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ABSTRACT A cable-driven manipulator (CDM) has low stiffness and its stiffness identification is a critical
issue. This paper focuses on stiffness modeling and identification for a cable-driven spherical joint module
(CSJM), whose trajectory is a curve on SO(3). In order to obtain the stiffness of the CSJM, it requires to
evaluate the variation of the load against the displacement. However, since the vectors of displacement and
load at different poses of the CSJM belong to different vector spaces of SO(3), the algebraic operations
between them can not be performed directly. Hence, a Riemannian metric and the Levi-Civita connection
are defined on SO(3), so that vectors can be parallel transported from one vector space to another along
the trajectory curve. Consequently, the covariant derivative of the load with respect to the displacement is
defined on SO(3) to establish the stiffness model. The resultant stiffness matrix is proved to be symmetric for
a conservative system. In this way, the stiffness model with the system parameters of the CSJM is derived
based on the kinetostatic analysis. Due to a part of the system parameters can not be accurately known,
a feasible stiffness identification method is proposed based on the approximation of the covariant derivative,
which merely require to measure the poses and loads of the CSJM. The experiment on the actual testbed
validates the practical appeals of the proposed stiffness model and associate identification method.

INDEX TERMS Cable-driven spherical joint module, stiffness modeling, stiffness identification,
force/torque sensor, Riemannian manifold.

I. INTRODUCTION
Cable-drivenmanipulators (CDMs) utilize lightweight cables
to drive the mechanism, in which all the cable driving motors
are mounted on the base [1]–[4]. As CDMs have the advan-
tages of large workspace, high payload-to-weight ratio, low
moving mass and variable stiffness, they have been applied
widely in inspection and repair [5]–[7], moving and lifting
payloads [8]–[10], underwater vehicles [11] and rehabili-
tation robots [12]–[15]. CDMs are low-stiffness systems,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yingxiang Liu .

while their stiffness can be adjusted by controlling the cable
tensions due to redundant actuation. Hence, stiffness model-
ing [16] and identification [17] are important issues for accu-
rate positioning and stiffness control for CDMs, which have
attracted dramatically attentions in recent years [18]. In this
paper, we focus on the static stiffness modeling and identi-
fication for a cable-driven spherical joint module (CSJM),
which has been designed in our prior work [19].

In the recent decades, several stiffness modeling methods
have been proposed for robot manipulators. In [20], a stiff-
ness formula for serial manipulators is proposed firstly. This
formula is further extended to parallel manipulators and the
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stiffness of the actuators is considered [21]. However, this
formula is merely valid at the unloaded equilibrium con-
figuration [22]. In [23], a stiffness model for a conserva-
tive mechanical system is studied and it is shown that the
stiffness matrix becomes asymmetric when the system is
subjected to external loads. Considering the change of the
mechanism geometry under the presence of external load,
the Conservative Congruence Transformation (CCT) is devel-
oped in [24], [25], which reveals the relationship of stiffness
matrices between joint space and Cartesian space. Based on
the CCT approach, the stiffness model of a CDM is presented
in [26]. However, most of such stiffness models are studied
in Euclidean space. Remarkably, the trajectory of the CSJM
is a curve on SO(3), which is a differential manifold [27].
The neighborhood of a point on a differential manifold can
be approximated by its tangent space at this point, which is
Euclidean [28]. Such approximation has been widely adopted
to derive the stiffness model of a rigid manipulator with
high stiffness. However, for a low stiffness system such as
the CSJM, the displacement will be large under the load,
which makes the former approach inaccurate. In [29], a stiff-
ness formulation for the conservative mechanical system is
derived on SE(3) from geometric perspective. It shows that
the stiffness matrix is dependent on the affine connection
defined on SE(3). In [30], a stiffness model for a wrist joint
is derived on SO(3) with a symmetric connection, as it yields
a symmetric stiffness matrix for a conservative mechanical
system. However, in this approach, the choice of a symmetric
connection for a symmetric stiffness matrix is not unique.
Furthermore, the symmetry of the stiffness matrix for a con-
servative mechanical system has not been strictly proved.

Stiffness identification is a complex task for robotic sys-
tems since only a subset of system state variables can be
measured and the linear regressions can not be employed
directly [31]. In the last decades, the stiffness identifica-
tion of rigid robots has been widely investigated, and sev-
eral approaches have been proposed [32]–[34]. The common
approach is based on the inverse dynamic model and the least
squares estimation to identify inertial parameters of robot
manipulators [35]–[38]. Another approach is called closed-
loop output error method which needs to simulate the robot
controllers [39], [40]. Such an approach requires the internal
data of the robots, such as motor torques or controller outputs,
which are hard to be measured. In order to overcome this
problem, an external measurement approach is considered,
in which a force/torque sensor is fixed on the end-effector
of the manipulator to measure the loads and a high precision
Cartesian position sensor is employed to measure the asso-
ciate end-effector’s pose [33], [41]. In this way, all factors
related to the pose variation of the end-effector, such as defor-
mations on cables, links, joints, and cable driving motors,
are reflected in the coming stiffness model. However, a sys-
tematic stiffness identification approach on a non-Euclidean
space is not well studied, which is applicable for the case
when a loaded end-effector encounters large variation of its
pose.

