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ABSTRACT In this paper, considering a class of skid-to-turn (STT) missile with impact angle constraint
to intercept the maneuvering target, a three-dimensional integrated guidance and control law based on the
fractional integral terminal sliding mode control (FITSMC) scheme is proposed. Firstly, a three-dimensional
integrated guidance and control model is established for missile-target relative motion and nonlinear missile
dynamics with multiple system uncertainties and unknown disturbances. Secondly, in order to achieve the
desired impact angle in finite-time without singularity, a novel nonsingular FITSMC scheme is employed
to construct the sliding surface, and a modified filter is applied to dynamic surface control design. Also,
an extended state observer is introduced to estimate and compensate the system uncertainties and unknown
disturbances. Then, a robust integrated guidance and control scheme with impact angle constraint is
developed using aforementioned techniques. Furthermore, the finite-time stability of the closed-loop system
is proven based on Lyapunov theory. Finally, the effectiveness and robustness of the proposed integrated
guidance and control algorithm are verified through numerical simulations.

INDEX TERMS Integrated guidance and control, impact angle constraint, fractional integral terminal sliding
mode control, finite-time convergence, dynamic surface control.

I. INTRODUCTION
Due to the increasingly extensive application in modern
warfare, missiles have received more and more attention. The
classical design approach of missile guidance and control
system treats the guidance loop and the control loop sepa-
rately. However, this design method may restrict the perfor-
mance of missile system. To overcome this problem, a new
design idea called integrated guidance and control (IGC) is
proposed for the first time [1]. The IGC method is helpful to
overcome the problem of excessive design iterations and high
costs caused by designing each subsystem separately. As of
now, various control methods have been introduced to design
the IGC law, for instance small-gain method [2], [3], linear
quadratic regulator [4], [5], back-stepping control [6], [7], and
so on. It is noted that the systems for STT missiles including
uncertainties, external disturbances, and physical limitations
of actuators. So the IGC law needs to be robust and effective
enough against the disturbances and uncertainties.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianyong Yao.

Sliding mode control (SMC) has been proved to against
system uncertainties and external disturbances with strong
robustness [8], [9]. Owing to the above advantages, SMC
method has been widely used in IGC design [10], [11].
A sliding mode controller [12] is proposed for STT missiles
to overcome the coupling effect. Based on sliding mode
control approach, an adaptive nonlinear control law directly
gives the fin deflection command [13]. Also in [14], a three-
dimensional (3-D) IGC system based on novel adaptive slid-
ing mode control method is proposed for Unmanned Combat
Aerial Vehicles in the process of autonomous attack occupa-
tion. However, those SMC methods can only guarantee the
asymptotic convergence of IGC system.

In recent years, terminal sliding mode control (TSMC)
has been demonstrated to achieve finite time convergence
and to against uncertainties with better robustness [15], [16].
TSMC method has been successfully applied in IGC
design [17], [18]. However, TSMC has a singularity problem
that may lead to negative results. To overcome the singularity
problem, the nonsingular TSMC method is presented in the
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works [19]–[21]. An adaptive sliding mode fault-tolerant
guidance law [19] is developed using passive fault-tolerant
control method and a nonsingular fast terminal sliding mode
control manifold. In [20], based on the nonsingular terminal
sliding mode, an impact angle constrained guidance law is
designed to intercept the virtual target in finite time. The
nonsingular TSMC and dynamic surface control [21] are
incorporated to design the IGC law. As a new form of
nonsingular TSMC, integral TSMC (ITSMC) is proposed in
recent years. For robust output tracking of relative-degree-one
systems with uncertainty and disturbance, ITSMC is derived
using sign and fractional integral terminal slidingmodes [22],
the singularity problem in traditional TSMC is avoided.
In [23], an adaptive nonsingular ITSMC scheme is proposed,
the better robustness is acquired for trajectory tracking of
autonomous underwater vehicles with dynamic uncertainties
and external disturbances. The application on missile control
verifies the effectiveness of the ITSMC. A fast nonsingular
ITSMC is proposed for interceptors [24], which guarantees
the fast convergence of line-of-sight (LOS) angular rates and
the system robustness for uncertainties. In our work, a novel
IGC law based on nonsingular FITSMC scheme is proposed
for missiles. The nonsingular FITSMC scheme guarantees
the finite-time convergence of the tracking errors.

Due to the strict feedback form of IGC model, back-
stepping technique is an effective approach to design IGC
scheme [6]. However, the back-stepping technique suf-
fers from the problem of ‘‘explosion of terms’’ caused by
the repeated differentiations of the virtual control signals.
To overcome this drawback, the dynamic surface control
(DSC) was adopted to design IGC law in [25]. However,
finite-time convergence is not considered in traditional DSC
method. In this paper, a modified filter is applied to the DSC
design, and the novel DSC method not only addresses the
problem of ‘‘explosion of terms’’ but also achieves finite-time
convergence.

In the IGC system, various uncertainties and disturbance
always bring adverse effects on the performance and robust-
ness of the system. There exists a lot of disturbance estimating
methods, such as disturbance observer [26], extended state
observer (ESO) [27], neural network [28], etc. ESO can less
depend on model information to estimate uncertainty and
disturbance. In this work, ESO [27] is applied to estimate the
uncertainties and disturbances existing in each loop of back-
stepping design.

To improve the lethality of missile’s warhead when
intercepting targets [29], impact angle constraint needs to
be considered, such as anti-ship missile, anti-tank missile,
and anti-ballistic missile. A new guidance law is proposed
[30], which is applicable for head-pursuit engagement with
negative time-varying navigation ratio. Some attempts have
been made on the design of IGC law with impact angle
constraint [31]. To achieve the desired terminal impact angle,
a new IGC law is proposed for a homingmissile [32]. In order
to intercept the ground fixed target and ground maneuvering
target, a new IGC law is investigated for a STT homing

missile with impact angle constraints [33]. Also in [34], a new
robust 3-D IGC method cater to impact angle constraints is
designed for STT hypersonic missile with high uncertainties.
In this paper, the line-of-sight angles are defined as the impact
angles, and the proposed IGC law ensures the missile capture
the target with desired impact angles.

