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ABSTRACT In this paper, the problem of the joint estimation of the range and azimuth of multiple targets
in a multiple-input multiple-output stepped-frequency continuous wave radar system is investigated. Three
deterministic algorithms solving it through an iterative beam cancellation procedure are described; moreover,
an iterative technique, based on the expectation-maximization algorithm, is developed with the aim of
refining their estimates. The accuracy achieved by all the considered algorithms is assessed on the basis of
the raw data acquired from a low power wideband radar device. Our results evidence that these algorithms
achieve similar accuracies, but at the price of different computational efforts.

INDEX TERMS Beamforming, direction of arrival, multiple-input multiple-output, radar signal processing,
stepped-frequency continuous-wave.

I. INTRODUCTION
In recent years, substantial attention has been paid to the
development of signal processing techniques for multiple-
input multiple-output (MIMO) radar systems equipped either
with colocated antennas (e.g., see [1]–[7] and references
therein) or with distributed antennas (e.g., see [8]–[11] and
references therein). Such devices belong to the class of fre-
quency modulated continuous wave (FMCW) radars or to that
of stepped frequency continuous wave (SFCW) radars [12],
and operate at 5 GHz, 24 GHz or 77 GHz [13, Ch. 1] . In this
paper, we focus on the category of colocated MIMO SFCW
radars operating in time division multiplexing (TDM) mode
and radiating ultra-wideband signals. Our interest in these
devices is mainlymotivated by their low cost, good sensitivity
and ability to resolve closely spaced targets in range; for this
reason, their use in various healthcare and through-the-wall
applications is currently investigated (e.g., see [14]–[17]).
From a signal processing perspective, the detection and
estimation algorithms illustrated in the papers cited above
are mainly based on the use of: a) discrete Fourier trans-
form (DFT) methods for estimating range and direction of
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arrival (DOA) [18], and range and Doppler ; b) standard
beamforming methods [14]. All these methods, being deter-
ministic, offer the important advantage of a complexity sub-
stantially smaller than that of well known statistical methods
like the multiple signal classification (MUSIC) technique
[21], [22] and the estimation of signal parameters via rota-
tional invariance technique (ESPRIT) [23]. However, as far
as we know, no paper provides a comparative analysis of
various deterministic techniques that can be employed for
the detection of multiple targets and the estimation of their
range/DOA in colocated MIMO SFCW radars. This paper
aims at partly filling this gap, since it investigates a standard
beamformer, five iterative deterministic algorithms, and anal-
yses their accuracy and complexity. More specifically, in our
work, the following iterative algorithms are taken into consid-
eration: a) the so called CLEAN technique [24], [25]; b) the
estimation algorithm proposed by Wax and Leshem [26]
(dubbed WLA in the following and closely related to the
algorithm devised in [27] ); c) a modified version of the
WLA (dubbed MWLA); d) two estimation algorithms based
on the combination of the CLEAN and the MWLA with
the expectation-maximization (EM) technique [28]. These
algorithms may play an important role in a number of appli-
cations for various reasons; in fact, they process a single
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FIGURE 1. Representation of: a) an ULA (characterized by NT = 2 and
NR = 8), and the relevant geometric parameters referring to the l -th
target, the t-th TX antenna and the r -th RX antenna; b) the associated
virtual ULA (consisting of NT · NR = 16 antennas).

snapshot, in principle do not assume a prior knowledge of the
number of targets and, unlike the maximum likelihood (ML)
approach, involve one-dimensional (1D) or two-dimensional
(2D) maximizations only. Moreover, our numerical results,
based on the experimental data acquired from a low-power
radar device, show that they are able to achieve a good accu-
racy at a reasonable computational cost. It is also important
to point out that: 1) as far as we know, the application of the
standard beamformer and of the CLEAN technique to SFCW
radars has not been investigated previously; 2) the WLA has
been originally proposed for range and DOA estimation in a
narrowband system and its adaptation to a wideband radar
system is analyzed for the first time in this paper; 3) the
MWLA and the estimation algorithms based on combining
the CLEAN algorithm (or the MWLA) with the EM tech-
nique are new. The remaining part of this paper is organized as
follows. The models of the considered radar array and of the
measurements acquired through it in a MIMO SFCW radar
are illustrated in Section II. The above mentioned estima-
tion methods are described in Section III. Various numerical
results about the accuracy achieved by suchmethods and their
computational requirements are shown in Section IV. Finally,
some conclusions are offered in Section V.

II. ANTENNA ARRAY AND SIGNAL MODELS
In this Section we focus on a MIMO SFCW radar system
and describe the models adopted for its antenna array and the
received signal.