In this paper, we focus on the development of a more accu-
rate stiffness model and its associate identification method
for a CSJM. The motion trajectory of the CSJM is a curve
on SO(3), which is a non-Euclidean space. As a low stiffness
mechanical system, the CSJM encounters large variation of
its pose under the load. However, the vectors of displacement
and load at different poses of the CSJM belong to differ-
ent vector spaces, which are tangent or cotangent spaces of
SO(3), so we can not perform algebraic operations between
them directly to establish the stiffness model. To solve this
problem, a Riemannian metric is defined on SO(3) to evaluate
the lengths of vectors and the angles between vectors, and
an affine connection called Levi-Civita connection is intro-
duced to bridge different vector spaces of SO(3). In this way,
the stiffness of the CSJM is derived from the covariant deriva-
tive of the load with respect to the displacement. In addition,
it is proved that the derived stiffness matrix is symmetric
for a conservative system. In order to reveal the relationship
between the stiffness and the system parameters of the CSJM,
the stiffness model is developed based on the kinetostatic
analysis of the CSJM. It shows that the stiffness of the
CSJM is determined by the pose of the module, the cable
tensions, the stiffness of the cables and associate driving
units. Since the later two sets of parameters are difficult to
measure accurately, a stiffness identificationmethod based on
the approximation of this covariant derivative is developed,
which only requires to measure sets of loads and associate
displacements of the CSJM. The experiment on the actual
testbed validates the effectiveness of the proposed method.

FIGURE 1. CAD model of CSJM.

II. STIFFNESS MODEL OF CSJM
As shown in Figure 1, the CSJM is made up of a moving-
platform, a base, a passive spherical joint, cables and cable
driving units. In this design, six cables are employed to
maximize the workspace [42]. There are six small holes
on both of the moving-platform and the base for cables
mounting or passing through, denoted by Ai (i = 1, 2, · · · , 6)
and Bj (j = 1, 2, · · · , 6), respectively. Due to the symmetric
design, A2 A3 = A4 A5 = A6 A1, B1 B2 = B3 B4 = B5 B6,
A1 A2 = A3 A4 = A5 A6 and B2 B3 = B4 B5 = B6 B1.
O, OA and OB are the centers of the passive spherical joint,
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FIGURE 2. CAD model of cable driving unit.

moving-platform and base, respectively. A 6-axis force/torque
sensor is fixed at the top of the moving-platform for the
measurement of external loads. The cables are actuated by
the cable driving units, as shown in Figure 2.

In order to describe the motion of the CSJM, a coordinate
frame is attached to the base, called base frame {B}, and
another frame is attached to the moving-platform, called
moving frame {A}. In this way, the motion of the CSJM can
be represented by the moving frame {A} with respect to the
base frame {B}. As the stiffness of the CSJM is related with
the displacements and the applied loads, we will study the
kinetostatics analysis of the CSJM by differential geometric
theory, which will eventually lead to a modified stiffness
model.

A. TANGENT SPACE ON SO(3)
The moving-platform of the CSJM rotates with respect to the
spherical joint and the rotation motion can be represented by
a rotation matrixR ∈ SO(3). Thus, the trajectory of the CSJM
is a parameterized curve with respect to time, such thatR(t) ∈
SO(3) for t > 0. According to the exponential map of the
rotation matrix [27], the curve R(t) ∈ SO(3) is represented
by the following expression

R(t) = eζ̂ (t), (1)

where ζ̂ (t) ∈ so(3) and ζ (t) = (ζ1, ζ2, ζ3)T ∈ R3 is called
canonical coordinates with respect to the basis of so(3) [27].
Here, ζ and ζ̂ satisfy

ζ =

 ζ1ζ2
ζ3

→ ζ̂ =

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

. (2)

The derivative of R(t) with respect to the parameter t ,
denoted as Ṙ(t), belongs to the tangent space of SO(3) at the
point R(t), denoted as TR(t)SO(3). Elements of the tangent
space are called tangent vectors. The tangent vector Ṙ(t) rep-
resents the velocity of the CSJM and satisfies the following

expression

Ṙ(t) = R(t)ω̂(t), (3)

where ω(t) = ζ̇ (t) ∈ R3 is called the body velocity of the
CSJM and ω̂(t) is an element of so(3).
Let σ̂ i (i = 1, 2, 3) be the standard basis for so(3), where

σ 1 = (1, 0, 0)T , σ 2 = (0, 1, 0)T and σ 3 = (0, 0, 1)T , then
ω̂ ∈ so(3) can be represented as following

ω̂ =

3∑
i=1

ωiσ̂ i, (4)

where ωi (i = 1, 2, 3) is the coordinate of ω̂ with respect to
the basis σ̂ i (i = 1, 2, 3). Thus, the tangent vector Ṙ(t) can be
expressed as following