Themain contributions of this paper are summarized as fol-
lows: 1) A novel nonsingular FITSMC scheme is proposed,
which guarantees the finite-time convergence of the tracking
errors and overcomes the singularity problem in conven-
tional TSMC. 2) A modified filter is applied to DSC method
design. Compared with traditional DSC method, the novel
DSCmethod not only addresses the problem of ‘‘explosion of
terms’’, but also achieves finite-time convergence. 3) A novel
IGC law is formulated with nonsingular FITSMC scheme to
achieve the missile with desired impact angles intercepting
maneuvering target.

This paper is organized as follows. In Section II, the math-
ematical model for the 3-D engagement dynamics and mis-
sile dynamics is established. Then, the nonsingular FITSMC
scheme is used to design the 3-D IGC law in Section III.
Numerical simulations are performed to validate the effec-
tiveness of the proposed approach in Section IV. Finally,
conclusion is made in Section V.

II. MODEL DESCRIPTION
In this section, the interception geometry betweenmissile and
target is analyzed. Then, the IGC model is established.

A. PRELIMINARIES AND BACKGROUNDS
Before studying IGC model, coordinate systems are defined
as follows:
Definition 1: A-xyz denotes the inertial coordinate system.

The origin A of the inertial coordinate system is located at the
missile’s launch point; the A-x axis coincides with the inter-
secting line of the ballistic plane and the horizontal plane;
the A-y axis points upwards along the local gravity vector;
the A-z axis direction completes the right-handed coordinate
system.
Definition 2: O-x4y4z4 denotes the line-of-sight coordinate

system. The originO of the LOS coordinate system is located
at the missile’s center of mass; the O-x4 axis coincides with
the line of sight, with the O-x4 axis pointing towards the
target; the O-y4 axis is located within the vertical plane con-
taining the LOS, and perpendicular to the O-x4 axis; the O-z4
axis direction completes the right-handed coordinate system.

As shown in Fig.1 O-x1y1z1 denotes the missile body
coordinate system, O-x3y3z3 denotes the velocity coordinate
system; α and β respectively denote attack angle and sideslip
angle.

B. INTEGRATED GUIDANCE AND CONTROL MODEL
The interception geometry between missile and target in
three-dimensional space is depicted in Fig. 2 where O-x2y2z2
denotes the ballistic coordinate system, M and T denote the
missile and target, respectively.

126858 VOLUME 7, 2019



X. Zhou et al.: Impact Angle Constrained Three-Dimensional IGC Based on FITSMC

FIGURE 1. The relationship between the missile body coordinate system
and the velocity coordinate system.

FIGURE 2. Missile-target interception geometry in three-dimensional
space.

The missile-target relative motion in LOS coordinate sys-
tem can be described as follows [35]
Ṙ=Vtx4−Vm cos θ cos q1 cos(q2−φc)−Vm sin θ sin q1
Rq̇1=Vty4−Vm sin θ cos q1+Vm cos θ sin q1 cos(q2−φc)
−Rq̇2 cos q1=Vtz4−Vm cos θ sin(q2−φc)

(1)

where R denotes missile-target relative distance; q1 and q2
denote elevation angle and azimuth angle of LOS; Vm, θ ,
and φc respectively denote the speed, flight path angle, and
heading angle of missile; Vt4 =

[
Vtx4,Vty4,Vtz4

]T denotes
the target velocity in the LOS coordinate system.

In this paper, the trust force of missile is assumed almost
zero during the terminal phase, and the velocity of missile
is assumed to be nearly invariable in terminal guidance.

The dynamics equations of missile can be expressed
as [31]{

mVmθ̇ = Y cos γv − Z sin γv − mg cos θ
−mVmφ̇c cos θ = Y sin γv + Z cos γv

(2)

where Y and Z respectively denote lift force and side force;
γv denotes velocity deflection angle; m and g respectively
denote mass of missile and acceleration of gravity.

Combining (1) and (2), the differential equations with
respect to angular speed of LOS can be acquired.

q̈1=−q̇22 sin q1 cos q1−
fq
mR

(Y cos γv−Z sin γv−mg cos θ)

−
sin q1 sin(q2 − φc) (Y sin γv + Z cos γv)

mR

−
2Ṙq̇1
R
+
aty4
R
+ dq1

q̈2=2q̇1q̇2 tan q1 +
cos(q2 − φc)
mR cos q1

(Y sin γv + Z cos γv)

−
sin θ sin(q2−φc)

mR cos q1
(Y cos γv−Z sin γv−mg cos θ)

−
2Ṙq̇2
R
−

atz4
R cos q1

+ dq2

(3)

where fq = cos θ cos q1 + sin θ sin q1 cos(q2 − φc); dq1
and dq2 denote the system uncertainties; aty4 and atz4 denote
the acceleration vectors of the target in the LOS coordinate
system.

The attitude dynamic equations of missile are shown as
follow [25]

α̇=−ωx cosα tanβ + ωy sinα tanβ + ωz

−
Y

mVm cosβ
+

g
Vm cosβ

cos θ cos γv

β̇=ωx sinα + ωy cosα +
Z

mVm
+

g
Vm

cos θ sin γv

γ̇v=ωx cosα secβ−ωy sinα secβ−
g
Vm

cos θ cos γv tanβ

+
Y (tan θ sin γv + tanβ)+ Z tan θ cos γv

mVm
(4)

ω̇x =
Jy − Jz
Jx

ωyωz +
Mx

Jx

ω̇y =
Jz − Jx
Jy

ωxωz +
My

Jy

ω̇z =
Jx − Jy
Jz

ωxωy +
Mz

Jz

(5)

where ωx , ωy, and ωz respectively denote body-axis roll, yaw,
and pitch angular rates; Jx , Jy, and Jz respectively denote
roll, yaw, and pitch moments of inertia; Mx , My, and Mz
respectively denote roll, yaw, and pitch moments.

