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ABSTRACT In foggy weather, the occlusion of smoke dust and the variation of imaging scale of foreign
objects will mislead the existing algorithm to learn the wrong target information, causing the drift of the
tracking box. A kernel correlation filtering target tracking dimensionality reduction algorithm combining
dark channel prior and scale estimation is proposed, effectively improve target tracking accuracy in foggy
weather. Firstly, in the process of detecting intruding foreign objects along the railway with visual back-
ground extractor ViBe, the atmospheric scattering model based on dark channel prior was used to defog video
sequence. After that, FHOG features of the initial tracking box were extracted by dense cyclic sampling and
scale pyramid technology, and then a Kcf position filter, as well as a scaling filter with PCA dimensionality
reduction was trained to realize the scale-adaptive rapid tracking of railway foreign objects in foggy weather.
The experimental results show that in terms of tracking accuracy, the proposed Defog-PSA-Kcf algorithm
is superior to the non-scale estimation link the generation algorithm Mean Shift devoid of scale estimation
and the native Kernel Correlation Filter algorithm (Kcf), and while linear kernel algorithm Dual Correlation
Filter algorithm (Dcf), which is higher than the scale-adaptive SA-Kcf and the SAMF algorithm; in terms
of tracking speed, it’s faster than the Mean Shift, SA-Kcf, and SAMF algorithms, and in tracking speed.
The algorithm can achieve fast tracking results comparable to as fast as the Kcf algorithm.

INDEX TERMS Foggy weather, foreign object intrusion, dark channel prior, FHOG features, kernelized

correlation filter, PCA dimensionality reduction.

I. INTRODUCTION

Railway clearance is the contour scale line which can not
be crossed, used to separate buildings, equipment and rolling
stocks so as to ensure the safety of the railway transportation.
In addition, it also serves as a barrier to prevent pedestri-
ans, vehicles, animals and foreign objects from intruding
into the railway. In most cases, protective nets are used to
protect the railway clearance. However, foreign object intru-
sion still occasionally happens at the junction of driveways
and sidewalks when there is a lack or damage of protective
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nets, or when pedestrians and vehicles cross them. The rapid
development of industry has brought highly dense social and
economic activities, but also global warming when most parts
of the world are affected by severe weathers such as heavy
fog, rains and snows. Especially in heavy foggy weather, fog
can absorb and scatter light, which will reduce the visibil-
ity. The video or images collected and captured will also
have low saturation, low contrast and other characteristics,
thereby worsening the visibility conditions of train drivers
and affecting the imaging quality of integrated video surveil-
lance system used in the railways. It is difficult to identify
and track foreign objects intruding the railway clearance on
a foggy day with the existing approaches, which therefore
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will greatly affect the safety of railway transportation because
train drivers often cannot get early warning of such foreign
object intrusion. Therefore, the author strives to put forward
a method of removing fog and reducing dimensionality for
detecting and tracking foreign object intrusion which often
happens in severe weather, especially in foggy weather.

The existing methods for detecting and tracking foreign
object intrusion on railways can be divided into two cate-
gories: the sensor-based detection and tracking [1], as well as
the machine vision-based detection and tracking. The former
can detect and warn foreign objects intruding the railway
clearance by using laser, microwave, ultrasonic or infrared
sensors installed along the railway lines. However, it’s sus-
ceptible to strong electromagnetic interference in electrified
sections, and therefore not suitable for the detection and
tracking of foreign object intrusion.

The machine vision-based detection and tracking
method [2] is more intelligent and more suitable for the
detection and tracking of foreign object intrusion as it inte-
grates the machine learning into the image processing. This
method can learn and predict unstructured data via a genera-
tive model or a discriminative model. The generative model
exhibits the distribution of data from a statistical perspective,
and can estimate the joint probability distribution. It can
be obtained by enhanced learning and can be used even
when the data are incomplete. Reference [3], [4] proposed
a Mean Shift pedestrian tracking method combining target
color and edge feature histograms, which can reduce the
influence of local occlusion on the algorithm. However,
the generative model has higher requirements on the data
distribution assumption. If the data distribution does not
meet the assumption, the model will exhibit poor robustness
and inferior performance compared to that of the discrim-
inative model [5]. The discriminative model can find the
optimal separating hyperplane between different categories
to reflect the difference of different categories of data and
estimate the conditional probability distribution. The model
can clearly distinguish the discriminative features of multiple
categories, or between one category and another category,
so it is more suitable for identifying multiple categories and
simpler to use [6], [7]. At present, the discriminative tracking
method based on deep learning or correlation filtering [8] for
model training is a hot research topic in the target tracking
field. As for the former, MDNet Convolutional Neural Net-
work (CNN) [9] is a case in point. It uses several tracking
image sequences to train the overall performance of the target
in the shared layer and reconstructs the tracking network
by connecting the branch layer of the image sequence to
the shared layer, with higher algorithm tracking accuracy.
However, this method features poor real-time performance
because it requires thousands of overlapping candidate areas
to be entered the CNN network one by one for calculation,
about 0.5s for one frame. For the latter, the MOSSE [10]
correlation filter was developed by David S. Bolme and
others to improve the target tracking speed. The MOSSE
filter resorts to a self-adaptive training method to introduce a
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correlation filter into the target tracking field, and the tracking
speed of the algorithm is improved. As the correlation filter
is a single-channel filter and only has manual features, its
tracking performance is not ideal and its application scope
is limited. Henriques et al. [11] greatly improved the target
tracking accuracy by fully extracting the target information
through intensive cyclic sampling. However, due to the lack
of necessary scale estimation, the algorithm is apt to learn
excessive background information or local texture informa-
tion due to the change in the imaging size of the intruding
foreign objects, which causes the drift of tracking box and
affects the tracking accuracy of the target.