Ṙ(t) = R(t)
3∑
i=1

ωiσ̂ i =

3∑
i=1

ωiR(t)σ̂ i =
3∑
i=1

ωiLi|R(t), (5)

where Li|R(t) = R(t)σ̂ i (i = 1, 2, 3) is the standard basis for
TR(t)SO(3). Sometimes we write Li|R(t) as Li for simplifica-
tion. Comparing (4) and (5), the coordinate of Ṙ(t) equals to
that of ω̂, which shows that TR(t)SO(3) is isomorphic to so(3).
For a given U ∈ SO(3), the transformation UR(t) is called

a left translation of R(t) by U, and the transformation R(t)U
is called a right translation of R(t) by U. Let Q(t) = UR(t) ∈
SO(3) be a left translation of R(t), the tangent vector Q̇(t) ∈
TQ(t)SO(3) satisfies

Q̇(t) = UṘ(t) = U
3∑
i=1

ωiLi|R(t)

=

3∑
i=1

ωiULi|R(t) =
3∑
i=1

ωiLi|Q(t). (6)

It shows that, with respect to the basis Li (i = 1, 2, 3),
the coordinate of the tangent vector Q̇(t) equals to that of the
tangent vector Ṙ(t), both of which are ωi (i = 1, 2, 3). Then
TR(t)SO(3) is called a left invariant vector field on SO(3) and
Li (i = 1, 2, 3) is the basis of left invariant vector field.
In order to evaluate the length of a vector and the angle

between two nonzero vectors in TR(t)SO(3), an inner product
is defined. ForX,Y ∈ TR(t)SO(3), whereX =

∑3
i=1 X

iLi (i =
1, 2, 3) and Y =

∑3
j=1 Y

jLj (j = 1, 2, 3), the inner product of
X and Y, 〈X,Y〉, is defined as

〈X,Y〉 =
3∑
i=1

3∑
j=1

gijX iY j, (7)

where g = {gij} ∈ R3×3 is a symmetric and positive definite
matrix, called Riemannian metric on SO(3). Equipped with a
Riemannian metric, SO(3) becomes a Riemannian manifold.
Consequently, the length or norm of a vector X ∈ TR(t)SO(3)
is defined as

|X| = 〈X,X〉
1
2 , (8)
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and the angle between two nonzero vectorsX,Y ∈ TR(t)SO(3)
is defined by an unique θ ∈ [0, π] satisfying

cos θ =
〈X,Y〉
|X||Y|

. (9)

To describe the motion of the CSJM, it is necessary to
preserve the length of a vector and the angle between two
vectors in the tangent space under the left translations along
R(t), i.e., 〈UX,UY〉 = 〈X,Y〉 yields for all U ∈ SO(3). Then
g = αI3×3 is required, where α ∈ R depends on the choice
of scale [27]. Here α = 1 is chosen, which leads

〈X,Y〉 =
3∑
i=1

X iY i. (10)

The metric matrix g is called left invariant, as it preserves the
inner product on TR(t)SO(3) under left translations alongR(t).
On the other hand, since ω(t) is the body velocity of the

CSJM, then ωs(t) = R(t)ω(t) ∈ R3 is the spatial velocity of
the CSJM. The corresponding twist ω̂s(t) ∈ so(3) satisfies

ω̂s(t) = R(t)ω̂(t)R(t)−1. (11)

Substituting (11) into (3), we have

Ṙ(t) = R(t)ω̂(t) = ω̂s(t)R(t). (12)

It shows that the tangent vector Ṙ(t) is not only a left trans-
lation of the twist ω̂(t) by R(t) but also a right translation of
the twist ω̂s(t) by R(t). Similarly, it can be concluded that
TR(t)SO(3) is also a right invariant vector field on SO(3) and
g is also right invariant. Thus, TR(t)SO(3) and g are called bi-
invariant, as they are both left invariant and right invariant.

B. COTANGENT SPACE ON SO(3)
For the CSJM, the body velocity ω̂ is a twist which belongs
to so(3) and the moment load τ̂ is a wrench which belongs to
so∗(3), the dual space of so(3) [27]. Let λ̂

j
(j = 1, 2, 3) be the

basis for so∗(3), which is the dual basis for so(3) (i.e.,σ̂ i (i =
1, 2, 3)), then τ̂ yields

τ̂ =

3∑
j=1

τjλ̂
j
, (13)

where τj (j = 1, 2, 3) is the coordinate of τ̂ with respect to the

basis λ̂
j
(j = 1, 2, 3). The tangent vector Ṙ(t) ∈ TR(t)SO(3)

represents the velocity of the CSJM, and TR(t)SO(3) is
isomorphic to so(3). By analogy with the tangent vector,
we define

F(t) = R(t)τ̂ (t) =
3∑
j=1

τjR(t)λ̂
j
=

3∑
j=1

τi3
j
|R(t), (14)

where 3j
|R(t) = R(t)λ̂

j
(j = 1, 2, 3). F(t) belongs to the dual

space of the tangent space at R(t), called cotangent space
T ∗R(t)SO(3). T

∗

R(t)SO(3) is a real-value linear functional on
TR(t)SO(3) [43]. The elements of a cotangent space are termed
as cotangent vectors, or one-forms. 3j (j = 1, 2, 3) is the

basis for T ∗R(t)SO(3), which is the dual basis for TR(t)SO(3)
(i.e., Li (i = 1, 2, 3)) and it yields