The aerodynamic forces are defined in the velocity coor-
dinate system. The aerodynamic moments are defined in the
missile body coordinate system. The aerodynamic forces and
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aerodynamic moments are described by{
Y = CαY qSα + dY
Z = CβZ qSβ + dZ

(6)
Mx =

(
mαx α + m

β
x β + m

δx
x δx

)
qSL + dMx

My =

(
mβy β + m

δy
y δy

)
qSL + dMy

Mz =

(
mαz α + m

δz
z δz

)
qSL + dMz

(7)

where δx , δy, and δz respectively denote aileron, rudder, and
elevator deflections; CαY and CβZ denote corresponding aero-
dynamic force coefficients; mαx , m

β
x , m

δx
x , m

β
y , m

δy
y , mαz , and

mδzz denote corresponding aerodynamic moment coefficients;
S is reference area; L is reference length; q is dynamic pres-
sure; dY , dZ , dMx , dMy , and dMz are the aerodynamicmodeling
errors.

In order to simplify the IGCmodel, we make the following
assumption
Assumption 1: Assuming that STT missile maintain the

velocity deflection angle γv near zero throughout the engage-
ment. Therefore, we have sin γv ≈ 0, cos γv ≈ 1.

According to the above analysis, the 3-D IGCmodel can be
formulated as the following state-space expression with strict
feedback form

ẋ0 = f0 (x0)+ g0 (x0) x
∗

1 + d0
ẋ1 = f1 (x1)+ g1 (x1) x2 + d1
ẋ2 = f2 (x1, x2)+ g2 (x2)u+ d2

(8)

where the state vectors are shown as x0 = [q̇1 q̇2]T,
x∗1 = [α β]T, x1 = [α β γv]T, x2 =

[
ωx ωy ωz

]T,
u =

[
δx δy δz

]T, d0, d1, and d2 are the system uncer-
tainty terms, including modeling errors, aerodynamic coeffi-
cient uncertainties, and the external disturbances. Moreover,
the nonlinear functions are shown as

f0 (x0)

=

 −
2Ṙ
R
q̇1 −

sin (2q1)
2

q̇22 +
fq
R
g cos θ

−
2Ṙ
R
q̇2 + 2q̇1q̇2 tan q1 +

sin (2θ) sin(q2 − φc)
2R cos q1

g

,
g0 (x0)

=

 −
fq
mR

CαY qS −
sin q1 sin(q2 − φc)

mR
CβZ qS

−
sin θ sin(q2 − φc)

mR cos q1
CαY qS

cos(q2 − φc)
mR cos q1

CβZ qS

,
f1 (x1)

=



−
α

mVm cosβ
CαY qS +

g
Vm cosβ

cos θ cos γv
β

mVm
CβZ qS +

g
Vm

cos θ sin γv

−m cos θ cos γv tanβ + C
β
Z qSβ tan θ cos γv

mVm

+
CαY qSα(tan θ sin γv + tanβ)

mVm
g


,

g1 (x1)

=

− cosα tanβ sinα tanβ 1
sinα cosα 0

cosα secβ − sinα secβ 0

,
f2 (x1, x2)

=



Jy − Jz
Jx

ωzωy +

(
mαx α + m

β
x β
)
qSL

Jx
Jz − Jx
Jy

ωxωz +
mβy βqSL

Jy
Jx − Jy
Jz

ωyωx +
mαz αqSL

Jz


,

g2 (x2)

= qSL



mδxx
Jx

0 0

0
m
δy
y

Jy
0

0 0
mδzz
Jz


.

The following lemmas will be used in the subsequent IGC
law development and analysis.
Lemma 1 (See [36]): Consider the nonlinear system

ẋ = f (x, t), x ∈ Rn. Assuming that V (x) is a continuous
and positive definite function and satisfies the differential
inequality

V̇ (x) ≤ −µV (x)− ηV σ (x) (9)

where µ, η, and 0 < σ < 1 are positive constants.
x (t0) = x0, and t0 is the initial time. Then, the time of
system states arriving at the equilibrium point T satisfies the
following inequality

T ≤
1

µ (1− σ)
ln
µV 1−σ (x0)+ η

η
(10)

That is, the system states are finite-time convergent.
Lemma 2 (See [36]): Suppose a1, a2, . . . , an ∈ R and

0 < κ < 2 are all positive constants, then the following
inequality holds(

a21 + a
2
2 + · · · + a

2
n

)κ
≤
(
aκ1 + a

κ
2 + · · · + a

κ
n
)2 (11)

III. DESIGN OF 3-D INTEGRATED GUIDANCE AND
CONTROL LAW
In this section, we develop a novel IGC law based on the
nonsingular FITSMC and the ESO for the uncertain nonlinear
system (8). And stability analysis is also presented based on
Lyapunov theory.

The design objective is to establish the IGC law such that
the LOS angular rates q̇1 and q̇2 will converge to zero, and
the LOS angles q1 and q2 will converge to the desired LOS
angles q1f and q2f .
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A. NONSINGULAR FITSMC DESIGN
The tracking error states are defined as

e0 = x0 + C
([
q1 q2

]T
−
[
q1f q2f

]T) (12)

ei = xi − xic, i = 1, 2 (13)

where C = diag (C1,C2), C1 and C2 are positive constants.
Three fractional integral terminal sliding surfaces are

defined as

Si = sgnp1i/p2i (ei)+ αi

∫ t

0

(
ei + βisgnp1i/p2i (ei)

)
dt,

i = 0, 1, 2 (14)

where sgnδ (y) =
[
|y1|δ sgn (y1) · · · |yn|δ sgn (yn)

]T
, y ∈ Rn,

δ > 0; αi > 0, βi > 1; p1i and p2i are positive odd constants,
and 1 < p1i/p2i < 2.
Remark 1: The FITSMC scheme aims at steering tracking

error states to small neighborhood of zero in finite-time and
avoiding the singularity problem in the IGC law design.