In severe weather, especially on foggy days, the tracking
accuracy of the generative model is not quite ideal because
the background information is not distinguished in the mod-
eling process. Discriminant models can distinguish between
foreground and background information. However, due to
the influence of fog, the low saturation and low contrast
characteristics of video and images lead to blurring of the
tracking target, resulting in reduced tracking accuracy. How-
ever, most of the defogging algorithms studied by scholars
both at home and abroad are based on the defogging of a
single image [12]-[17]. For example, Tan [18] proposed a
fog removal method based on local contrast maximization.
As the contrast of the fog-free image is higher than that of
the foggy image, it constructs the function of image edge
information by assuming that the local ambient light is a con-
stant and restores the local contrast of the image to achieve a
defogging effect. Still, the problem is that over-saturated local
color of fog-free image will lead to image distortion. Tarel
and Hautiere[19] assumed that the atmospheric dissipation
function changes slowly in the local part, and tried to achieve
a defogging effect by estimating the atmospheric dissipation
function with median filter. However, halo phenomenon may
occur at the edge after fog removal with such algorithm.
In severe weather, the target tracking algorithms above affect
the tracking accuracy of intruding foreign matters on railway,
and the defogging algorithms above are mostly based on
single image defogging. How to ensure the tracking speed
level of foreign matters in heavy fog and improve the tracking
accuracy have not been reported in the literature yet.

In view of the situation above, this paper proposes a
detection and tracking method of Defog-PSA-Kcf dimen-
sionality reduction based on dark channel prior and kernel
correlation filtering for scale-adaptive foreign matter intru-
sion on railway. The dimensionality reduction detection and
tracking algorithm uses dark channel prior to defog and
uses the special application scenario of railway integrated
video monitoring system to improve the estimated value
of transmittance. After the defogging is realized by opti-
mizing the transmittance, the visual background extractor
ViBe [20], [21] is applied to the moving target detection stage
in the video sequence in order to more accurately capture
the intruding foreign matter. After that, foreign matter scale
estimation is added to the original kernel correlation filter
framework, which effectively improves the tracking accuracy
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(a) the 160th frame image

(b) the 327th frame image

FIGURE 1. Dark channel image.

of the intruding foreign matter with the change of scale. Prin-
cipal component analysis (PCA) is used to greatly reduce the
dimensionality of scale filter features, reduce the calculation
time of the added scale estimation, and improve the track-
ing speed of the intruding foreign matter. The accuracy and
real-time performance of the proposed algorithm in foggy,
snowy and snowy weather are verified by several sets of
comparative experiments.

Il. FOG REMOVAL ALGORITHM BASED
ON DARK CHANNEL PRIOR
A. THEORY OF DARK CHANNEL PRIOR
Studies on a large number of fog-free images indicate that
in the vast majority of images, most regions except non-sky
regions have relatively low color value of RGB channels
compared with that in other regions. In others words, the light
intensity of such regions is lower than that in other areas.
Therefore, the dark channel of any fog-free image can be
defined mathematically as [17]:
dark : . c

M (x) = Jin )[Cer{?,‘;f " M (y)] (1
where, M® in Equation (1) represents each channel of a color
image. Q2(x) is a window centered on pixel X; ¢ belongs to R,
G and B color channels. M%%(x) is the dark channel of the
image.

The meaning of Equation (1) is to firstly find the minimum
value of each channel pixel in the color image, then put it into
a gray image of the same size as the original fog-free image,
and finally figure out the minimum value filter of the gray
image.

According to the dark channel prior theory, in the non-
sky area, the dark channel of the fog-free image has a low
brightness value, which is almost zero.

In real life, there will be low values of dark primary colors
in the image, such as leaves, buildings, cars, shadows caused
by the object blocking the spread of light, making the shad-
ows a lower value of the dark primary colors in the image.
Fig.1 (a) is a dark channel image in the 160th frame, Fig.1 (b)
is a dark channel image in the 327th frame.

1) ATMOSPHERIC SCATTERING MODEL
After the light is scattered by atmospheric particles,
the observed light intensity effect can be expressed by the
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atmospheric scattering model proposed [22], [23]:
I(x) = Mx)1(x) + A(1 — 1(x)) 2

In Equation (2), x means the coordinates of the pixels in the
image; M(x) refers to the fog-free image to be restored, which
is unknown; I(x) denotes the existing image to be defogged,
which is known; t(x) is the transmittance of the image, and
A represents the global atmospheric light component. The
collected light are divided into two categories in this model: a.
light that reaches the camera after atmospheric light scatter-
ing in the environment; b. light that reaches the camera after
being reflected and decayed by atmospheric particles.

In addition, to solve the problem that the rain and snow
weather may affect the accuracy of the algorithm tracking.
We use a median filtering and etching operation to preprocess
the image frame to eliminate the noise that raindrops and
snowflakes form on the binary image. The specific content is
as follows: the pixel value of each pixel is replaced with the
median value of the domain pixel value to filter out the salt
and pepper noise in the binary image, and then the isolated
point of the target edge is removed by the etching operation
to achieve the effect of shrinking the target size.

B. FOG REMOVAL PRINCIPLE OF DARK CHANNEL PRIOR
1) ESTIMATION OF TRANSMITTANCE

The transmittance t(x) has consistency in local areas, the esti-
mated transmittance is defined as t™(x). Assuming that A is a
known constant and the transmittance of a certain area on the
image remains unchanged.

The visual effect of the video shot in the railway inte-
grated video monitoring system is relatively dark, so that
the intrusion foreign matter and the background cannot be
distinguished well. In order to ensure that the restored image
is close to the real scene, an image fidelity adjustment factor
w(0 < w < 1) is introduced. w, is taken as the best fidelity
adjustment factor for typical images in this application
scenario.