〈Li,3j
〉 = δ

j
i =

{
1 (i = j)
0 (i 6= j)

(i, j = 1, 2, 3). (15)

Similarly, with the basis 3j (j = 1, 2, 3), T ∗R(t)SO(3) is
isomorphic to so∗(3) and the cotangent vector F(t) represents
the load applied on the CSJM. Furthermore, T ∗R(t)SO(3) is also
a bi-invariant vector field.

C. DIFFERENTIAL FORM ON SO(3)
Conventionally, the stiffness of a robotic manipulator is mod-
eled as the derivative of the applied load with respect to the
displacement in Euclidean space. However, as a low stiffness
system, the displacements and loads at different poses of
the CSJM belong to different tangent spaces and cotangent
spaces on SO(3), respectively. They can not perform algebraic
operation directly. To solve this problem, an affine connection
is introduced on SO(3), which bridges any two vector spaces
on SO(3). It provides a notation of parallel transport that
specifies how to transport a vector from one vector space to
another along a curve on SO(3) in parallel [44].

Given a parallel transport PR(t)t,t0 : TR(t)SO(3) →

TR(t0)SO(3), it transports a vector in TR(t)SO(3) to the vector
in TR(t0)SO(3) along R(t) on SO(3). PR(t)t,t0 (X(t)) represents
the parallel transport of the vector X(t) ∈ TR(t)SO(3) along
R(t) back to TR(t0)SO(3). Based on the parallel transport,
the covariant derivative is defined on SO(3) as

∇ṘX
∣∣
R(t0)
= lim

t→t0

PR(t)t,t0 (X(t))− X(t0)
t − t0

. (16)

where ∇ṘX
∣∣
R(t0)

is the covariant derivative of the vector X at
R(t0) along R(t).
Furthermore, denoting T (SO(3)) as the collection of all

vector spaces on SO(3), for X,Y ∈ T (SO(3)), ∇YX repre-
sents the covariant derivative of X in the direction Y. Given
X,Y,Z ∈ T (SO(3)) and α, β ∈ R, the covariant derivative
satisfies the following rules

∇αX+βYZ = α∇XZ+ β∇YZ, (17a)

∇Z(αX+ βY) = α∇ZX+ β∇ZY. (17b)

For a real-valued function f on SO(3), such as the potential
energy of the CSJM, ∇Zf represents the derivative of f in
direction Z, usually written as Z ◦ f .

Since TR(t)SO(3) is bi-invariant, which means the compo-
nents of Ṙ(t) ∈ TR(t)SO(3), ωi (i = 1, 2, 3), are constant
under left and right translations along R(t), the parallel trans-
port of Ṙ(t) satisfies PR(t)t,t0 (Ṙ(t)) ≡ Ṙ(t0). Thus, according to
(16), the covariant derivative of Ṙ(t) along R(t) satisfies

∇ṘṘ ≡ 0. (18)

The curve R(t) which satisfies (18) is called a geodesic on
SO(3) [43]. Particularly, the geodesics in Euclidean space are
straight lines.
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There exist many affine connections on SO(3), which lead
to various parallel transports and the associate covariant
derivatives. Here, we require a particular affine connection
that reflects the properties of the motion of the CSJM:
• TR(t)SO(3) and g are bi-invariant.
• R(t) is a geodesic on SO(3) with respect to the chosen
affine connection.

An affine connection on SO(3), called the Levi-Civita
connection, yields the above conditions. Given X,Y,Z ∈
T (SO(3)), the Levi-Civita connection is specified by the
following properties
• Symmetry:

∇XY−∇YX− [X,Y] = 0, (19)

• Compatibility with the metric g:

Z ◦ 〈X,Y〉 = 〈∇ZX,Y〉 + 〈X,∇ZY〉, (20)

where [X,Y] represents the Lie bracket of vectors X and
Y, and Z ◦ 〈X,Y〉 represents the derivative of a real-valued
function 〈X,Y〉 in direction Z. Eventually, SO(3) is endowed
with metric g and the associate Levi-Civita connection [43].

