi) corresponds to the parameters of that com-
ponent; the weights sum to 1, Zf‘i (i = 1. Our finite
mixture model is characterized by a set of 3 x M parameters:
® = {m, a1, B1, ..., Tm, oM, Bu}, where M is the number
of mixture components.

The feature extraction step aims to obtain the optimal
estimate of the set of parameters ® for a given set of sub-
band coefficient magnitudes.

A. MAXIMUM-LIKELIHOOD BASED

PARAMETERS ESTIMATION

Given a set of N coefficient magnitudes X = (x, ..., )’
from a specific wavelet details sub-band, the feature extrac-
tion procedure consists of finding the optimal set of 3 x M
parameters, (:), that best fits the histogram of coefficients
magnitudes. We use the maximum-likelihood estimator (ML)
which implies maximizing the log-likelihood function, that
is:

A

® = argmax L(X|©) 3)
®
with

N M
LX1©) = logp(X|©) =log[ [ Y mpxile) )
i=1 j=1

N M
L@ |0) = Y log (Y mpid)) )
i=1 j=1

To solve this maximization problem we use the EM
algorithm [11] iteratively through two steps: i) an expec-
tation step (E-step), where the expectancy of the complete
log-likelihood function (5) is calculated with respect to
the observed information X and the current state of the
model parameters estimate ©(’), and ii) a maximization
step (M-step) where mixture parameters are updated so that
to increase the expectation of the complete log-likelihood.
EM algorithm interprets the observed data X’ as incomplete
data with the missing information being a corresponding set
of labels Z = {zjli = 1,...,Nand j = 1,..., M} where
zjj = 1 indicates that the coefficient x; is produced by the j-th
component of the mixture and z;; = 0 otherwise. Hence, X
is augmented by Z to form a complete data set. The resulting
complete-data log-likelihood is given by:

N M
LX) =Y zlog (mptile))  (©)
i=1 j=1

The following equations correspond to the tasks performed
in each step:

1) E-step: Compute the conditional expectation of the
complete log-likelihood:

Q(®, 6) = Eflog (p(X, Z|©)) | X, 0" (7)
given x and the current estimate (108
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FIGURE 1. Fitting of a mixture of two Weibull distributions:
{r; =0.59, a7 = 3.2, §; =8.61} and {ny = 0.41, 0, = 1.8, f; = 2.78}.

2) M-step: Update the parameter estimates according to:

OU*D = argmax Q(©, O1) ®)
®

The two steps are iteratively processed until convergence
is achieved.

In our model, which concerns the mixture of Weibull dis-
tributions, the updating equations are as follows:

N . OO N
R 1P| xi, © 1
nj(t“) = NZ’—IAI;( il 00 1 > il xi, ©0)
2im Zj:lp(zij |xi, @) N i=1
©
N g\ L
S0+ _ (Zi_ﬂ’(Zij | xi, @), )ﬁ/@ (10)
! Y i xi, ©0)

The equation for the shape parameter f; is solved with
Newton-Raphson method. The corresponding equation is as
follows:

ItD ~ g0 00| 9([))(82Q(® | ®U))>_l (11

2

® designates here the set of parameters of the mixture
as defined in (2). The posterior probability p(z;|x;, ®®) is
given by:

) (0)
7 pxi |0;7)
. @WY = J J

p(zij | xi, ®F)) =
S p 16,)

Fig. 1 illustrates an example of a mixture of two Weibull

distributions for which we estimate parameters using the EM

algorithm. The estimated probability density function is very
similar to the original one.

(12)

B. UNSUPERVISED LEARNING OF MOWBL

In real image retrieval applications, the exact number of mix-
ture components is unknown in advance. A mixture model
of an inaccurate number of components tends to overfit or

VOLUME 7, 2019



H. Rami et al.: Finite Mixture of Weibull-Based Statistical Model for Texture Retrieval

IEEE Access

underfit the data. This problem is often resolved with a
model selection criterion such as Akaike’s information crite-
rion (AIC) [36], Bayesian information criterion (BIC) [37],
minimum message length (MML) [38], minimum descrip-
tion length (MDL) [39] or integrated completed likelihood
(ICL) [40]. All of these criteria assume that the number of
components is fixed for each model and they choose the best
model by minimizing the following equation:

Oy = argmin {C(Op), M = Myin, ..., Mpar}  (13)
M

where a set of parameters ©yy is estimated for each number
of components M which varies from M,,;,, to M4y, then the
best model is selected according to the underlying selection
criteria C(©y). Such an algorithm is obviously computation-
ally expensive and is not straightforward as it implies a large
number of EM executions for each number of components,
which takes an important execution time to converge. To over-
come this issue, Figueiredo and Jain [32] have proposed an
effective algorithm which aims to find directly the ‘“best”
overall model in the entire set of available models. Rather
than using EM to compute a set of candidate models, their
algorithm implements the MML criterion’s equation using
a variant of EM. In our work, we adopted the following
criterion from Figueiredo and Jain [32]:

Oy = argmin { — log((®)) — log(p(X|6))
M

1 c 1
+ 3 log(|F(®)]) + 5(1 + log(ﬁ))} (14)

where F(0®) is the expected Fisher Information (FI) matrix,
|F(®)]| denotes its determinant, and ¢ = 3M is the number of
free parameters in MoWbl distribution.