Then, the estimated value of transmittance according to the
dark channel prior theory is shown in equation (3):

~ . . I(y)
t 7 (X)=1—wo min [ min
yeQ(x) celr.g.b} A€

] 3

The estimated transmittance is obtained according to Equa-
tion (3). When the transmittance value is small, the value of
M is large, which may lead to noise interference in M(x).
Therefore, it is necessary to limit t(x) by setting a threshold.
To prevent t(x) being too small, when t(x) is smaller than
the threshold value, let t(x) = 0.1 according to the algorithm
proposed in this paper.

2) IMAGE RESTORATION

The value of atmospheric light component A is also required
after calculating the estimated transmittance according to
Equation (3). The above algorithm is based on the assumption
that A is a constant. However, in this application scenario,
if the selected atmospheric light value A is larger than its
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FIGURE 2. Flow diagram of detection and tracking of foreign object
intrusion in foggy weather.

true value, the restored image will be darker and the image
details will be lost. If the selected atmospheric light value A
is less than the true value, the restored image will be brighter.
In order to select an appropriate atmospheric light value,
the pixels with brightness ranking top 0.1% can be selected in
the dark channel image, and then the brightest point in foggy
image I(x) can be selected as A value. After an appropriate
A value is selected, the M(x) can be calculated to restore the
fog-free image. The expression for the final restoration of the
image is:

MO0 — I(x)—A

" max(7(x), 0.1) +A @)

IIl. PRINCIPLES FOR DETECTION OF FOREIGN

OBJECT INTRUSION

The ViBe [20], [21] is applied to the moving target detection
stage of video sequence to capture the intruding foreign
objects. The scale estimation of new foreign objects is added
to the genetic Kernel Correlation Filter algorithm framework
to effectively improve the accuracy in tracking. The specific
steps are shown in Fig.2.

In the initial processing stage, the first frame image in the
video is used to establish a background sample set for each
pixel. The sample set is composed of domain pixel values.
Then compare the values of all pixels on images in the video,
except the first frame, with those values in the established
background sample set. In this way, the foreground of for-
eign objects can be segmented. Finally, in order to adapt the
algorithm to the complex changes of monitoring scenarios,
use random selection mechanism and neighborhood spread
mechanism to update the background model online. The
detailed steps are as follows:
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FIGURE 3. Schematic diagram of pixel classification with Vibe algorithm.

Step 1: initialize the background model

The background model is M(0). As shown in Equation (5),
a sample set is established for each pixel. The background
sample set at pixel (x, y) is G, (X, y), and G,(X, y) contains n
background sample pixel values v;(i € {0, 1, ..., n}).

GV(X,}’):{VI,VZ,-u’anl,Vn} (5)

As adjacent pixels have the similar features in the spatial
and temporal distribution, the initialization of background
model GO(x, y) is completed based on the first Frame M(0) of
the video sequence. The sample pixel values v; are all selected
from the 8 neighborhoods Ng(x, y) of pixel (x, y) with equal
probability, as shown in Equation (6). In the second Frame
M(1) of the video sequence, the second step of foreign object
intrusion detection can be taken.

GOx, y) = °(x0, y0)I(x0, 0) € Na(x, y))} (©6)

Step 2: detect foreign object intrusion

As shown in Fig.3, take the pixel value at pixel (x, y) in
the Frame M(t) (t > 1) to be detected as v(x, y), then calculate
the number of elements intersected by the background sample
set G !(x, y) and the circle SR(v(x, y)) with v(x, y) as its
center and R as its radius. If the number is not less than the
threshold Tpin, v(x, ¥) is deemed as similar to the background
sample set G, y), and the pixel (x, y) is regarded as the
background point or otherwise the foreground point, as shown
in Equation (7).

0, ISRV, ) NG~ x, )| = Tnin

-1 @
255, ISR ) NG (x. Y| < Tonin

v(x,y) =

M(t) is converted into binary image B(t) with Equation (7),
as shown in Fig.4 (a) and Fig.4 (b). Then calculate the
Euclidean distance between v; and v(x, y) of each background
sample point. If the distance is less than or equal to R, v;
is called an intersected element. The statistical task can be
completed in this way.
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(b) B(78) after pixel classification

(a) Original image of Frame M(78)

FIGURE 4. Foreign object intrusion detection with ViBe algorithm.

In order to reduce the influence of external interference
such as withered grass and shaking shadows, median filtering
and expansion corrosion processing are applied to binary
image B(t). The results are shown in Fig.4 (c). The foreground
connected domain in B(t) where the minimum outer rectan-
gular area is larger than the threshold value is regarded as
the intruding foreign object. Then, according to the location
of the smallest outer rectangle in the foreground connected
domain on the image, the subsequent work to be performed
is selected.

Let the resolution of M(t) image be w x h, and the upper,
lower, left and right boundary values of the minimum outer
rectangle be Xmin, Xmax> Ymin and ymax respectively. When
Xmin = 0 OF Xpmax = W OF Ymin = 0 or ymax = h, the foreign
object does not fully enter the video surveillance range and
can not provide complete target information for the follow-
up tracking, so it is necessary to continue to update the
background model and implement Step 3. Else, the foreign
object has completely entered the video surveillance area.
The minimum outer rectangular area is used as the initial
tracking box (boxg) for intensive cyclic sampling in the sub-
sequent tracking.

Step 3: update background model

In the ViBe algorithm, the background sample set
G'(x, y) must be updated in four steps, so as to adapt to various
changes in the space-time dimension of complex monitoring
scenarios.

(1) Recovery of the background area: Since the foreground
pixels do not participate in the update of the background
model, it is possible to generate ““ghosts’” and be erroneously
detected as pixel blocks of the foreground area, which is
difficult to re-integrate into the background. In real appli-
cation, the target moving based on the foreground will not
be in the same location for a long time. The continuous
frame pixels detected as the foreground are reset as the back-
ground pixels so that the algorithm have certain self-healing
abilities.