A. ARRAY MODEL
In the following we consider a colocated SFCW radar system
equipped with a uniform linear array (ULA) and operating in
a two-dimensional (2D) propagation scenario for simplicity;
an example of ULA, consisting of two transmit (TX) anten-
nas and eight receive (RX) antennas, is provided in Fig. 1-a)
(where the inter-antenna spacing is denoted d). We also
assume that the employed array consists of NT TX antennas
and NR RX antennas, so that (NT + NR) physical elements
are available. Therefore, a virtual array, consisting of NT ·NR

virtual elements, can be defined and exploited in processing
the available measurements acquired through the physical
receive antennas [29]. In the considered scenario, the abscissa
xt,r of the virtual element associated with the t-th TX antenna
and the r-th RX antenna is computed as

xt,r =
xt + xr

2
, (1)

with t = 1, 2, . . . ,NT and r = 1, 2, . . . ,NR; here, xt (xr )
denotes the abscissa of the considered TX (RX) antenna.
For instance, given the physical ULA illustrated in Fig. 1-a),
the virtual ULA shown in Fig. 1-b) can be easily generated.

B. RECEIVED SIGNAL MODEL
The MIMO radar system considered in this paper provides,
for any couple of TX and RX antennas, a set of Nf measure-
ments in the frequency domain; each measurement represents
an estimate of the frequency response of the communica-
tion channel between such antennas at a specific frequency.
In practice, these measurements are acquired by sounding the
communication channel at Nf equally spaced frequencies; in
our work, the n-th frequency (with n = 0, 1, . . . ,Nf −1) is
evaluated as

fn = f0 + n ·1f , (2)

where f0 and 1f denote the smallest carrier frequency of
the radiated signal and the step size, respectively. If the t-th
(r-th) antenna is selected for transmission (reception) and
the presence of L targets (i.e., detectable echoes) is assumed,
the radar generates the estimate

Ĥt,r [n] =
L−1∑
l=0

hl exp
(
−j2π fnτt,r [l]

)
+ nt,r [n] , (3)

of the frequency response Ht,r (f ) characterizing the com-
munication channel between the considered antennas at the
frequency fn; here, hl and τt,r [l] denote the complex ampli-
tude (accounting for both attenuation and phase shift) and
the overall delay, respectively, characterizing the l-th target,
and nt,r [n] represents the additive white Gaussian noise
(AWGN) affecting the considered estimate. In the following,
we assume that: a) the inequality |hl | ≥ |hl+1| holds for l = 0,
1, . . ., L−2, so that the received echoes are ordered according
to decreasing strenghts; b) all the targets are in far field; c) the
range Rl and the azimuth θl of the l-th target (with l = 0, 1,
. . .,N−1) aremeasuredwith respect to the centre of the array,
as illustrated in Fig. 1-a). The last two assumptions allow us
to express the delay τt,r [l] appearing in the right-hand side
(RHS) of eq. (3) as

τt,r [l] = τl +1τt,r [l] , (4)

where τl = 2Rl/c represents the round-trip delay associated
with the distance Rl (see Fig. 1-a)) and

1τt,r [l] =
dr − dt

c
sin(θl)

=
xr + xt
c

sin(θl) =
2xt,r
c

sin(θl), (5)
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represents the contribution of the spacing between the centre
of the virtual array (identified by the symbol ‘0’ in Fig. 1-b)
and coincident with the centre of the physical array shown
in Fig. 1-a)), and the virtual antenna associated with the t-th
TX and the r-th RX physical elements. In the last formula, c
denotes the speed of light, and dt ( dr ) represents the distance
of the t-th TX (r-th RX) antenna from the centre of the array
(note that the difference (dr −dt ) is denoted dt,r in Fig. 1-a)).
Substituting eq. (4) in the RHS of eq. (3 ) yields

H̃t,r [n] =
L−1∑
l=0

hlat,r (θl, fn)b(τl, fn)+ nt,r [n], (6)

where at,r (θl, fn) , exp(−j2π fn1τt,r [l]) and b(τl, fn) ,
exp(−j2π fnτl). Then, if the measurements are acquired from
multiple (say, NR[t]) RX antennas when the sounding signal
is radiated by the t-th TX antenna, the NR[t]-dimensional
measurement vector

H̃t [n] ,
[
H̃t,r1 [n] , H̃t,r2 [n] , . . . , H̃t,rNR[t] [n]

]T
(7)

=

L−1∑
l=0

hlat (θl, fn) b(τl, fn)+ nt [n] , (8)

becomes available at the frequency fn; here, nt [n] ,
[nt,r1 [n], nt,r2 [n], . . ., nt,rNR[t] [n]]

T is a noise vector, whereas
at (θl, fn) , [at,r1 (θl, fn), at,r2 (θl, fn), . . ., at,rNR[t] (θl, fn)]

T

denotes the steering vector associated with the azimuth θl and
the frequency fn.

III. RANGE AND DOA ESTIMATION ALGORITHMS
In this Section, we first provide various mathematical details
about the range and azimuth estimation algorithms developed
in our work (see Subsections III-A-D); then, we illustrate
their computational complexity (see Subsection III-E). In the
following, we always assume, for simplicity, that a single
transmit antenna (in particular, the t-th TX antenna) and
multiple (namely, NR[t]) receive antennas are exploited for
range and DOA estimation.