Fisher Information matrix is the Hessian matrix of the
logarithm of minus the likelihood of the mixture. In our case,
we deal with a 2M x 2M Hessian matrix defined by the
following elements:

82

201,01, log(p(X'| ©)) (15)

Such a Hessian matrix makes difficult to derive an ana-
lytic form of the MML criterion for mixtures, so we follow
the approximation proposed by Baxter and Oliver [41]. The
determinant of the FI matrix is approximated by the product
of the determinant of the FI matrix for each component, times
the determinant of the FI matrix of the mixture weights 7;:

Hj o, =

M
IF@©)| = [Fe)| [ [ IFi(e. B (16)

j=1
where the FI matrix for a single Weibull distribution with
scale parameter «; and shape parameter §; is [42]:

N(f%)2 —bg
Fep= N v a7)
—b—  a—
o B;
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where a = 1.823600 and b = (0.422784 are two constants.
The mixing weights can be viewed as being the parameters of
a multinomial distribution. In this case, the determinant of the

FI matrix of the mixing weights is |F ()| = ]‘[MLn ([41D),
M
where N is the number of data elements. Y

To obtain an analytic form of the prior distribution 4(®),
we assume that the weights 77; and the components parameters
are independent. Based on this independence, the prior is
given as

M
h(®) = h(my, ... ,JTM)l_[h(Qj) (18)
j=1

The two densities A(ry, ..., my) and h(6;) are obtained by
using a Jeffrey’s non-informative prior [43] as h(6;) =
VIF@;| and h(my,...,my) = |F(m)|. By substitut-
ing (18) and (17) into (14), we finally obtain the following
incomplete-data penalized log-likelihood function [44]:

Oy = arg;lnin Ly (X, ©) (19)
with
1Y 1 — Ky )
Lo (X, ©) = 5 j_ZIZogw,-) + 5 logla = b%)
+ 31;’” (1 + log(é)) — log(p(X | ®))

(20)

where K,,; = Y j[nj > 0] denotes the number of non-zero
probability components.

Now that we have defined a MML based criterion, we inte-
grate it into the EM algorithm by replacing the Q function by
the following one:

N M
Oumr(©, 01 =3 " p(zj | xi, ©©) log (7))
i=1 j=1

N M
+ 30> i | xi, ©0) log (p(x; 16)))

i=1 j=I

M
1 1-K,
—5 E log(m)) — > " log(a — b2)
j=1

3K, 1
> <1 + log( 12)) (21)

Based on this integration of the MML criterion on the Q
function, we derive the new ML estimators of the mixture
parameters in both the E- and M-step. From (21), we note
that none of the new added terms depends on the component
parameters ¢; and only the term —(1/2) Z]Ail log(mj) depends
on the mixing weights ;. Thus, no modifications are required
for the estimators of «; and B; in (9) and (11) respectively.
By proceeding to the derivation of (21), we obtain the new
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updated estimate of 7;:

AUHD) _ max {0, Z?/:lp(zij | xi, @) — %}

’ Yo max{0, Yo p(zi | xi, ©0) — 1}
The max operator in this expression can make weak compo-
nents irrelevant since any component for which 7; = 0 does
not contribute to the log-likelihood. This operation, called
component annihilation [32], reduces the number of non-
zero components K,,; during the parameter estimation process
which can avoid approaching the boundary of the parameter
space. The unsupervised learning algorithm for the MoWbl
is summarized in Algorithm 1. Complexity of this algorithm
is O(tmaxM,znax), where M,,,4 is the maximum number of
components, t,,,, is the number of maximum EM iterations.