(2) Random selection of update points: take an integer in
an arbitrary interval [1, (2&-1)] as a random step, and select
pixels (x, y) in the binary image B(t) row by row. If the
selected pixels are background pixels, G'(x, y) is updated
with the pixel value v(x, y). There is only 1/® chance for
the background pixels to update the sample set, so the update
frequency of the background model is lower. As a result, it is
not easy to miss the detection of slow moving objects.
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(c) B(78) after morphological processing

(d) Detection result of a moving target
after fog removal

(3) No memory updating of background sample set: if the
randomly selected pixel (x, y) is a background pixel, in order
to avoid long-term retention of samples in the sample set and
the influence on the accuracy of the model, the pixel value
v(x, y)in M(t) is used to replace any sample in G'(x, y), so that
the life cycle of the sample decrease exponentially.

(4) Updating of sample set in spatial neighborhood: based
on the assumption that neighborhood pixels have the spatial
consistency and in order to eliminate ‘“ghosting” effect as
soon as possible, one pixel (xg, yo) is selected from Ng(x, y)
randomly and v(x, y) is used to replace any sample in G
(x0, yo) so that background sample information gradually
spread outward.

After the above updating steps are completed, return to
Step 2 to detect the foreign objects in Frame M(t + 1).
The final detection results are shown in Fig.4 (d). Since the
boundary value of the minimum outer rectangular of the
intruding foreign object in Fig.4 (d) does not meet xpyj, = 0
OF Xmax = W OF ymin = 0 O ymax = h, it is considered that the
foreign object has completely entered the video monitoring
area in Frame M(78). The FHOG features of Frame M(78) are
sampled intensively and cyclically to train a location filter to
track the foreign object from Frame M(79).

IV. SCALE-ADAPTIVE TRACKING ALGORITHM WITH
DIMENSIONALITY REDUCTION

FHOG features are extracted from the original samples.
The description of FHOG features aims to merge the local
unsigned and signed histograms of oriented gradient (HOG),
which is insensitive to the geometric deformation and illu-
mination changes of the target. It is suitable to construct the
appearance model [24] for foreign objects such as pedestri-
ans, animals and vehicles. The FHOG features of the initial-
ization tracking box (boxg) in Fig.4 (d) are extracted as the
original samples to generate the sample set for the location
training.

A. CONSTRUCTION OF KERNELIZED-CORRELATION
SHIFT FILTER

1) DENSE CYCLIC SHIFT OF THE ORIGINAL SAMPLES

Since the FHOG feature matrix in the initialization tracking
box (boxg) contains less information, not enough to train a
kernelized-correlation location filter. Therefore, when track-
ing the starting Frame M(78), set the center of the minimum
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sampling

FIGURE 5. Dense cyclic sampling for location training samples.

outer rectangular of the foreign object as the center, and then
conduct the dense and cyclic sampling in the sampling area
which is twice as big as that of the boxg. Finally several
training samples with the same size as boxg can be obtained.
The sampling process is shown in Fig.5.

Assuming that the size of the initialization tracking box is
wo X hyg, define a sliding sampling window of the same size
with the original algorithm. Then, starting from the upper left
corner of the area to be searched, slide the sampling window
in an order from left to right and from top to bottom. For each
pixel that has been slid, FHOG features in the window are
extracted as training samples. This algorithm exhibits a poor
real-time performance and needs to be improved because it
takes a lot of time to collect wgx hg training or test samples
for each frame.

Specific improvement steps include: Firstly, use a 2D Hann
window to filter the FHOG matrix of box0, so as to obtain the
original sample S, with the boundary effect eliminated. After
that, multiply S right by the horizontal displacement matrix
R, simulating the horizontal motion of the sliding sampling
window, and multiply S, left by the vertical displacement
matrix Q, simulating the longitudinal motion of the sliding
sampling window. In this way, a location training sample
matrix Sp can be obtained. Displacement matrices R and Q
are shown as below.

0 1 ... 0 0 0 0 ... 0 1
0 0 ... 0 0 1 0 ... 0 0
R= 0=
0 0 ... 0 1 0 1 ... 0 0
1 0 ... 00 0 0 ... 1 0

The location training sample matrix Sp can be expressed as
Equation (8), where i €[1, ho/l], j €[1, wo/l].

Spli. ) = QU Vs RUTY ®)

This matrix is a block circulant matrix, where the Fourier
domain can be diagonalized to accelerate the training of
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a target location filter based on a kernel ridge regression
function, thereby determining the target orientation.

2) TRACKING THE LOCATION OF THE FOREIGN OBJECT
BASED ON KERNEL RIDGE REGRESSION

The kernel ridge regression algorithm is integrated into the
filtering process of the area to be searched in Frame M(79),
and the candidate area with the greatest response is deter-
mined to be the location to track the foreign objects [11].
Firstly, map the location training sample set S, to a linear
separable high-dimensional feature space with a non-linear
mapping function ®(Sp). Then, train a linear regression func-
tion Yp, = a)TCD(Sp) with ®(Sp), where Y}, is the score matrix
corresponding to the location training sample set, and o is
a vector in the high-dimensional feature space spanned by
®(Sp) and satisfy Equation (9).

w= Z,-,,- mp(Sy)ij ©)

where, m is the parameter to be adjusted, substituting
Equation (9) into the linear regression function can be used
to obtain a kernel correlation position filter Y. Where m is
the parameter to be adjusted.