B. IGC LAW DESIGN BASED ON NONSINGULAR FITSMC
FOR MISSILES
The following assumption will be used for controller design
and performance analysis.
Assumption 2: All the control gain matrices of system (8)

are nonsingular and norm-bounded.
The design of IGC law is elaborated as follows:
Step 1: The time derivative of S0 is given by

Ṡ0=
p10
p20

diag |e0|p10/p20−1 ė0 + α0
(
e0 + β0sgnp10/p20 (e0)

)
=
p10
p20

diag |e0|p10/p20−1
(
f0 (x0)+ g0 (x0) x

∗

1 + d0 + Cx0
)

+α0
(
e0 + β0sgnp10/p20 (e0)

)
(15)

where diag |y|δ = diag
(
|y1|δ , · · · , |yn|δ

)
, y ∈ Rn, δ > 0.

Constructing the following ESO to estimate the distur-
bance d0
ez0 = x0 − z10
ż10 = f0 (z10)+ g0 (z10) x

∗

1 + z20 + h10sgmf (ez0)
+β10 (sgnm1 (ez0)+ sgnm2 (ez0))

ż20 = β20 (sgnn1 (ez0)+ sgnn2 (ez0))+ h20sgmf (ez0)
(16)

where 0.5 < m1 < 1, m2 = 1/m1, n1 = 2m1 − 1, and
n2 = 1/m2 + m2 − 1; β10 > 0 and β20 = β210 are the
gains of ESO, h10 and h20 are positive constants. sgmf (y) =[
sgmf (y1) · · · sgmf (yn)

]T , y ∈ Rn, sgmf (yi) is the sigmoid
function and is of the form

sgmf(yi) =

{
2
(

1
1+e−τyi

−
1
2

)
, |yi| ≤ χ

sgn (yi) , |yi| > χ,

τ and χ are positive constants.

One gets the virtual control law x∗1d as

x∗1d=−g0 (x0)
−1

w0S0+f0 (x0)+Cx0+z20
+k0sgnρ (S0)+

p20
p10

diag |e0|2−p10/p20

×α0
(
I+β0diag |e0|p10/p20−1

)
sgn (e0)


(17)

where 0 < ρ < 1, w0 and k0 are positive constants.
In order to address the problem of ‘‘explosion of terms’’

and achieve finite-time convergence, a modified filter is
designed to handle the virtual control law. x∗1d passes through
the following modified filter to yield the virtual control
law x∗1c. Define ρ

∗

1 = x∗1c − x∗1d , and this modified filter is
designed as

τ1ẋ∗1c+x
∗

1c=x
∗

1d − r1sgn
ρ
(
ρ∗1
)
, x∗1c(0)=x

∗

1d (0) (18)

where τ1 and r1 are positive constants.
For STT missile, the velocity deflection angle γv should be

maintained near zero throughout the engagement. So we have

x1d =
[
x∗T1d 0

]T
, x1c =

[
x∗T1c 0

]T (19)

Step 2: The time derivative of S1 is given by

Ṡ1 =
p11
p21

diag |e1|p11/p21−1 ė1 + α1
(
e1 + β1sgnp11/p21 (e1)

)
=

p11
p21

diag |e1|p11/p21−1
(
f1 (x1)+ g1 (x1) x2 + d1 − ẋ1c

)
+α1

(
e1 + β1sgnp11/p21 (e1)

)
(20)

Constructing the following ESO to estimate the distur-
bance d1
ez1 = x1 − z11
ż11 = f1 (z11)+ g1 (z11) x2 + h11sgmf (ez1)+ z21
+β11 (sgnm1 (ez1)+ sgnm2 (ez1))

ż21 = β21 (sgnn1 (ez1)+ sgnn2 (ez1))+ h21sgmf (ez1)
(21)

where β11 > 0 and β21 = β211 are the gains of ESO,
h11 and h21 are positive constants.
One gets the virtual control law x2d as

x2d=−g1 (x1)
−1

w1S1+f1 (x1)−ẋ1c + z21
+k1sgnρ (S1)+

p21
p11

diag |e1|2−p11/p21

×α1
(
I+β1diag |e1|p11/p21−1

)
sgn (e1)


(22)

where w1 and k1 are positive constants.
Let x2d passes through the following modified filter to

yield the virtual control law x2c. Define ρ2 = x2c − x2d , and
the modified filter is designed as

τ2ẋ2c+x2c=x2d−r2sgnρ
(
ρ2
)
, x2c(0)=x2d (0) (23)

where τ2 and r2 are positive constants.
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Step 3: The time derivative of S2 is given by

Ṡ2=
p12
p22

diag |e2|p12/p22−1 ė2 + α2
(
e2 + β2sgnp12/p22 (e2)

)
=
p12
p22

diag |e2|p12/p22−1
(
f2 (x1, x2)+g2 (x2)u+d2−ẋ2c

)
+α2

(
e2 + β2sgnp12/p22 (e2)

)
(24)

Constructing the following ESO to estimate the distur-
bance d2
ez2 = x2 − z12
ż12 = f2 (z11, z12)+ g2 (z12)u+ h12sgmf (ez2)+ z22

+β12 (sgnm1 (ez2)+ sgnm2 (ez2))
ż22 = β22 (sgnn1 (ez2)+ sgnn2 (ez2))+ h22sgmf (ez2)

(25)

where β12 > 0 and β22 = β212 are the gains of ESO, h12 and
h22are positive constants.
Then, a novel IGC law u for missile intercepting maneu-

vering target with impact angle constraint is defined as

u = −g2 (x2)
−1

w2S2 + f2 (x1, x2)− ẋ2c + z22
+k2sgnρ (S2)+

p22
p12

diag |e2|2−p12/p22

×α2
(
I+ β2diag |e2|p12/p22−1

)
sgn (e2)


(26)

where w2 and k2 are positive constants.