(22)

Algorithm 1 EM-FJ-MoWbl
Require: X, N, Myin, Mypax, €, tmax
Ensure: Mixture model in (:)bm

1: Initialization

2: t < 1, Kyy; < Mgy, Linin < +00

3. Calculate 7#© = Mr}uzr fori=1,...,Ky,;

4: Set random initial scales and shapes: {é{o), cees GA}SI)’?}M}
5. Calculate p(zjm | xi, é(o)) using (12)

6: Main loop

7. while K,,; > M,,;,, do

8:  repeat

9: form =1to K,,; do

10: Calculate p(zjy | x;, ©) using (18)

11: Calculate fr,,(p using (12), fori=1,...,N
12: (A1) (A A b x (D A7)
13: if 7%,(,{) > 0 then

14: Update é,(nt) using (11) and (9) successively
15: Calculate p(xi|é,n) fori=1,...,N

16: else

17: Ky, < Ky, — 1

18: end if

19: eAnd for . .
0 B0« G000 &0 40
21 Calculate Ly (X, ©0) using (20)
22: t<—t+1

23:  until Ly (X, é([_l)) Egl)ML(X’ @(1)) <
| Lamar (X, ©U"D) x € and t < typax
2u4: if Ly (X, ©) < L, then

25: émin < ICAMML(Xv ®(t))
26: Opest < O(1)
27:  end if

28 m* <« argmin{7,, > 0}, T < 0, Ky, < Kz — 1

29: end while

Ill. CAUCHY-SCHWARZ DIVERGENCE
Given two MoWbl models p(x | @) = Z]K:l p(x | 9;”)
and g(x | ©?) = Y7 wjp(x | 9}2’), the KLD between p and
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q is defined as:

px|0W)
q(x | ©@)

K K (1

i1 T p(x 1 6;7)
=/Z”fp(x|9i(]))log<zzjwl . ](2) )dx

i=1 > =1 @i P 6;7)
(23)

KLD(p||g) = / p(x 10D log( )dx

Note that in this expression of KLD, the logarithm pre-
vents the marginalization of x out by the integral because it
separates the integral and the summations over mixture com-
ponents. Hence, it prevents the development of an analytic
expression of this divergence between finite mixture distri-
butions. The same problem has been pointed out in case of
the mixture of Gaussians [45] and the mixture of generalized
Gaussians [17]. This particularity prevents the mathematical
development from obtaining a closed-form expressions for
KLD in case of finite mixture models. Several approximation
techniques have been used like Monte-Carlo integration [12],
variational approximation [46] and matching based approx-
imation [47]. Recently, Nielson and Sun [48] proposed an
algorithm to build a closed-form formula that guarantees a
lower and upper bound on the KLD for mixtures of distribu-
tions. The main issue with these approximation techniques
is the increase in computation time of the similarity mea-
surement which is caused by the evaluation of KLD inte-
grals. In what follows, we introduce an analytic expression
of Cauchy-Schwarz divergence.

Cauchy-Schwarz divergence (CSD) is based on the
Cauchy-Schwarz  inequality of density functions:
0 < (fptx|©M)g(x|©P)dx)? < [p*x|©D)dx [ 4
(x | ©@)dx. For two pdfs p(x | Oy and ¢(x | OP) it is
defined as follows [18]:

[ x| ©D)g(x | ©P)dx
I POl ©D)ax [ x| ©D)2dx

Compared to KLD, the CSD has the advantage of being sym-
metric in its arguments and verifies the triangle inequality.
It is also always positive such that 0 < CSD(p||lq) < oo
for any two pdfs p and ¢, and vanishes if and only if
pe10M) = g(x| ©@).

CSD(p||q) = —log (24)

A. MONTE-CARLO APPROXIMATION

One can not calculate the integral in formula (1) because
of the shape parameter which is a power in the expression.
Stochastic integration with Monte-Carlo sampling is a judi-
cious solution to overcome this issue. It consists of generat-
ing a sufficiently large number of samples {x1, x2, ..., xy}
from the distribution p in order to approximate the integral
S p(c16M)g(x |6P)dx by Eplg(xi|6™)]. By applying this
approximation to the CSD, the integral in the first term in (24)
can be approximated by:

N
1
M Dy ~ 10@
/p(xIG )q(x 6 )dX~ﬁ§_l q(xil0*)  (25)
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where x;, (i = 1, ..., N)isaset of random samples generated
from the mixture p(x | oM.

By substituting (25) into (24), our approximated CSD is
written as follows:

Y gxi0@)
I pd @) X q040@)

B. A CLOSED-FORM EXPRESSION FOR
CAUCHY-SCHWARZ DIVERGENCE BETWEEN TWO
MOWBL DISTRIBUTIONS

In [45], an analytic expression of CSD for mixtures of Gaus-
sians has been derived. Since the Gaussian distribution is a
particular case of the exponential family [49], a more general
formula for the closed-form expression for this family of
distributions has been proposed in [19] and various examples
of some popular distributions were given. Hence, our pro-
posed closed-form expression of the CSD between Mowbl
distributions is derived from the general case.