The optimal parameter group d makes the position filter
cost loss function minimum, as shown in equation (10).

m=min v, - ¥[2 42 om0

where, Y is a two-dimensional Gaussian matrix, also the ideal
output of the location filter. In order to make the least squares
fitting which might has multiple sets of solutions have a
unique solution, set the value of A, which is the regularization
coefficient of the cost loss function. Then, obtain the partial
derivative of the cost loss function against m, and determine
that m is the optimal solution when the partial derivative value
is 0. Finally, obtain m as shown in Equation (11).

m=(Ypm '+ i)"Y (1)

where, CI>(Sp)d>(Sp)T is the inner product kernel matrix of
location sample set S, in the high-dimensional feature space,
also can be expressed as Ypm_l, abbreviated as K(Sp, Sp).
The Equation (11) can be converted into the Equation (12).

m = (K(Sp, Sp) + A~y (12)

The matrix inversion operation in Equation (12) takes up a
lot of computing resources, and reduces the real-time perfor-
mance of the algorithm. If S, is still a block circulant matrix
after being mapped to the feature space, the complex matrix
inversion operation can be simplified to point multiplication
based on the truth that the Fourier domain can be diagonalized
in a block circulant matrix In this paper, the Gaussian kernel
matrix as shown in Equation (13) is used to ensure that
Sp is still a block circulant matrix after being mapped into
K(Sp. Sp).

! 2 2 T
KX,Y)= eXp(—;(llxllz +1IYl; —2(X oY) ))  (13)
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The block circulant matrix K(Sp, Sp) is diagonalized with
Equation (14).

K(Sp, Sp) = Fdiag(K (S,, Sg))F (14)

where, F is a discrete Fourier matrix, diag () is used to gen-
erate diagonalization matrix, and “~” represents the Fourier
transform of the matrix. By substituting Equation (14) into
Equation (12) and according to the reciprocal of elements on
the diagonal line inverse to the diagonalization matrix, the fast
parametric tuning equation (15) of the location filter can be
obtained.

K Y
m = iffr(~ (Sg. Sg) @

= (15)
R(Sg. So)T @ K(S,. Sg) + A

Then, take the sampling area of Frame M(78) as the area to
be searched for Frame M(79), and the tracking box of Frame
M(78) as the sliding sampling window of Frame M(79); and
extract the test sample matrix S, of Frame M(79) in the
video sequence via intensive cyclic sampling and substitute
it into the kernelized-correlation location filter to obtain the
response Y as shown in Equation (16).

Yo = (Sp)d(Sp) m = K(Sp, Sprm (16)

where, K(Sp, Spt) is the Gaussian kernel matrix of the test
sample set Sp; and the training sample set Sp. Finally, take
the maximum coordinate in the response matrix Yp as the
predicted location of the intruding foreign object of Frame
M(79) to support the scale estimation of the foreign object.
In this way, all intruding foreign objects can be identified
completely.

B. CONSTRUCTION OF SCALE CORRELATION FILTER

WITH PCA DIMENSIONALITY REDUCTION

1) CONSTRUCTION OF SCALE TEST SAMPLE SET

The center of the scale pyramid is the center of a series of
minimal outer rectangles of the intruding foreign objects.
The image blocks of different sizes form a sample set which
can provide enough test samples for the scale estimation of
foreign objects. Assume that the dimension of scale filter is d.
For an integer n € [(1-d)/2,(d-1)/2], take the position of the
intruding foreign object predicted with Equation (16) as the
center, and the size of tracking box of Frame M(78) as the
benchmark, intercept a series of image blocks with the size of
R"w xR"hgy from Frame M(79), and let R be the scale factor
between pyramid layers. Then, we can obtain a d-layer image
scale pyramid as shown in Fig.6.

After that, adjust the size of each layer of the scale pyramid
through bilinear interpolation, so that the size of each layer
is consistent with that of the tracking box of Frame M(78).
Finally, take the processed FHOG information of each layer
of the scale pyramid as the scale test sample set Sg;.

2) CORRELATION FILTER OF SCALE TEST SAMPLE SET
According to the principles of correlation filtering, the signal
convolution response value of similar images is high [25].
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FIGURE 6. Scale pyramid of foreign object.

First, convolve the FHOG feature S of the tracking box for
Frame M(78) with scale filtering template H to minimize the
sum of squares of errors of cost loss function, as shown in
Equation (17).

3m+4

g— Y H'xSl
i=1

where, g is a three-dimensional Gaussian matrix, representing
the ideal output of the scale filter; and H is the scale filter
template. Firstly, convert the convolution in time domain to
point multiplication in frequency domain by discrete Fourier
transform, and then obtain the partial derivative of & with
respect to H'. The optimal solution of Layer i of the scale filter
template H is H' when the partial derivative is 0, as shown in
Equation (18).

3m+4

2
2y HH"
i=1

2

E =

? 1
oan

conj(g) e 3’;

H =

- (18)
» conj(S)) 8 + A
j=l1
The conj in the equation refers to the complex con-
jugation of matrices. With the scale pyramid technique,
a d-dimensional test sample set Sg; is established in Frame
M(79) and substituted into the scale filter (19) to obtain
response Y.

3m+4
Yo =ifft() H e S}) (19)
i=1
Then, find the scale test samples which can make the Yy

reach the highest score in the test sample set Sy, and take the
size of the corresponding layer on the scale pyramid as the
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scale of the tracking box (box) for Frame M(79), to identify
all the intruding foreign objects.

Finally, after updating the location filter parameter m with
Equation (15), prepare to predict the target location in Frame
M(79). At the same time, in order to update the scale filter
template quickly, the molecular A and denominator B of
the scale filter template H' are iterated frame by frame with
Equation (20). Where, constant n represents the learning rate
of the scale filter and S(t 4+ 1) represents the FHOG feature
of the t + 1st frame tracking box.