C. STABILITY ANALYSIS OF IGC SYSTEM
Before investigation on stability analysis, the following
assumption is introduced.
Assumption 3: The estimation errors of d0, d1, and d2

are norm-bounded. Ei, i = 0, 1, 2 are selected to satisfy
‖z2i − di‖ ≤ Ei.
Theorem 1: Consider the IGC system (8) under

Assumption 2 and 3, the IGC law u is designed as (26). If the
sliding surfaces are designed as (14), and the errors of filter
are defined as (27), then the sliding surface variables and the
errors of filter will converge to the regions as (48)-(50) in
finite time.

Proof: For convenience, a function f (·) will be denoted
as f in the subsequent process.
Define the errors of low-pass filters as

ρi = xic − xid , i = 1, 2 (27)

From (18) and (19), it can be obtained that

τ1ẋ1c+x1c=x1d−r1sgnρ
(
ρ1
)
, x1c(0)=x1d (0) (28)

Derivative of ρi can be derived as

ρ̇i = ẋic − ẋid
= −τ−1i ρi − τ

−1
i risgn

(
ρi
)
− ẋid (29)

As pointed out in [31], the derivatives of xid exist and are
norm bounded.

Define the following Lyapunov function candidate as

Vρi =
1
2
ρTi ρi (30)

Taking the time derivative of Vρi and using Lemma 2 give

V̇ρi = ρ
T
i ρ̇i = ρ

T
i

(
−τ−1i ρi − τ

−1
i risgnρ

(
ρi
)
− ẋid

)
= −τ−1i ρTi ρi − τ

−1
i riρTi sgn

ρ
(
ρi
)
− ρTi ẋid

≤ −τ−1i ρTi ρi − τ
−1
i ri

∥∥ρi∥∥ρ+1 + ∥∥ρi∥∥ ‖ẋid‖ (31)

Define the state tracking errors as (14), differentiating them
with respect to time along (17), (22), and (28) yield

Ṡ0 =
p10
p20

diag |e0|p10/p20−1
(
f0 + Cx0 + g0x

∗

1 + d0
)

+α0
(
e0 + β0sgnp10/p20 (e0)

)
=

p10
p20

diag |e0|p10/p20−1
[
−w0S0 − z20 − k0sgnρ (S0)

+ d0 + g0
(
ρ∗1 + e

∗

1
)]

(32)

where e∗1 = x∗1 − x
∗

1c.

Ṡ1=
p11
p21

diag |e1|p11/p21−1
(
f1 + g1x2 + d1 − ẋ1c

)
+α1

(
e1 + β1sgnp11/p21 (e1)

)
=
p11
p21

diag |e1|p11/p21−1
[
−w1S1 − z21 − k1sgnρ (S1)

+ d1 + g1
(
ρ2 + e2

)]
(33)

Ṡ2=
p12
p22

diag |e2|p12/p22−1
(
f2 + g2u+ d2 − ẋ2c

)
+α2

(
e2 + β2sgnp12/p22 (e2)

)
=
p12
p22

diag |e2|p12/p22−1
[
−w2S2−z22−k2sgnρ (S2)+d2

]
(34)

Choose the Lyapunov function candidate as

VSi =
1
2
STi Si (35)

Evaluating the time derivative of VSi and using Lemma 2 give

V̇S0 = ST0 Ṡ0

=
p10
p20

ST0 diag |e0|
p10/p20−1 [−w0S0 − (z20 − d0)

− k0sgnρ (S0)+ g0
(
ρ∗1 + e

∗

1
)]

≤
p10
p20

[
−w0b0ST0 S0 + ‖S0‖ ‖z20 − d0‖

×

∥∥∥diag |e0|p10/p20−1∥∥∥ − k0b0 ‖S0‖ρ+1 + 1
2
ρT1 ρ1

+‖S0‖
∥∥g0∥∥ ‖e1‖ ∥∥∥diag |e0|p10/p20−1∥∥∥

+
1
2
ST0 diag |e0|

p10/p20−1 g0g
T
0

×

(
diag |e0|p10/p20−1

)T
S0

]
≤

p10
p20

[
−

(
w0b0 −

1
2
c20
∥∥g0∥∥2)ST0 S0 − k0b0 ‖S0‖ρ+1

+ c0
(
E0 +

∥∥g0∥∥ ‖e1‖) ‖S0‖ + 1
2
ρT1 ρ1

]
(36)

126862 VOLUME 7, 2019



X. Zhou et al.: Impact Angle Constrained Three-Dimensional IGC Based on FITSMC

where b0 = min
{
|e01|p10/p20−1 , |e02|p10/p20−1

}
,

c0 =
∥∥∥diag |e0|p10/p20−1∥∥∥ .

V̇S1 = ST1 Ṡ1

=
p11
p21

ST1 diag |e1|
p11/p21−1 [−w1S1 − (z21 − d1)

− k1sgnρ (S1)+ g1
(
ρ2 + e2

)]
≤

p11
p21

[
−w1b1ST1 S1 + ‖S1‖

∥∥g1∥∥ ‖e2‖
×

∥∥∥diag |e1|p11/p21−1∥∥∥− k1b1 ‖S1‖ρ+1 + 1
2
ρT2 ρ2

+‖S1‖ ‖z21 − d1‖
∥∥∥diag |e1|p11/p21−1∥∥∥

+
1
2
ST1 diag |e1|

p11/p21−1 g1g
T
1

×

(
diag |e1|p11/p21−1

)T
S1

]
≤

p11
p21

[
−

(
w1b1−

1
2
c21
∥∥g1∥∥2)ST1 S1−k1b1 ‖S1‖ρ+1

+ c1
(
E1 +

∥∥g1∥∥ ‖e2‖) ‖S1‖ + 1
2
ρT2 ρ2

]
(37)

where b1=min
{
|e11|p11/p21−1, |e12|p11/p21−1, |e13|p11/p21−1

}
,

c1 =
∥∥diag |e1|p11/p21−1∥∥.