An exponential family is a set of parametric probability
distributions {p(x | 8) | 6 € ®} whose probability density can
be decomposed canonically as:

p(x]6) = AT @), —A)+h(x) (27)

CSD,,. = —log (26)

where T'(x) denotes the sufficient statistics, n the natural
parameter, A(n) the log-normalizer, and h(x) the auxiliary
carrier measure. (x,y) = x!y denotes the inner product of
vectors.

The natural sufficient statistic must be a function of a
single variable, which is our random variable x, but the
Weibull distribution, as presented in (1), is a challenging
case where x is powered by 8: x#. Nevertheless, the Weibull
distribution might also be written in the canonical form.
To this end, we introduce a Weibull distribution with a known
shape parameter 8. That is, the parameter 8 is not anymore
a member of the source parametrization and is instead a
parameter of the distribution. Hence, the Weibull distribution
belongs to the exponential family by adopting the following
parametrization:

P -
p(x|0) = p(x | @) = e «f Plosl@tlog(B)+logx 28)

which is decomposed into the following partsB
o The natural sufficient statistic: T (x) = F

o The natural parameter: 1 = —aﬁ

log (——)

o The auxiliary carrier measure: h(x) log (xf-1
When written in the canonical form of the exponential fam-

ily, the CSD between MoWhbl distributions can be computed
in a closed-form expression by using the following equation
for each integral in (24), [19]:

M K

A1) — (A +AxT,
/p(x|®1)q(x|®2)dx = 33 At A
i=1 jfl

o The log-normalizer: A(n) =

@(
D

i=1 j=1 ,Bi(xj‘-l—ﬂl/aii
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In the same vein, the two remaining integrals are computed
using the natural parameters:

M M
/ P 1Oy = 33 e Anitn)— A A
i=1 j=1
Bib;
= ZZWJ warrw B
i= lj—l ] +,3j05,'1

/ 4(x | ©)2dx = Z Z”/ 1 LAMIHI)—AM)+A))

i=1 j=I
K K ﬂﬂ
:;_

S G
J=1 B’ + Biey !

Finally, the closed-form expression of the CSD is given as

follows:

- log<z Zn, ,—ﬂ/,>

i=1 j=1 Bie; ' + Bjat

— log (Z Z Wi~ 'BI'B] )

CSD@llg) =

i=1 j=1 ﬁza +/3j1
—log<22nn il - ) (32)
i=1 j=1 ,31/1 +/30lﬁ

The final closed-form expression is entirely expressed by
the finite mixture parameters and the similarity between the
query image I, and the target image /. is the sum of all the
CSDs across sub-bands:

L J
Des(r, Ie) = Y Y (Des(p|p! ) (33)

=1j=1

where p, and p, represent MoWbl models of the two images
I, and I, respectively for the sub-bands of the /-th level and
orientation j = {1,2,...,J}.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENTAL SETTING

To test the performance of the proposed model in texture
retrieval and the potential of the proposed similarity measure,
we achieve texture retrieval experiments using three popular
datasets, Brodatz [34], Vistex [33] and ALOT [35]. Each one
of these datasets represents a challenge for classification or
retrieval tasks either by its size or the nature of its textures.
Fig. 2 shows some textures from the three datasets. The
following datasets are used:

o DSI: For this dataset, we adopt the same experi-
mental benchmark as in [50] and [17] where 60 tex-
ture images of dimension 640x640 are taken from
Brodatz [34]. By dividing each image into 16
160x 160 non-overlapping sub-images, we obtain a
dataset of 960 image. This is a large set of textures where
some are similar to each other.
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ALOT samples

Brodatz samples

Vistex samples

FIGURE 2. Some samples of gray-scale textures taken from the three
considered datasets: (top) ALOT [35], (middle) Brodatz [34], (bottom)
Vistex [33].

o DS2: This dataset is based on textured images from
Vistex dataset [33]. With the same process of subdivision
as in DS1, 40 reference textures have been chosen from
the overall dataset. Each one of them is divided into 16
128 x 128 non-overlapping sub-images creating a dataset
of 640 image.

o DS3: 250 texture classes from Amsterdam Library
of Textures (ALOT) [35]. We selected the gray-scale
version under the CIL1 capture condition. As for
DS1 and DS2, each reference image has been split into
16 non-overlapping sub-images which gives us a set
of 4000 images.

We apply a normalization to the luminance of database
images in order to reduce the bias in our retrieval results:
I; = ((Ij—wi)/oi) xop +um, where o; and w; are the standard
deviation and the mean of /;. o)y and ups are the standard
deviations and the medians of the means of the 16 sub-images
taken from the same reference image.