At +1) = (1 = PA'@) + neonj@)Si(E + 1)) (20a)
d
B(t+1) = (1 =mB@®) +n Y conj(Si(t + D)8t + 1)
j=1
(20b)

C. PCA DIMENSIONALITY REDUCTION

OF SCALE FEATURES

In Equations (19) and (20), the tracking speed of the genetic
Kcf algorithm is reduced to some extent when considering
that the FHOG features of the scale test samples need to be
subjected to 3m + 4 2D discrete Fourier transform during
the scale estimation of new foreign objects. To reduce the
time required for target detection and filter updating, and
based on the truth that the dimensionality of scale test sample
features is much higher than the quantity of scale test samples,
Principal Component Analysis (PCA) will be used to reduce
the dimensionality of the FHOG features of scale test samples
without losing any image information.

PCA dimensionality reduction is a commonly used data
analysis method. It projects a set of related variables into
an unrelated low-dimensional subspace through translation
and rotation of coordinates, to reduce the data dimension-
ality. The coordinate axes of the low-dimensional subspace
is selected as the direction with the largest variance in the
high-dimensional data to extract the main characteristic com-
ponent of the original data.

Detailed steps include: firstly, move the coordinate origin
to the center of the sample data with the Equation (21) so
that those samples that are independent originally are roughly
related now.

St (i) = S5 (i) — mean(Sg (i) 2n

where Sg (i) is the expansion of the FHOG feature of the
ith test sample. Then, perform the eigenvalue decomposition
on the d-dimensional covariance matrix U as shown in the
Equation (22) and set each row of the projection matrix V; as
a feature vector corresponding to U, to eliminate data offset
caused by image noise.

UG, )) = S (S5t ()T (22)

Finally, using VSg(i) to project Sg(i) into the low-
dimensional subspace, the test sample Sg(i) is reduced from
(Bm 4+ 4) x w¢l x hy/l dimension to rank(U) dimension.
Ss(t 4+ 1) in the Equation (20) also belongs to the test sample
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set Sgt, so it can be replaced in a similar way by VS¢(t + 1),
thereby reducing the time required for the update of scaling
filter.

V. EXPERIMENT RESULTS AND ANALYSIS

A. EXPERIMENT EXAMPLES AND INDICATORS OF
PERFORMANCE EVALUATION INDICATORS

(1) Examples: two sets of video image sequences
were collected from some railway test line by using a
high-definition network dome at a frame rate of 25 fps. One
set of the sequences are the video sequences T1 and T2 with
almost no change in the scales of foreign objects; and the
other set are the video sequences S1 and S2 with dramatic
changes in the scales of foreign objects. The durations of the
video sequences T1 and T2 are 20s and 24s, with 489 and
596 frames of images respectively. The durations of the video
sequences S1 and S2 are both 28s, with the same 700 frames
of images.

The computer used in the experiment, with an Intel
i5-8250U CPU and 8GB of memory, is equipped with
a winlO operating system. The performance of the
Defog-PSA-Kcf algorithm was compared respectively with
that of the Mean Shift and Kcf algorithms which are short of
the scale estimation process, and with that of the SA-Kcf and
SAMF algorithms which possess scale-adaptive functions,
so as to analyze the differences in tracking performance of
different algorithms.

In addition, the values of parameters used by the algorithm
proposed by this paper are fixed, as shown in Tab.1.

When the variance o of Gaussian kernel function is close
to 0, the sample data mapped to the high-dimensional space
is easy to be over-fitted by the linear function while when o is
close to 1, the data may be linearly inseparable, so o is taken
as 0.5— the intermediate value of 0-1.

In addition to keep the value of o not being too close to 0 to
avoid over-fitting, a relatively simple position filter should
be obtained without under-fitting. Consider adding a regular-
ization term using L2 norm for the cost function. We want
the coefficient A of the regularization term to be as small as
possible, because when A > 1, most of the parameters of the
hypothesis function will be less than 1. With the increase of
A, the values of each parameter will decrease continuously
to zero, resulting in under-fitting of the training samples.
Therefore, A should be taken as a smaller positive value in
the interval of [0,1], and it is taken as 104 in this paper.

(2) Performance evaluation indicators: in terms of tracking
accuracy, the overlap rate between the predicted tracking
frame and the artificial labeled tracking frame is calculated,
and the success rate is calculated by counting the proportion
of the image frame exceeding the overlap rate threshold in
the video sequence to measure the tracking accuracy [26].
It can simultaneously reflect the accuracy of the algorithm
in position and scale estimation, as shown in equation (23).

|b0xp N box,|

2
|b0xp U box,| 23)

overlap =
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TABLE 1. Parameter information.

Configure
Process Parameter name Symbol
d value
Number of
background model n 20
Target samples
detection Sphere radius R 30
Segmentation Tmin 2
threshold
Random step D 10
Gradient partition
m 9
Feature number
extraction Side length of cell ; 4
units
Variance of
Gaussian kernel c 0.5
Location )
function
tracking
Regularization
A 10+
parameters
Scale )
o Learning rate n 0.02
Estimation

where box,, refers to prediction tracking box and box; refers
to the manually recorded tracking box. Then count the pro-
portion of image frames whose overlapping rate exceeds the
threshold {0.1, 0.2, 0.3, ..., 1} in the video sequences to
draw an AUC curve and obtain a success rate map. The area
under the AUC curve is usually taken as the final score, which
can reflect the tracking accuracy of the algorithms. The AUC
score is proportional to the tracking accuracy. The tracking
speed can be measured by calculating the average number of
image frames processed by each algorithm per second.

B. EVALUATION OF DEFOGGING PERFORMANCE

In order to obtain a clearly separable restored image of the
background and the person, an appropriate transmittance
estimation value is determined. Based on this, two groups
of typical foreign matter intrusion images on the railway
are selected and adjusted to 720 % 404. Accurately find the
actual value of the best fidelity adjustment factor w, for a
typical image under the application scenario of the railway
integrated video monitoring system, measure the definition
of the typical image with the peak signal-to-noise ratio, and
select the data point w between [0,1] to obtain the peak
signal-to-noise ratio value corresponding to the w value of
a typical image in a frame of video. By comparing linear
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FIGURE 7. w-Peak Signal to Noise Ratio fitting curve.