V̇S2 = ST2 Ṡ2 =
p12
p22

ST2 diag |e2|
p12/p22−1 [−w2S2

− (z22 − d2)− k2sgnρ (S2)
]

≤
p12
p22

[
−w2b2ST2 S2 − k2b2 ‖S2‖

ρ+1

+ ‖S2‖ ‖z22 − d2‖
∥∥∥diag |e2|p12/p22−1∥∥∥]

≤
p12
p22

[
−w2b2ST2 S2 − k2b2 ‖S2‖

ρ+1
+ c2E2 ‖S2‖

]
(38)

where b2=min
{
|e21|p12/p22−1, |e22|p12/p22−1, |e23|p12/p22−1

}
,

c2 =
∥∥diag |e2|p12/p22−1∥∥.

Consider the following Lyapunov function candidate as

V =
2∑
i=1

Vρi +
2∑
i=0

VSi (39)

Differentiating V with respect to time along (31), (36), (37),
and (38) give

V̇ = V̇ρ1 + V̇ρ2 + V̇S0 + V̇S1 + V̇S2
≤ −τ−11 ρT1 ρ1−τ

−1
1 r1

∥∥ρ1∥∥ρ+1+∥∥ρ1∥∥ ‖ẋ1d‖−τ−12 ρT2 ρ2

− τ−12 r2
∥∥ρ2∥∥ρ+1 + ∥∥ρ2∥∥ ‖ẋ2d‖

+
p10
p20

[
−

(
w0b0−

1
2
c20
∥∥g0∥∥2)ST0 S0−k0b0 ‖S0‖ρ+1

+ c0
(
E0 +

∥∥g0∥∥ ‖e1‖) ‖S0‖ + 1
2
ρT1 ρ1

]
+
p11
p21

[
−

(
w1b1−

1
2
c21
∥∥g1∥∥2)ST1 S1−k1b1 ‖S1‖ρ+1

+ c1
(
E1 +

∥∥g1∥∥ ‖e2‖) ‖S1‖ + 1
2
ρT2 ρ2

]
+
p12
p22

[
−w2b2ST2 S2 − k2b2 ‖S2‖

ρ+1
+ c2E2 ‖S2‖

]
≤

2∑
i=1

[
−

(
τ−1i −

1
2
p1i−1
p2i−1

)
ρTi ρi − τ

−1
i ri

∥∥ρi∥∥ρ+1
+
∥∥ρi∥∥ ‖ẋid‖]+ 1∑

i=0

p1i
p2i

[
−

(
wibi −

1
2
c2i
∥∥gi∥∥2)

STi Si − kibi ‖Si‖
ρ+1
+ ci

(
Ei +

∥∥gi∥∥ ‖ei+1‖) ‖Si‖]
+
p12
p22

[
−w2b2ST2 S2 − k2b2 ‖S2‖

ρ+1
+ c2E2 ‖S2‖

]
(40)

which can be further changed into the following two forms

V̇ ≤
2∑
i=1

[
−

(
τ−1i −

1
2
p1i−1
p2i−1

−
‖ẋid‖∥∥ρi∥∥

)
ρTi ρi

−τ−1i ri
∥∥ρi∥∥ρ+1]

+

1∑
i=0

p1i
p2i

[
−

(
wibi −

1
2
c2i
∥∥gi∥∥2

−
Ei +

∥∥gi∥∥ ‖ei+1‖
‖Si‖

ci

)
STi Si − kibi ‖Si‖ρ+1

]
+
p12
p22

[
−

(
w2b2 −

c2E2
‖S2‖

)
ST2 S2 − k2b2 ‖S2‖

ρ+1
]
(41)

And

V̇ ≤
2∑
i=1

[
−

(
τ−1i −

1
2
p1i−1
p2i−1

)
ρTi ρi

−

(
τ−1i ri −

‖ẋid‖∥∥ρi∥∥ρ
)∥∥ρi∥∥ρ+1

]

+

1∑
i=0

p1i
p2i

[
−

(
wibi −

1
2
c2i
∥∥gi∥∥2)STi Si

−

(
kibi −

Ei +
∥∥gi∥∥ ‖ei+1‖
‖Si‖ρ

ci

)
‖Si‖ρ+1

]
+
p12
p22

[
−w2b2ST2 S2 −

(
k2b2 −

c2E2
‖S2‖ρ

)
‖S2‖ρ+1

]
(42)

For (41), when

λ1i = τ
−1
i −

1
2
p1i−1
p2i−1

−
‖ẋid‖∥∥ρi∥∥ > 0, i = 1, 2

λ2i = wibi −
1
2
c2i
∥∥gi∥∥2 − Ei +

∥∥gi∥∥ ‖ei+1‖
‖Si‖

ci > 0,

i = 0, 1

λ22 = w2b2 −
c2E2
‖S2‖

> 0

(43)
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Then, one can obtain

V̇ ≤
2∑
i=1

[
−λ1iρ

T
i ρi − τ

−1
i ri

∥∥ρi∥∥ρ+1]
+

2∑
i=0

p1i
p2i

[
−λ2iSTi Si − kibi ‖Si‖

ρ+1
]

≤ −

2∑
i=1

2λ1iVρi −
2∑
i=1

2
ρ+1
2 τ−1i riV

ρ+1
2

ρi

−

2∑
i=0

2λ2i
p1i
p2i

VSi −
2∑
i=0

2
ρ+1
2 kibi

p1i
p2i

V
ρ+1
2

Si

≤ −ϕ1V − ϕ2V
ρ+1
2 (44)

where ϕ1 = 2min
{
λ11, λ12,

p10
p20
λ20,

p11
p21
λ21,

p12
p22
λ22

}
, ϕ2 =

2
ρ+1
2 min

{
τ−11 r1, τ

−1
2 r2, k0b0

p10
p20
, k1b1

p11
p21
, k2b2

p12
p22

}
.