In this retrieval framework, images are decomposed into
various wavelet coefficient sub-bands at different decom-
position scales using two wavelet transforms: The discrete
wavelet transform (DWT) and the dual-tree complex wavelet
transform (DTCWT). Our choice of the DTCWT has been
driven by two reasons. First, it overcomes two shortcomings
of the DWT: The lack of shift-invariance and the lack of direc-
tional selectivity. These properties are especially relevant for
image analysis purposes. The second reason is that empirical
histograms of the magnitudes of complex wavelet coefficients
may be modeled by means of two-parameter Weibull distri-
bution since the peak of the histogram is slightly shifted to
the right [51]. Although the DWT does not provide complex
wavelet coefficients, we use in each level the horizontal and
vertical coefficient sub-bands to compute the magnitudes and
the angles as in [14] with the following equations:

mag = v H? + V2 (34)

\%
arctan(—) ifH #0
p=17 H . (35)
7 otherwise
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where H and V represent the horizontal and the vertical coef-
ficient sub-bands respectively. mag is the resulting magnitude
matrix. o are the angles of discrete wavelet coefficients.

For each wavelet coefficients sub-band is estimated a
MoWhbl. Finally, the image signature is the set of esti-
mated parameters. That is, each image is characterized by
Ny=Y71,3x Zle Kj parameters, where L is the number
of decomposition scales, J is the number of sub-bands and
K; is the number of mixture components that model the j-th
sub-band.

During the evaluation process, each image in the database
is considered a query image for which we retrieve the most
similar images (Ny; = 16). We measure the retrieval perfor-
mance by averaging the obtained retrieval rates of all queries.
This measure refers to the average retrieval rate (ARR):

N
2 i=1 Ni (36)
Ny x N
where N denotes the number of images in the dataset (e.g.
N = 960 in case of DS1), N, is the number of retrieved
images (Ny = 16 in all our retrieval experiments), and N; is
the number of correctly retrieved samples at the i/ query test.

According to the dataset construction, a sub-image is con-
sidered relevant if it is part of the same original image as the
query sub-image.

The reminder of the experimental results section is orga-
nized as follows. A model validation test is presented in the
next subsection. Then, a dedicated experiment is designed to
highlight the performance of the proposed similarity mea-
surement. Finally, our texture retrieval experiment has been
divided in two parts. In the first part we study the impact of
multi-modal distributions on modeling only the magnitudes
of complex coefficients, whereas the second part concerns the
influence of the information from angles.

ARR =

B. MODEL VALIDATION AND GOODNESS-OF-FIT

In this model validation test, we investigate whether the
magnitude of complex wavelet coefficients can be distributed
according to a MoWbl distribution. As shown in Fig. 3 and
Fig. 4, some normalized histograms of the magnitudes of
the wavelet coefficients are multimodal. These multimodal
shapes are well fitted with a MoWbl in comparison with
Weibull and generalized Gamma distributions which fail at
fitting more than one mode in the histogram shape. Even the
mixture of Gaussian distributions (MoG) is slightly inacurate
compared to the MoWbl.

A goodness-of-fit (GoF) Chi-Square (x2) test has been
applied to different texture images from all datasets in order
to justify the use of the MoWbl distribution model. Table 1
presents the percentages of rejected null-hypothesis of the
Chi-Square GoF tests when using either a Weibull, GI" or
MoWhbl distribution to model the empirical histogram of
magnitudes of the complex wavelet coefficients (at a 5%
significance level). The null-hypothesis percentages drawn
from this quantitative GoF tests confirm that the MoWbl
is suitable to model the magnitudes of complex wavelet
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FIGURE 3. Fitting of the empirical normalized histograms of DTCWT
wavelets coefficients magnitudes at the first decomposition level using
Weibull, generalized Gamma (GI') mixture of Gaussians (MoG) and the
proposed mixture of Weibull (MoWbl) distributions. The corresponding
texture images are taken from the dataset DS2 (VisTex).
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FIGURE 4. Fitting of the empirical normalized histograms of orthogonal
wavelets coefficients magnitudes at the first decomposition level using
Weibull, generalized Gamma (GT'), mixture of Gaussians (MoG) and the
proposed mixture of Weibull (MoWbl) distribution. The corresponding
texture images are taken from the dataset DS1 (Brodatz).

coefficients, especially the coefficients issued from the
DTCWT. These rejection rates go in line with our assumption
about the existence of multimodal magnitude histograms.
The proposed unsupervised expectation-maximization
based algorithm (EM-FJ-MoWbl) for finite mixtures of
Weibull distributions demonstrated good fitting accuracy in a
highly reduced execution time and few refinement iterations
compared to the supervised version (EM-MML-MoWbl).
The BIC criterion [38] has also been considered in this com-
parison. Both EM-BIC-MoWbl and EM-MML-MoWbl have
almost the same results expect some cases where MML pro-
vides the best number of components. This performance eval-
uation has been conducted on some textures from Brodatz and
Vistex datasets. Results of this experiment are summarized
in Table 2. Quantitative measures used in this evaluation are
the Kullback-Leibler divergence (KLD), the Kolmogorov-
Smirnov distance (KS), the execution time (¢), the number
of estimated mixture components (M*) and the number of
EM iterations (ifer). The unsupervised learning algorithm
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TABLE 1. Percentage of rejected null-hypotheses, at a significance level
of 0.05, over the used datasets, for Weibull, GI'D, MoG and MoWbl
distributions that model magnitudes of both DTCWT and DWT coefficients.