TABLE 2. Information entropy of images.

IE 160th frame 270th frame
Original image 6.2182 6.2714
Defog-PSA-Kcf
7.5120 7.4307

algorithm

and non-linear least squares data points for various fitting,
the w-PSNR curve of a typical image is fitted by the best
fitting method, and the maximum value of the fitting function
is obtained to determine the best fidelity adjustment factor w,
of the typical image, and w, = 0.3571 is obtained, as shown
in Fig.7.

To evaluate the performance of defogging, the objective
indicators such as Information Entropy(IE) which is set to
restore image, and Peak Signal to Noise Ratio(PSNR), are
used to reflect the image quality after restoration. IE is an
indicator of image details, and the larger the IE, the clearer
the image. PSNR peak signal-to-noise ratio is the most widely
used objective evaluation index for images. The PSNR is
based on the error between corresponding pixel points, that
is, based on error-sensitive image quality evaluation, and the
lager the PSNR, the better the image quality and the higher
the sharpness.

A typical image under the railway video integrated mon-
itoring system is selected. Such as the 160th image and
270 frames in the video T1, calculate the information entropy
and peak signal to noise ratio before and after defogging, and
the results are shown in Tab.2 and Tab.3.

It can be seen from Tab.2 that the IE of defogged images
are higher than those of original images, which indicates
that the image information after defogging is increased.
Tab.3 shows that the restoration image after defogged have
higher Peak Signal to Noise Ratio. To sum up, the indicators
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TABLE 3. Peak signal to noise ratio of images.

PSNR 160th frame 270th frame
Defog-PSA-Kcf
60.2798 61.2610
algorithm
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FIGURE 8. Performance impact test of the number of scale pyramid
layers.

after defogging are all better than those before defogging,
which can prove the superiority and effectiveness of its
defogging ability.

C. TEST ON THE INFLUENCE OF SCALE PYRAMID

LAYERS ON TRACKING PERFORMANCE

If the number of scale pyramid layers d is too small and
there are less scale test samples, the accuracy of scale estima-
tion will be lower; if d is too large, then the dimensionality
reduction effect of the scale test samples will be reduced to
some extent, and therefore the tracking speed will decrease.
With different values of d (number of scale pyramid layers),
AUC values and the tracking speed diagrams of the Defog-
PSA-Kcf algorithm on the Sequence T and Sequence S are
used to examine the effect of the values of d on the tracking
performance of the Defog-PSA-Kcf algorithm, and the results
are shown in Fig.8.

It can be seen from Fig.8 that: when d = 0, the tracking
accuracy and tracking speed of the Defog-PS A-Kcf algorithm
are consistent with those of genetic Kcf algorithm devoid
of the scale estimation process; when d < 25, the tracking
accuracy of the Defog-PSA-Kcf algorithm will continuously
improve with the increase of d; and when d > 25, the AUC
value will be around 73%. Therefore, d = 25 is the interme-
diate value. It can be concluded that if the Defog-PSA-Kcf
algorithm need to track videos of foreign object intrusion in
different scenarios, and at the same time its tracking accuracy
is to be maximized, then the value of d should be greater
than 25. It is also observed that the tracking speed of the
Defog-PSA-Kcf algorithm will decrease with the increase
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TABLE 4. The percentage in the average dimensionality reduction of each
video sequence.

sequence Tl T2 S1 S2

percentage 97.82% 98.09% 98.6% 98.64%

of d, and 33 is the inflection point. When d is greater than 33,
the tracking speed of the Defog-PSA-Kcf algorithm will drop
precipitously. In order to improve the speed performance of
the algorithm on the premise of ensuring tracking accuracy,
the value of the scale estimation layer d of the Defog-
PSA-Kcf algorithm was set to 33 layers, and subsequent
experiments are performed, and the percentage in the average
dimensionality reduction of each video sequence is shown
in Tab.4.

In the case of original video sequence without dimen-
sionality reduction, the average dimensionality of the video
sequence is about 1000, which is larger than the average
dimensionality after dimensionality reduction by principal
component analysis. The average dimensionality of video
sequence after dimensionality reduction is below 33 dimen-
sions. Tab.4 shows the effect of dimensionality reduction,
where the average dimensionality reduction percentage of
each video sequence is more than 95%, and the data will not
be sparsely distributed after the scale is compressed, while
preserving the important information of the original data.
After that, other performance comparison experiments are
conducted.

D. COMPARISON EXPERIMENT OF

TRACKING ACCURACY

The Mean Shift algorithm, the genetic Kcf algorithm, the
scale-adaptive SA-Kcf and SAMF algorithm were used
respectively for tracking foreign objects mentioned in the
experiment examples, and their different tracking accuracies
compared with that of the Defog-PSA-Kcf algorithm are
shown in Fig.9. Among them, T1 and T2 are different video
sequences without scale changes. S1 and S2 are different
video sequences with obvious scale changes.