According to Lemma 1, these regions

∥∥ρi∥∥ ≤ ‖ẋid‖

τ−1i −
1
2
p1i−1
p2i−1

, i = 1, 2

‖Si‖ ≤
Ei +

∥∥gi∥∥ ‖ei+1‖
wibi − 1

2c
2
i

∥∥gi∥∥2 ci, i = 0, 1

‖S2‖ ≤
c2E2
w2b2

(45)

can be reached in finite time. Similarly, for (42), when

τ−1i −
1
2
p1i−1
p2i−1

> 0, i = 1, 2

τ−1i ri −
‖ẋid‖∥∥ρi∥∥ρ > 0, i = 1, 2

wibi −
1
2
c2i
∥∥gi∥∥2 > 0, i = 0, 1

kibi −
Ei +

∥∥gi∥∥ ‖ei+1‖
‖Si‖ρ

ci > 0, i = 0, 1

k2b2 −
c2E2
‖S2‖ρ

> 0

(46)

These regions

∥∥ρi∥∥ ≤ (‖ẋid‖ τiri

) 1
ρ

, i = 1, 2

‖Si‖ ≤

(
Ei +

∥∥gi∥∥ ‖ei+1‖
kibi

ci

) 1
ρ

, i = 0, 1

‖S2‖ ≤
(
c2E2
k2b2

) 1
ρ

(47)

can also be reached in finite time. Synthesizing (45) and (47),
it can be concluded that the states of the closed-loop system
will converge to these regions

�1i =

{
ρi|
∥∥ρi∥∥ ≤ min

{
‖ẋid‖

τ−1i −
1
2
p1i−1
p2i−1

,

(
‖ẋid‖ τi
ri

) 1
ρ

}
,

i = 1, 2

}
(48)

�2i =


Si| ‖Si‖ ≤ min

{
Ei +

∥∥gi∥∥ ‖ei+1‖
wibi − 1

2c
2
i

∥∥gi∥∥2 ci,(
Ei+

∥∥gi∥∥ ‖ei+1‖
kibi

ci

) 1
ρ

, i = 0, 1


(49)

�22 =

{
S2| ‖S2‖ ≤ min

{
c2E2
w2b2

,

(
c2E2
k2b2

) 1
ρ

}}
(50)

in finite time. This completes the proof.

IV. NUMERICAL SIMULATIONS
In this section, numerical simulations are implemented for a
variety of scenarios to illustrate the effectiveness and perfor-
mance of the proposed IGC law.

In order to verify the superiority and robustness of the
proposed IGC law, two IGC design methods respectively
based on block back-stepping sliding mode and ESO in [11]

and the ITSMC in [37] are used for performance compar-
ison. For simplicity, we denote the IGC law in (26) and two
contrast methods as novel IGC law (NIGC), SMC-IGC law,
and ITSMC-IGC law respectively.

Define xm =
[
xm ym zm

]T to be the position vector of
missile in the inertial coordinate system, and then the center-
of-mass motion of missile is described by

ẋm = Vm cos θ cosφc
ẏm = Vm sin θ
żm = −Vm cos θ sinφc

(51)

The states R, q1, and q2 are calculated by

R =
√
(xt − xm)2 + (yt − ym)2 + (zt − zm)2

q1 = arctan

(
yt − ym√

(xt − xm)2 + (zt − zm)2

)
q2 = − arctan

(
zt − zm
xt − xm

) (52)

where xt =
[
xt yt zt

]T is the position of target.
In the inertial frame of reference, the initial position

coordinate vector of missile is set asxm(0) = 3000m,
ym(0) = 10000m, andzm(0) = 1000m, the initial posi-
tion coordinate vector of target is set as xt (0) = 7000m,
yt (0) = 0m, and zt (0) = 500m. The nominal parameters of
missile body and the nominal aerodynamic coefficients are
shown in Table 1.

By missile parameter perturbations into consideration,
the nominal parameters of missile body in Table 1 multiply
1+ 0.2 sin (0.2π t) to generate the actual missile parameters.
It is assumed that the blind area of the seeker is 30 meters,

the control command remains unchanged when R is smaller
than 30 meters. Moreover, the control surface deflections are
constrained with ±35deg.
The speed, the flight path and heading angles of missile

at initial time are respectively set as Vm = 1500 m/s,
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TABLE 1. Missile-related parameters.

TABLE 2. Initial conditions and controller parameters.

θ (0) = −10 deg, and φc(0) = 0 deg. The initial conditions
and controller parameters are listed in Table 2.

In order to verify the performance of the IGC law, simu-
lation experiments are constructed under the following three
cases.
Case 1: In this subsection, a STT missile is considered

during its terminal guidance phase to intercept a ground
maneuvering target. For the target, the initial velocity is set
as Vt (0) = 30 m/s, the flight path and heading angles at
initial time are set as θt (0) = 0 deg and φct (0) = 7 deg.
The normal and tangential accelerations of the target are set
as an = 5 ∗ sin (0.2π t)m/s2 and at = 5 ∗ sin (0.2π t)m/s2.
The desired impact angles are respectively set as q1f = −80
deg and q2f = 10 deg. The simulation results are shown
in Figs. 3-8.

FIGURE 3. Three-dimensional trajectories of missile and target in case 1.

FIGURE 4. Curves of the relative distance between missile and target in
case 1.

FIGURE 5. Curves of the LOS angles q1 and q2 in case 1.