z Rejection rate per level (%)
& | Dist. Level 1 Level 2 Level 3
8 DTCWT | DWT [ DTCWT [ DWT | DTCWT | DWT
_. | Weibull 55.52 52.40 45.52 41.04 38.44 29.58
% | GI'D 50.94 4531 47.50 41.72 39.53 33.75
2 MG 69.46 70.23 57.27 59.17 38.92 31.87
MoWbl 41.74 43.39 36.58 39.28 36.73 25.53
o | Weibull 27.40 29.33 29.00 25.16 18.23 9.22
% | GI'D 23.15 25.38 22.75 16.51 14.22 9.97
2 "MoG 55.83 59.22 51.30 50.62 15.70 12.19
MoWbl 18.54 20.78 19.95 12.5 12.58 6.41
w | Weibull 47.16 57.5 41.34 48.52 30.28 22.05
» | GI'D 27.11 35.58 23.93 25.12 14.97 11.77
8 "MoG 51.26 57.12 44.10 49.86 40.15 38.50
MoWbl 24.57 33.17 22.60 22.10 12.55 10.08

EM-FJ-MoWhbl runs 96% faster than the supervised version
EM-MML-MoWhbl and gives approximatively the same fit-
ting accuracy in case of we choose M), = 20 and M,,;,, = 2.
By starting with a large number of components, we guarantee
the robustness of the algorithm against initialization issues.
Local maxima of the likelihood arise when there are too many
components in one region of the space, and few in another.
This problem is avoided by starting with a large number of
components then the algorithm removes the weakest com-
ponents iteratively by proceeding to components annihila-
tion [32]. After some experiments on M., 20 is found to
be the best value to start with.

C. SIMILARITY MEASUREMENT PERFORMANCE

The improvement in runtime speed is huge compared to the
approximation of KLLD. Besides the computational time, CSD
has also improved the retrieval rates. This is demonstrated
by comparing results of the proposed analytic expression
of CSD and the Monte-Carlo approximation of KLD using
various number of random samples. The average retrieval
rates and their corresponding average runtime execution per
query are illustrated in Fig. 5. The average retrieval rate
using the KLD increases as the number of samples used for
Monte-Carlo integration increases. Even when 1¢® random
samples are generated for KLD, the CSD still outperforms
the KLD approximation. Based on our retrieval experiment
on DS1 textures, the CSD based approach reaches 90.89% in
ARR with an average runtime of 0.42sec per query, while it
takes 12sec in average per query for the KLLD based approach
to reach only 89.80% in ARR. Monte-Carlo approximation of
CSD takes longer than KLD especially when the number of
the set of random samples is large. This is due to the second
integral of CSD which requires another set of random samples
to be generated. Experiments were performed in MATLAB
on a workstation with 2.6 GHz processor and 4 Gb of RAM.

D. TEXTURE RETRIEVAL PERFORMANCE
In this experiment, we execute our method with two types
of wavelet transforms, the discrete wavelet transform (DWT)
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TABLE 2. Quantitative assessment of the parameters estimation when using the supervised or the unsupervised learning algorithm for the mixture of
Weibull distributions (MoWbl). Complex coefficient magnitudes of the first level of decomposition using the DTCWT are considered.

Texture EM-BIC-MoWbl EM-MML-MoWbl EM-FJ-MoWbl

KLD KS t iter MF KLD KS t iter MF KLD KS t iter MF
D096 0.0025 | 0.7213 288.4s 11507 3 0.0022 | 0.7240 286s 11504 3 0.0052 | 0.9476 | 11.84s 691 2
D105 0.0039 | 0.0091 291.5s 16432 3 0.0040 | 0.0084 | 290.15s | 16430 3 0.0038 | 0.8238 7.19s 537 2
D106 0.0051 | 0.5113 217.2s 12365 2 0.0043 | 0.5060 | 219.11s | 12367 2 0.0025 | 0.3879 6.57s 409 2
D103 0.0082 0.220 167s 9080 2 0.0088 0.216 166.2s 9077 2 0.0088 0.230 12.88s 945 2
Metal.0002 0.0045 0.60 280.15s | 16155 2 0.0042 | 0.6030 | 278.70s | 16151 2 0.0029 | 0.5083 6.83s 345 2
Tile.0001 0.0050 | 0.5510 196s 12715 3 0.0050 | 0.5300 | 195.14s | 12712 3 0.0055 | 0.8808 12s 1178 3
Terrain.0010 | 0.0052 | 0.3970 98s 16053 3 0.0057 | 0.3964 99.50s 16062 2 0.0051 | 0.7689 3.37s 474 2
‘Wood.0002 0.0041 | 0.7240 61.2s 10073 3 0.0039 | 0.6216 59.40s 10062 2 0.0040 | 0.8035 3.36s 676 2