D. STIFFNESS MODEL ON SO(3)
Let V(t) = Ṙ(t) ∈ R3, then Vδt represents the instantaneous
displacement of the CSJM. The covariant derivative of the
load with respect to the displacement is given by ∇VδtF.
According to (17a), ∇VδtF satisfies the following equation

∇VδtF = δt∇∑3
i=1 ω

iLi
F

= δt
3∑
i=1

ωi∇LiF = δtKω = Kδζ . (21)

where K = (∇L1F,∇L2F,∇L3F) ∈ R3×3 represents the
stiffness of the CSJM. The components of K, Kij (i, j =
1, 2, 3), yield the following expression

Kij = 〈∇LjF,Li〉. (22)

According to (20), we have

Lj ◦ 〈F,Li〉 = 〈∇LjF,Li〉 + 〈F,∇LjLi〉. (23)

So, the components of the stiffness yield

Kij = Lj ◦ 〈F,Li〉 − 〈F,∇LjLi〉. (24)

Since R(t) is a geodesic on SO(3), it yields ∇ṘṘ ≡ 0.
On the other hand, the coordinate of Ṙ(t), ωj (j = 1, 2, 3),
is constant under the left translations along R(t), so we have
the following equation via (17), i.e.,

∇ṘṘ = ∇∑3
i=1 ω

iLi

3∑
i=j

ωjLj

=

3∑
i=1

3∑
j=1

ωiωj∇LiLj ≡ 0. (25)

It holds for any (ω1, ω2, ω3) if and only if

∇LiLj +∇LjLi = 0. (26)

According to (19), we have

∇LjLi −∇LiLj = [Lj,Li]. (27)

Additionally, it can be concluded via (26) and (27)

∇LjLi =
1
2
[Lj,Li]. (28)

According to the property of the Lie bracket [43], it yields

[Lj,Li] = [Rσ̂ j,Rσ̂ i] = R[σ̂ j, σ̂ i]. (29)

Since [σ̂ j, σ̂ i] = σ̂ jσ̂ i − σ̂ iσ̂ j, it can also be represented by
the following expression

[σ̂ j, σ̂ i] =
3∑

k=1

γ kji σ̂ k , (30)

where the coefficients γ kji (i, j, k = 1, 2, 3) ∈ R are zero
except

γ 3
12 = γ

2
31 = γ

1
23 = 2, (31a)

γ 3
21 = γ

2
13 = γ

1
32 = −2. (31b)

Since g is left invariant, it yields

〈F,Li〉 = 〈τ , σ i〉 = τi, (32a)

〈F,∇LjLi〉 = 〈F,
1
2
[Lj,Li]〉 = 〈τ ,

1
2
[σ̂ j, σ̂ i]〉

=
1
2

3∑
k=1

τkγ
k
ji . (32b)

Thus, the components of the stiffness matrix K can be given
as following

Kij = Lj ◦ 〈F,Li〉 − 〈F,∇LjLi〉

= Lj ◦ τi −
1
2

3∑
k=1

τkγ
k
ji . (33)

The CSJM is a conservative mechanical system if the fric-
tion is neglected. Denote the potential energy of the module
as8, its derivative along a specific direction equals the work
done by a one-form F against this direction [30], i.e.,

Li ◦8 = −〈F,Li〉 = −τi. (34)

In order to evaluate the symmetry of the stiffness matrix,
we compute the following expression

Kij − Kji = (Lj ◦ 〈F,Li〉 − 〈F,∇LjLi〉)

− (Li ◦ 〈F,Lj〉 − 〈F,∇LiLj〉)

= (Li ◦ (Lj ◦8)− Lj ◦ (Li ◦8))

+ (〈F,∇LiLj〉 − 〈F,∇LjLi〉). (35)

According to the property of the Lie bracket [43], it yields

Li ◦ (Lj ◦8)− Lj ◦ (Li ◦8) = [Li,Lj] ◦8

= −〈F, [Li,Lj]〉. (36)
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Substituting (28) and (36) into (35), we have

Kij − Kji = −〈F, [Li,Lj]〉 + 2〈F,
1
2
[Li,Lj]〉 = 0. (37)

It shows that, as a conservative mechanical system, the stiff-
ness matrix K of the CSJM is symmetric at every pose,
regardless of the external load applied on the CSJM.

E. STIFFNESS MODEL OF CSJM WITH SYSTEM
PARAMETERS
The stiffness model shown in (33) is given by the load and
displacement of the CSJM. In order to reveal the relationship
of the stiffness matrix and the system parameters of the
CSJM, we will derive the stiffness model with the system
parameters in this section.

As shown in Figure 1, denote ai =
−→
OAi and bi =

−→
OBi (i =

1, 2, · · · , 6) as the position vector of points Ai and Bi, respec-
tively, then ci = bi− ai = ciui represents the ith cable vector,
where ci = ‖ci‖ is the length of the cable and ui = ci/ci
is the unitary vector of ci. Denote τ as the moment acted
on the moving-platform with respect to the center O and
ti = tiui as the cable tension vector of the ith cable, where
ti = ‖ti‖, the equilibrium equation of the moving-platform is
given below

τ =

6∑
i=1

ai × ti =
6∑
i=1

(ai × ui)ti = JTT, (38)

where T = (t1, t2, · · · , t6)T ∈ R6×1 represents the vector of
the six cable tensions and J = (a1 × u1, a2 × u2, · · · , a6 ×
u6)T ∈ R6×3 represents the Jacobian.