It can be seen from both Fig. 3 and Fig. 4 that under the
three IGC laws, the missiles successfully intercept the ground
maneuvering targets. In Fig. 5, the LOS angles under NIGC
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FIGURE 6. Curves of the angles α, β, and γv in case 1.

FIGURE 7. Curves of the angular rates ωx , ωy , and ωz in case 1.

FIGURE 8. Curves of the fin deflections δx , δy , and δz in case 1.

law converge to the desire LOS angles in the end, whereas the
missiles under SMC-IGC law and ITSMC-IGC law present
large LOS angle tracking errors. And, the convergence rate
for NIGC law is faster than that for SMC-IGC law and
ITSMC-IGC law. Moreover, the miss distances and terminal

LOS angles under different IGC laws are list in Table 3,
where q1t and q2t denote the terminal LOS angles. It can be
found from Table 3 that the miss distance under NIGC law
is smaller than that under SMC-IGC law and ITSMC-IGC
law, which implies interceptive accuracy under NIGC law is
better. As revealed from Fig. 6 and Fig. 7, attack angle α,
sideslip angle β, velocity deflection angle γv, and three rota-
tional angular velocities converge to small neighborhoods of
zero under the three IGC laws. However, the convergence
rate for NIGC law is faster than that for SMC-IGC law and
ITSMC-IGC law. From Fig. 8, it can be observed that actuator
deflections are smooth under NIGC law, however, there exist
larger amplitude in the starting stage under SMC-IGC law
and ITSMC-IGC law.

TABLE 3. Miss distances and terminal Los Angles of case 1.

Case 2: In this subsection, consider an aerial target execut-
ing sinusoidal maneuver. For the target, the velocity is set as
Vt (0) = 300 m/s, and the flight path and heading angles at
initial time are set as θt (0) = 80 deg and φct (0) = 10 deg.
The normal and tangential accelerations of the target are set
as an = 55 ∗ sin (0.5t)m/s2 and at = 55 ∗ sin (0.5t)m/s2.
The desired impact angles are respectively set as q1f = −80
deg and q2f = 10 deg. The simulation results are shown
in Figs. 9-14.

FIGURE 9. Three-dimensional trajectories of missile and target in case 2.

We can see from Fig. 9, although the trajectory may vary
with each other, all three IGC laws could meet the objective
of intercepting the target. As shown in Fig. 10, it can be
noted that the interceptions are achieved under both laws.
It is clear from Fig. 11 that the convergence rate for NIGC
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FIGURE 10. Curves of the relative distance between missile and target in
case 2.

FIGURE 11. Curves of the LOS angles q1 and q2 in case 2.

FIGURE 12. Curves of the angles α, β, and γv in case 2.

law is faster than that for SMC-IGC law and ITSMC-IGC
law. The miss distances and terminal LOS angles on this
occasion are listed in Table 4. The NIGC law satisfies the
impact angle constraints within the impact angle errors than

FIGURE 13. Curves of the angular rates ωx , ωy , and ωz in case 2.

FIGURE 14. Curves of the fin deflections δx , δy , and δz in case 2.

TABLE 4. Miss distances and terminal Los Angles of case 2.

0.0031deg and 0.068deg respectively, and the miss distance
less than 0.0667m. The NIGC law has smaller angle tracking
errors and miss distance as compared with SMC-IGC law
and ITSMC-IGC law. As revealed from Fig. 12, Fig. 13,
and Fig. 14, the response curves of attack angle α, sideslip
angleβ, velocity deflection angle γv, rotational angular veloc-
ities, and fin deflections under NIGC law are smoother than
their counterparts under SMC-IGC law and ITSMC-IGC law.
Therefore, the NIGC law is more desired in terms of practical
applications.
Case 3: In this subsection, similar case 1, a missile inter-

cepts a ground maneuvering target. 200 times of Monte Carlo
simulation experiments are conducted with different initial
fight conditions show in Table 5 to demonstrate the robustness
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TABLE 5. Monte carlo simulation parameters.

FIGURE 15. Three-dimensional trajectories of missile in Monte Carlo case.

FIGURE 16. Curves of the relative distance between missile and target in
Monte Carlo case.

of the proposed IGC law, whereUnif means a uniform distri-
bution. The initial position, initial fight path angle, and initial
heading angle of the missile are set to a uniform distribution.
The desired impact angles are set as q1f = −80 deg and
q2f = 10 deg. The trajectories, the miss distances, and the
LOS angles are concerned in Figs. 15-18.

As shown in Fig. 15 and Fig.16, perfect interception of
target with small miss distance is achieved in each scenario.
In Fig. 17, the LOS angles converge to the desired impact
angles. By means of data analysis with respect to Fig. 18,
the mean and standard deviation of miss distance are found
as 0.3702 meters and 0.2242 meters respectively. We can
see from these figures, the proposed IGC law achieves sat-
isfactory performance under different initial fight conditions,

FIGURE 17. Curves of the LOS angles between missile and target in
Monte Carlo case.

FIGURE 18. The miss distance in Monte Carlo case.

which demonstrates the robustness of the proposed IGC law.
In addition, the uncertainties of themissile-related parameters
have been fully considered in the Monte Carlo simulation
experiments, hence it is reasonable to say that the proposed
IGC law is robust with respect to the inevitable uncertainties
existing in the missile dynamics.

V. CONCLUSION
In this paper, a 3-D IGC law is proposed for STT missiles
considering impact angle constraint. The novel nonsingular
fractional integral terminal sliding mode control scheme is
presented to guarantee the system states converge to small
neighborhood of zero in finite-time. The IGC law based
on the novel nonsingular IFTSMC scheme is constructed
for intercepting maneuvering target with the desired impact
angles. Finite-time stability analysis is presented in the frame-
work of Lyapunov function approach. The effectiveness of
the proposed IGC law is demonstrated by the simulation
results with some comparisons. Future work will consider the
actuator failures in the proposed IGC scheme, and will put the
proposed IGC scheme into practical application.
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