TABLE 3. Average retrieval rates (%) in the top 16 images retrieved with different methods compared with our proposed method on all datasets by

modeling only magnitudes of coefficients from DWT and DTCWT.

GGD Weibull GI'D MoG MoGG | MoGG MoWhbl
Dataset | Transform | +KLD +KLD +KLD | +CSD | +KLD +CSD +CSD
[9] [24] [50] [45] [12] [17] (proposed)
DS1 DWT 59.30 64.93 67.82 60.47 65.83 67.16 71.11
DTCWT 81.23 83.85 84.51 85.51 86.90 87.77 90.89
DS2 DWT 49.90 79.77 83.35 53.17 58.73 59.41 88.12
DTCWT 76.57 81.24 84.50 84.16 87.55 88.36 91.10
DS3 DWT 23.77 30.36 34.52 26.47 29.50 30.80 36.47
DTCWT 31.81 37.97 43.48 42.67 43.65 44.12 46.17
100 ¢ characterize histograms of magnitudes of the complex
o5 | wavelet coefficients by Kwitt and Uhl [24]. Addition-
100000 1000000 ally, in the context of finite mixture models, two mixture
9 F o000 san fos samgles distributions have been used for comparison too: The mix-
< samj ——F] . . . . .
& 55 1o 100000 ‘ngzg ture of Gaussian distributions (MoG+CSD) with an ana-
Q . .
O sampl samples yuc expression O propose y ampa et al. s
& samples Iyt f CSD d by K t al. [45]
£ 80 {000 the mixture of generalized Gaussian distributions with KLD
B spples (MoGG+KLD) by Allili [12] and the mixture of generalized
75 F . . . . .
S Gaussian distribution with CSD (MoGG+-CSD) that we pre-
2t viously proposed in [17]. We recall that all of these methods
N —6—KLD (Mot -Cano) have been used in the current experiment to characterize
34D (Goseciom histograms of magnitudes of complex wavelet coefficients
(Closed-form)
60 ‘ ‘ ‘ ‘ ‘ from both DTCWT and DWT.
0 20 40 60 80 100

Average run-time (sec)

FIGURE 5. The average retrieval rate vs the averaged run-time per query
(in seconds) using the proposed MoWbl model. Even though KLD reaches
1e% random samples, its curve is below that of CSD, which indicates that
the proposed closed-form expression of CSD outperforms the
approximation of KLD.

with daubchies 4 filter and the dual-tree complex wavelet
transform (DTCWT).

We compared our method to some state-of-the-art statisti-
cal models in texture retrieval, namely: i) GGD+KLD: The
generalized Gaussian distribution (GGD) with KLD proposed
initially by Do and Vetterli [9] to characterize histograms of
real valued coefficients of DWT, ii) GI'D+KLD: The gen-
eralized Gamma distribution (GI'D) with KLD proposed by
Choy and Tong [50] for characterizing histograms of positive
DWT coefficients and also used by de Ves er al. [23], [25]
to characterize histograms of magnitudes of complex wavelet
coefficients. iii) Weibull+KLD: The Weibull distribution
with KLD which has also been successfully used to
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Table 3 shows the obtained results in the three datasets
DS1, DS2 and DS3 respectively using three decomposition
levels of different wavelet transforms. The obtained ARRs,
confirm that Weibull and GI'D are very suitable for mag-
nitude modeling in case of complex wavelet coefficients.
Results obtained with the MoWbl distribution confirm our
assumption about the existence of multi-modal histograms.
There is a significant improvement from a single Weibull
distribution to a mixture of Weibull distribution, which is
around 7% in DS1 and 10% in DS2. The same improvement
is noticed in textured images of ALOT database where the
use of a mixture distribution gives better retrieval results.
Compared to MoGG, the proposed MoWbl model performs
better by increasing the ARR by 3.12%, 2.74% and 2.05%
on the the three datasets DS1, DS2 and DS3 respectively.
This is mainly due to the support of the underline proba-
bility density function which handles positive and negative
values whereas magnitudes of complex coefficients are only
positive. Hence, the MoWbl is highly compatible with the
modeled information. Another considerable reason is the
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FIGURE 6. Average retrieval rate as a function of the number of the top 16 matches using different statistical models for magnitudes compared to
the proposed MoWbl+CSD model on (a) DS1, (b) DS2 and (c) DS3. (a) Performance on DS1. (b) Performance on DS2. (c) Performance on DS3.

fixed shape parameter imposed in the MoGG in order to
obtain an analytic expression of CSD. The obtained low
ARRs in DS3 are due to the high number of textures of the
dataset (4000 textures), which makes difficult to discriminate
between similar texture classes.