As it’s shown in Fig.9, the Defog-PSA-Kcf algorithm can
accurately track the foreign objects in the video sequences
T1 and T2 in foggy weather, so can the SA-Kcf and SAMF
algorithms. While, the Mean Shift algorithm could not update
the target template, therefore it completely lost the target in
Frame 83 and Frame 92 of T1 and T2 sequences respectively.
Similarly, in Frame 462 of T2 sequence, the Kcf algorithm
mistook a low-voltage switch box next to the rail in T2 as
the tracking target, as it seems to have a similar FHOG
feature with the foreign object due to the low definition of
videos on the foggy day. The Kcf algorithm and the Mean
Shift algorithm which are short of the scale estimation pro-
cess both learned FHOG features and RGB color features
of excess background due to the large scale changes in the
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Defog-PSA-Kcf: ——

T1:
Start frame for tracking
#79 #125
T2:
Start frame for tracking
#65
S1:
S2:

Start frame for tracking

Kcef: =—— SAMF :

Mean Shift:

#231 #489

#700

#240 #371 #504 #700
FIGURE 9. Tracking performance of different algorithms.
TABLE 5. Average accuracy of each algorithm within 20 pixels. TABLE 6. AUC values of tracking algorithms.
Defog Defog
Sequ Sequ
-PSA- SAMF SA-Kcf Kcf MS Decf -PSA- SAMF SA-Kcf  Kcf MS Dcf
ence ence
Kcf Kef
T 8241% 753% 7962% T44%  3541%  T29% T 7532% 6932%  71.08%  642%  297%  60.55%
S 74.3% 70.56% 72.5% 47.6% 21.78%  45.27%

video sequences S1 and S2 respectively, resulting in the drift
of tracking boxes.

Fig.10 indicates the success rates of different algorithms
in the video sequences T and S are mapped respectively to
compare the accuracy performance of each tracking algo-
rithm. In order to quantify the tracking accuracy of each algo-
rithm, the AUC values in the video sequence S is calculated
as shown in Tab.5. The average precision and AUC values
in the video sequence T are calculated as shown in Tab.6.
The threshold for calculating the average accuracy of each
algorithm is 20 pixels.

From the Tab.5 and Tab.6, the average accuracy of
Defog-PSA-Kcf algorithm proposed in this paper can reach
82.41%, which is better than other algorithms without defog-
ging. When defogging process is performed before the detec-
tion, the tracking accuracy of the Defog-PSA-Kcf algorithm
proposed in this paper is superior to that of the Dcf, as well
as the Kcf and Mean Shift algorithms without the scale
estimation process, especially when the scale of the video
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sequence S changes drastically, the tracking accuracy of the
Defog-PSA-Kcf algorithm can reach 74.3%, while that of the
Dcf, Kcf and Mean Shift algorithms are 45.27%, 47.6% and
21.78% respectively. While the average tracking accuracy of
the SAMF algorithm can be 70.56% as it has only 7 scale esti-
mation layers. When the Defog-PSA-Kcf algorithm defogged
the video sequence before detection, PCA dimensionality
reduction was also carried out at the same time on the scale
test samples to optimize the images, improve the definition
of images and shield a large amount of noise interference.
Therefore, its average tracking accuracy is slightly higher
than the tracking accuracy of 72.5% of the SA-Kcf algorithm.

E. COMPARISON EXPERIMENT OF TRACKING SPEED

The running time of the Defog-PSA-Kcf, SA-Kcf, Kcf,
SAMF, Mean Shift and Dcf algorithms on the video
sequences T and S were recorded and the number of image
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FIGURE 10. Tracking success rates of various algorithms.

frames processed by each algorithm in unit time were also
calculated to reflect the tracking speed of different algo-
rithms. The results are shown in Fig.11.

Fig.11 indicates that the tracking speeds of the correla-
tion filter-based tracking algorithms are all above 90FPS,
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FIGURE 11. Tracking speeds of algorithms.

higher than those of SAMF algorithms (19.74FPS) and the
Mean Shift algorithm (5.23FPS). Among others, the tracking
speed of the Kcf algorithm could be as high as 148.21FPS
because it requires no scale estimation of foreign objects.
The tracking speed of the Dcf algorithm could be reach
245.23FPS. Although the SA-Kcf algorithm with added scale
estimation was superior to the Kcf algorithm in tracking
accuracy, its tracking speed has decreased to 97.28 FPS. The
Defog-PSA-Kcf algorithm used principal component analy-
sis to greatly reduce the times of two-dimensional discrete
Fourier transform (2D-DFT) in the scale estimation process,
which made the tracking speed rise to 115.45FPS. Despite
of slight decrease in the tracking speed due to the defog-
ging process before the detection, its tracking accuracy was
improved. Compared with the Kcf algorithm, the tracking
accuracy of the Defog-PSA-Kcf algorithm increased dramat-
ically while only at the expense of slight decrease in tracking
speed (32.76FPS). Although the speed of Dcf algorithm is
faster than that of Kcf algorithm, the tracking speed of Kcf
algorithm and Defog-PSA-Kcf algorithm has generally met
the needs of this application scenario. Meanwhile, emphasis
is placed on improving the tracking accuracy of the target.
In this case, compared with the Kcf algorithm on the original
basis, Defog-PSA-Kcf algorithm substantially improves the
tracking accuracy of the target while only sacrificing the
speed of 32.76FPS, and has the function of tracking foreign
matters in foggy weather.

VI. CONCLUSION

The Defog-PSA-Kcf algorithm can integrate the dark channel
prior, kernelized correlation filter and intensive cyclic sam-
pling to accurately determine the location of foreign objects
in foggy weather. Improve the original Kcf algorithm: Add
dark channel prior to defogging the video sequence, and inte-
grate scale filters into the scale estimation stage by error least
squares sum function and scale pyramid technique. More-
over, by principal component analysis, the error caused by
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redundant information is reduced. The improved algorithm
effectively increases the tracking accuracy of foreign objects
in railway intrusion.

Experimental results show:

(1) The average accuracy of the proposed algorithm in four
video sequences can reach 74.81%, which is better than that
of the Mean Shift, Dcf and Kcf algorithms without scale
estimation of 25.74%, 52.91% and 55.9%, slightly higher
than that of the SA-Kcf and SAMF algorithms with scale self-
adaptation of 71.79% and 69.94%.

(2) The tracking speed of the algorithm is improved:
and the tracking speed of the Defog-PSA-Kcf algorithm
from97.28FPS to 115.45FPS, which is as fast as that of the
genetic Kcf algorithm.
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