DenoteC = (c1, c2, · · · , c6)T as the vector of the six cable
lengths, according to the principle of virtual work, it yields

−TT δC = τT δζ , (39)

Substituting (38) into (39), we have

δC = −Jδζ , (40)

Denote Jsi (s = 1, 2, · · · , 6; i = 1, 2, 3) as the components
of Jacobian J, according to (38), the components of τ yields

τi =

6∑
s=1

Jsits. (41)

Then Lj ◦ τi can be represented by

Lj ◦ τi = lim
1t→0

τi
∣∣
R(t+1t) − τi

∣∣
R(t)

ωj1t

=
∂τi

∂ζ j

∣∣∣
R(t)

=

6∑
s=1

(
∂Jsi
∂ζ j

ts + Jsi
∂ts
∂ζ j

)
. (42)

where τi
∣∣
R(t) represents the component of the moment τ at

the pose R(t). Since ∂cs
∂ζ j
= −Jsj, according to (40), we have

∂ts
∂ζ j
=
∂ts
∂cs

∂cs
∂ζ j
= −ksJsj. (43)

where ks =
∂ts
∂cs

represents the stiffness of the sth cable with
its cable driving unit. Substituting (41), (42) and (43) into the
model (33), the component of the stiffness is written as

Kij =
6∑
s=1

(
∂Jsi
∂ζ j

ts − ksJsiJsj

)
−

1
2

3∑
k=1

6∑
s=1

γ kji Jsk ts. (44)

Eventually, the matrix form of the stiffness model (44) with
the system parameters of the CSJM is given as

K = D− JTKdiagJ− ĴTT. (45)

where D =

(
∂JT

∂ζ 1
T, ∂J

T

∂ζ 2
T, ∂J

T

∂ζ 3
T
)

and Kdiag =

diag{k1, k2, · · · , k6}. It revises the stiffness model of a CDM
derived in [26] with additional term of −ĴTT.

III. STIFFNESS MODEL IDENTIFICATION
The stiffness model of the CSJM (45) is derived based on the
following assumptions: (1) Friction is not taken into account.
(2) The links are considered to be rigid. (3) The stiffness of
the cables and associate cable driving units are constant. The
actual working condition diverges from these assumptions.
Moreover, some parameters in (45), such as the cable ten-
sions, the stiffness of the cables and associate cable driving
units are difficult to be measured accurately. In this section,
a feasible stiffness model identification method is developed,
which merely requires to measure the loads applied on the
moving-platform of the CSJM and the corresponding dis-
placements.

A. APPROXIMATION OF THE STIFFNESS MODEL
Considering a static equilibrium pose R(t) of the CSJM with

loadW(t) =
(
f(t)
τ (t)

)
, and a nearby pose of static equilibrium

R(t+1t) with loadW(t+1t), the displacement between the
two poses is represented by1ζ (t) = ζ (t+1t)−ζ (t), and the
increment of the load is represented by1W(t) = W(t+1t)−
W(t). According to the stiffness model (33), the stiffness of
the CSJM at R(t) can be approximated as

Kij = lim
1t→0

τi(t +1t)− τi(t)
ωj(t)1t

−
1
2

3∑
k=1

τk (t)γ kji

≈
1τi(t)
1ζ j(t)

−
1
2

3∑
k=1

τk (t)γ kji , (46)

where ωj(t) = ζ̇ j(t) and 1τi(t) = τi(t + 1t) − τi(t).
Consequently, the stiffness K can be computed from (46)
when the loads and poses of the CSJM are measured. In this
work, the poses are measured by a high precision laser tracker
and the loads are measured by a force/torque sensor mounted
at the top of the moving-platform. The approximation of
the stiffness shown in (46) can be improved when many
measurements are performed for different neighboring poses
R(t +1t) around R(t).
The matrix form of the stiffness model (33) can be decom-

posed into two parts

K = KD + KL , (47)
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LPH =
( LpH1

LpH2
LpH3

( LpH2
−

LpH1
)× ( LpH3

−
LpH1

)
1 1 1 0

)
, (52a)

BPH =
( BpH1

BpH2
BpH3

( BpH2
−

BpH1
)× ( BpH3

−
BpH1

)
1 1 1 0

)
. (52b)

where

KD = {Lj ◦ τi} ∈ R3×3, (i, j = 1, 2, 3), (48a)

KL = {−
1
2

3∑
k=1

τk (t)γ kji } = −τ̂ ∈ R3×3, (i, j, k = 1, 2, 3).

(48b)

Suppose N sets of data {1τ ,1ζ } are obtained from N mea-
surements, denoting 9 = {1τ 1,1τ 2, · · · ,1τN } and � =
{1ζ 1,1ζ 2, · · · ,1ζN }, then KD can be estimated by

KD ≈ 9�+, (49)

where�+ represents the pseudo-inverse of�. Thus, the stiff-
ness of the CSJM at pose R(t) can be estimated from N
measurements by

K = KD + KL ≈ 9�+ − τ̂ (t). (50)

B. IDENTIFICATION PROCEDURES
The procedure of the stiffness identification mainly contains
three parts: measurement of the pose of the CSJM, measure-
ment of the load of the CSJM and data processing based on
stiffness identification algorithm.