Fig. 6 illustrates the average retrieval rates (ARR) in
function of the query size for different model configura-
tions. These curves provide an additional justification of the
improvement in texture retrieval using a mixture of Weibull
distribution (MoWbl) for magnitudes.

E. INFLUENCE OF PHASE INFORMATION

Although our main contribution concerns magnitudes of com-
plex wavelet coefficients, another experiment on influence
of the information from angles has been conducted on the
three datasets. To capture this information, we use von Mises
distribution to characterize histograms of the relative phase
as in [22], [23], and [25]. This joint modeling requires
some changes in the similarity measurement. Consequently,
the new similarity measurement is a convex combination of
the CSD between the MoWbl distributions and KLD between
von Mises distributions as defined by:

L J
DUy 1) =) Y Despl!? | p)

I1=1j=1

L J
+A =) Y Drrlg! 14"y (37)

1=1j=1

where p, and p. represent MoWbl models of the two images
I, and I. respectively for the sub-bands of the 17 level and
subband j = {1, 2, ..., J}. Statistical models of the relative
phase part are represented by g, and g., which are von Mises
distributions. The weight o serves as a balance between the
contribution of magnitudes and relative phase models. For
a = 0, we use only information from magnitudes, whereas
when «o 1 we use only information from angles. The
optimal value of « has been found to be around 0.5 by running
retrieval experiments on the three datasets by varying o from
Oto 1.
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TABLE 4. Impact of the relative phase information modeling on average
retrieval rates (%) in the top 16 images retrieved with various methods
using 3 scales of DTCWT.

Average retrieval rate (%)

Method Features DST DS3 DS3
GGD,+KLD [9] 36 83.12 | 79.71 36.07
GGDy.-VM+KLD [29] 72 83.45 | 81.11 41.00
GGD;,+KLD [9] 36 83.34 | 80.00 39.57
GGD;,,,-WC [29] 72 83.45 | 81.40 | 41.13
Weibull+KLD 36 83.85 | 81.24 39.67
Weibull-VM+KLD 72 83.90 | 82.58 41.48
GI'D+KLD 36 84.51 | 84.50 | 43.48
GI'D-VM+KLD [23] 72 85.20 | 85.28 44.73
MoWbl+CSD (proposed) 54 90.89 | 91.10 | 46.17
MoWbl-VM+CSD (proposed) 90 92.15 | 93.35 47.60

Methods that have been proposed specifically for com-
plex wavelet coefficients modeling are: i) GGD,.-VM and
GGD;,,-WC by Vo and Oraintara [29] which models real
and imaginary parts of a given complex wavelet coefficients
respectively. ii) GI'D-VM by de Ves et al. [23] which uses a
GI'D for magnitudes and a von Mises distribution for relative
phase.

In Table 4, we show the average retrieval rates obtained
when combining statistical models for both magnitudes
and relative phase and the feature size of each method.
As expected, involving information from angles increases
the ARRs. For instance, the MoWbl model benefits from an
improvement of 1.26%, 2.25% and 1.43% when we add von
Mises models in DS1, DS2 and DS3 respectively, but at the
expense of additional 36 features.

V. CONCLUSION AND FUTURE WORK

In this paper, a statistical model for texture retrieval is
proposed to characterize textured images by using the infor-
mation from magnitudes of complex wavelet coefficients.
Each sub-band is modeled with a mixture of Weibull dis-
tributions. The advantage of using a finite mixture model
compared to a single distribution model is that multi-modal
behavior found in many empirical histograms is well captured
with a finite mixture. To estimate the appropriate number of
mixture components, an unsupervised learning algorithm is
used for the MoWbl model based on the minimum message
length criterion. Thanks to the canonical form of the
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exponential family, we came through a closed-form expres-
sion for the CSD between two MoWhbl distributions. Infor-
mation from the phase of complex wavelet coefficients has
also been exploited by characterizing the relative phase with
von Mises distributions. This joint combination of MoWbl
and von Mises for has led to an improvement of the average
retrieval rates. In a future work, we will further explore prop-
erties of the exponential family distributions to promote the
Cauchy-Schwarz divergence to develop closed-form expres-
sions for divergences between finite mixture models for mag-
nitudes and relative phase too.
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