1) MEASUREMENT OF THE POSE OF CSJM
For the CSJM, the pose of the moving frame {A} is measured
directly by a laser tracker, which is denoted as L

AT with
respect to the Laser Tracker frame {L}. While the pose of the
base frame {B} is measured through three points on the base.
The three points are denoted as H1, H2 and H3. In the base
frame {B}, the position vectors of the three points are given
by BpH1

, BpH2
, BpH3

∈ R3×1. In the Laser Tracker frame
{L}, their position vectors are measured by the laser tracker
with a ball reflector, denoted as LpH1

, LpH2
, LpH3

∈ R3×1.
The pose of the base with respect to the Laser Tracker frame
{L}, LBT, satisfies

LPH = L
BT

BPH , (51)

where (52a) and (52b), as shown at the top of this page.
Then L

BT can be computed from (51).
Let B

AT be the pose of moving frame {A} with respect to
the base frame {B}, it yields

B
AT =

L
BT
−1 L

AT . (53)

As

B
AT =

( B
AR

B
Ap

0 1

)
, (54)

and the origins of two frames {A} and {B} are coincident
with each other, i.e., BAp = 0, the pose of the frame {A} with
respect to the frame {B} can be described by B

AR.

2) MEASUREMENT OF THE LOAD OF CSJM
The load applied on the moving-platform,W, consists of two
parts, i.e., the external load applied on the end of moving-
platform, WE , and the load generated by the gravity of the
moving-platform, WG. They satisfy W = WE + WG. WE
described in the force/torque sensor frame {S} is denoted as
SWE , which is measured by the force/torque sensor directly.
WE described in the moving frame {A} is denoted as AWE .
They have the following relationship

AWE = AdTS
AT

SWE , (55)

where S
AT represents the pose of the moving frame {A} with

respect to the sensor frame {S}, and AdS
AT

is the Adjoint

Representation of S
AT.

The gravity of the moving-platform, including the weight
of the force/torque sensor, denoted as G, is applied on a point
denoted by a position vector rG, as shown in Figure 1. The
gravity generates a load, WG, with respect to the spherical
joint. Denoting AWG and BWG as the values of WG in the
moving frame {A} and the base frame {B}, respectively.
Similarly, we have

AWG = AdTS
AT

BWG . (56)

The corresponding total torque applied on the moving-
platform satisfies Aτ = AτE +

AτG.

3) DATA PROCESSING
For a given pose of CSJM, when the load and pose are mea-
sured, the stiffness can be computed via (50). According to
(49), at least three measurements are required for computing
the stiffness.

IV. EXPERIMENT
A. DESCRIPTION OF TESTBED SETUP
In order to validate the proposed stiffness identification
method by experiment, an experimental testbed is built,
as shown in Figure 3, and the prototype of the CSJM is
zoomed in as shown in Figure 4. The key elements of the
experimental setup are a prototype of the CSJM, a laser
tracker, a force/torque sensor, computers for data acquisition,
and counterweights for applying load to themoving-platform.
For the moving-platform, A2 A3 = A4 A5 = A6 A1 =
0.095m, and A1 A2 = A3 A4 = A5 A6 = 0.010m, while
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TABLE 1. Performance parameters of the laser tracker.

TABLE 2. Performance parameters of the force/torque sensor at temperature 22.2◦C ± 1.1◦C .

FIGURE 3. Experimental testbed for the stiffness identification.

FIGURE 4. Prototype of the CSJM.

for the base, B1 B2 = B3 B4 = B5 B6 = 0.128m and
B2 B3 = B4 B5 = B6 B1 = 0.005m. Besides, OOA = 0.08m
and OOB = 0.08m. The gravity of the moving-platform
G = ‖G‖ = 4.82N, and ArG = (0, 0, 0.081)Tm. In this
experiment, the performance parameters of the laser tracker
and the force/torque sensor are listed in Table 1 and Table 2,
respectively.

B. EXPERIMENT OF STIFFNESS IDENTIFICATION
In this experiment, the initial pose of the CSJM is R0, and the
moment load at R0 described in frame {A} is Aτ 0. In order to

FIGURE 5. Curve between measurement and determinant of stiffness K.

minimize the effects of measurement noise, 85 measurements
are conducted with different loads and different displace-
ments. The influence of the number of measurements for
the stiffness identification is revealed in Figure 5, where the
determinant of the stiffness det(K) is employed to evalu-
ate K. det(K) tends to converge as the number of measure-
ments increases, since the increasing number of measure-
ments reduces the effect of the measurement noise. Accord-
ing to (50), the stiffness K is obtained based on the 85 mea-
surement data of poses and loads. The result is summarized
in Table 3 and it shows the stiffness K is approximately
symmetric as indicated in (37).

C. VERIFICATION OF IDENTIFIED STIFFNESS
If the stiffness of the CSJM is identified, the displacement
of the CSJM can be estimated by a known increment of
the load. Subsequently, we compare the estimated and actual
poses of the CSJM to verify the accuracy of the identified
stiffness. In this experiment, additional 5 measurements are
conducted to verify the accuracy of the identified stiffness
model. The result is summarized in Table 4. The procedure
of the verification is illustrated in detail as below.

1) TO APPLY THE LOAD AND MEASURE THE ACTUAL POSE
Whenwe apply a known load (cotangent vector)F(t) ∈ R3 on
the CSJM, the CSJMwill move to a nearby poseR. According
to (21), the covariant derivative of the applied load F(t) with
respect to the displacement V1t is approximated by

∇V1tF(t) ≈ K1ζ (t). (57)
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TABLE 3. Stiffness identification result at pose R0 with pre-load Aτ0.

TABLE 4. Stiffness verification result for the stiffness identification at pose R0 with pre-load Aτ0.

In addition, ∇V1tF yields
∇V1tF = 1t∇VF

= 1t lim
1t→t0

F(t +1t)− F(t)
1t

≈ F(t +1t)− F(t)

= 1F(t). (58)
According to (14), the cotangent vector is left invariant, which
means the coordinate ofF(t) equals to that of τ (t), so it yields

1F(t) = 1τ (t). (59)

Thus, the increment of the applied loads are measured by the
force/torque sensor, which are shown in Col. A of Table 4.
The actual poses of the CSJM, Ract, under the applied loads
are measured by the Laser Tracker, which are shown in Col. B
of Table 4.

2) TO ESTIMATE THE POSE BY THE STIFFNESS MODEL
Substitute (58) and (59) into (57), it yields

1τ (t) ≈ K1ζ (t). (60)

Subsequently, the displacement of the moving-platform is
estimated by the identified stiffness K and the known incre-
ment of load 1τ as following, where the estimated displace-
ment is represented by 1ζ est,

1ζ est = K−11τ . (61)

Consequently, the estimated pose Rest is computed by

Rest = R0e1ζ̂ est , (62)

and the result is summarized in Col. C of Table 4.

3) TO EVALUATE THE ESTIMATION ERROR
The difference (or error) between the estimated pose Rest and
the actual pose Ract can be represented by a matrix Rerr ∈

SO(3), which satisfies

Rerr = R−1actRest = eζ̂ err . (63)

According to the log function on SO(3) [27], we have

ζ̂ err = logRerr. (64)

Then, we define a scalar Eθ , named estimation error, to rep-
resent the difference between the estimated pose Rest and
the actual pose Ract to evaluate the accuracy of the proposed
stiffness model. The definition of the estimation error Eθ is
given below

Eθ = ‖ζ err‖. (65)

The result is summarized in Col. D of Table 4. The small
differences between the estimated poses and the actual poses
show that the proposed stiffness identification method is
effective for the CSJM.

D. DISCUSSION
As shown in Table 3, the stiffness matrix of the CSJM, K,
is not exactly symmetric. And as shown in Table 4, there are
differences between the estimated poses and actual poses.
The major factors that affect the accuracy of the stiffness
identification are summarized as following:
• Effect of the friction. When the load applied on
the CSJM during stiffness identification, the frictions
between the cables and the holes on the base, the cables
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and their outer housing affect the deformation of the
cables and cable driving units. This factor can be reduced
by improving the design and fabrication of the CSJM.

• Noise of the measurement. The measurement procedure
and the precision of equipments (such as the force/torque
sensor and the laser tracker) also affect the accuracy of
the stiffness identification. This factor can be reduced by
using high precision equipments and performing many
measurements.

• Algorithm of the stiffness identification. The algorithm
of the stiffness identification is based on the approx-
imation of the covariant derivative, which causes the
systematical error.

V. CONCLUSION
In this paper, an enhanced stiffness model and associate iden-
tification method are developed on SO(3) for a low-stiffness
CSJM. Since the trajectory of the CSJM is a curve on SO(3),
its instantaneous displacement and exerted load can be rep-
resented by the vectors on the tangent and cotangent spaces
of SO(3), respectively. As we cannot perform the algebraic
operations between vectors on different tangent or cotangent
spaces, a Riemannian metric is defined on SO(3) to evaluate
the lengths of vectors and the angles between vectors, and
the Levi-Civita connection is introduced into SO(3) to bridge
different vector spaces. Subsequently, the stiffness of the
CSJM is derived by the covariant derivative of the load with
respect to the displacement. The derived stiffness matrix is
proved to be symmetric for a conservativemechanical system.
In order to reveal the relationship between the stiffness and
the system parameters of the CSJM, the stiffness matrix
represented by the system parameters is derived based on the
kinetostatics of the CSJM. It shows that the stiffness of the
CSJM is determined by its pose, the stiffness of the cables
and the associate cable driving units, and the cable tensions.
As some of these parameters cannot be measured accurately,
an alternative stiffness identification method is developed.
It is based on the approximation of the covariant derivative
of the load with respect to the displacement, which only
requires to measure the loads and displacements of the CSJM.
Eventually, the identification procedure is proposed and the
experiment is conducted on the testbed. The results show that
the stiffness model and associate identification method are
effective for the CSJM, and they can be extended to other
low-stiffness robotic manipulators.
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