A. STANDARD BEAMFORMER
The standard beamforming algorithm employed in our work
is based on the cost function (e.g., see [25] and [30])

Jt
(
θ̃ , τ̃

)
1
=

∣∣∣St (θ̃ , τ̃)∣∣∣2 , (9)

where

St
(
θ̃ , τ̃

)
1
=

Nf−1∑
n=0

NR[t]∑
k=1

H̃t,rk [n]a
∗
t,rk (θ̃ , fn)b

∗(τ̃ , fn). (10)

It is well known that the cost function Jt (θ̃ , τ̃ ) (9) describes
the power density distribution of the received signal versus
the azimuth θ̃ and the delay τ̃ . For this reason, estimates of the
target parameters {(θl, τl)} (and also, approximately, of the
gains {hl}) can be computed by identifying the positions of

its local maxima; note also that, if a local maximum is found
at (θ̃ , τ̃ ) = (θ̂ , τ̂ ), the estimate

ĥ =
St
(
θ̂ , τ̂

)
Nf · NR[t]

(11)

of the complex gain h associated with the corresponding
target can be easily evaluated. The most computationally
demanding task in the implementation of this algorithm is
represented by the identification of the peaks of the function
Jt (θ̃ , τ̃ ) (9); in practice, this requires accomplishing a search
over a sufficiently fine rectangular grid in a 2D space. If the
elements of the antenna array are uniformly spaced and a uni-
form grid is employed, the evaluation of the function St (θ̃ , τ̃ )
(10) over such a grid can be efficiently accomplished by
means of a 2D DFT of proper order. However, independently
of the selected order, the resolution of this method in both
range and azimuth is limited by the fact that the contributions
of weak echoes might not be visible in the presence of strong
echoes due to spatially close targets; in fact, the local maxima
originating from the former echoes might be hidden by the
sidelobes associated with the latter ones. These considera-
tions motivate the use of the estimation algorithms described
in the following two subsections.

B. THE CLEAN ALGORITHM
In this subsection, the so called CLEAN algorithm, originally
proposed by Högbom [24] for radio astronomy applications,
is adapted to the measurement model (3) and the cost function
Jt (θ̃ , τ̃ ) (9 ). The resulting algorithm exploits the same cost
function as standard beamforming but, unlike it, employs
an iterative beam-removing process. This means that, within
each iteration of this algorithm, the parameters of a new target
are estimated and the contribution of this target (together with
those due to the targets identified in the previous iterations)
are subtracted from the function St (θ̃ , τ̃ ) (10 ). Then, this
resulting residual function is passed to the next iteration,
where it is processed to identify a new target. The processing
tasks executed by the CLEAN algorithm can be divided in
six steps; a detailed description of each of them is provided
below.

1) Initialization - Set the iteration index l to 0 and define
(see eq. (7))

H̃(0)t [n] 1=
[
H̃ (0)
t,r1 [n] , H̃

(0)
t,r2 [n] , . . . , H̃

(0)
t,rNR[t]

[n]
]T

= H̃t [n]. (12)

for n = 0, 1, . . ., Nf − 1.
2)Computation of the cost function over a rectangular grid

- Compute the cost function (see eq. (9))

J (l)t
(
θ̃ , τ̃

)
1
=

∣∣∣S̃(l)t (
θ̃ , τ̃

)∣∣∣2 , (13)

for θ̃ = θk
1
= θ0 + k1θ (with k = 0, 1, . . ., Nθ − 1) and

τ̃ = τp
1
= τ0 + p1τ (with p = 0, 1, . . ., Nτ − 1); here,
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the function S̃(l)t (θ̃ , τ̃ ) is defined as (see eq. (10))

S̃(l)t
(
θ̃ , τ̃

)
1
=

Nf−1∑
n=0

NR[t]∑
k=1

H̃ (l)
t,rk [n] a

∗
t,rk (θ̃ , fn)b

∗(τ̃ , fn), (14)

and θ0 (τ0), 1θ (1τ ) and Nθ (Nτ ) represent the lower limit
of the search interval considered for azimuth (delay), the step
size for the variable θ̃ (τ̃ ) and the overall number of values
selected for θ̃ (τ̃ ). In our work, τ0 = 2Rm/c, τNτ−1 = 2RM/c
and 1τ = 21R/c have been selected, where Rm, RM and
1R represent the minimum value, the maximum value and
the step size, respectively, for the trial value of target range.

3) Estimation of the parameters of a new target - Perform
the search for the global maximum over the set {J (l)t (θ̃k , τ̃p)}
(consisting of Nθ · Nτ values); the coordinates of the point
associated with the global maximum are denoted (θ̂l, τ̂l).
Then, compute the estimate (see eq. (11))

ĥl =
S(l)t (θ̂l, τ̂l)
Nf · NR[t]

(15)

of hl and store the estimates (ĥl, θ̂l, τ̂l).
4) Threshold test for identifying false targets - If

|ĥl | < T , (16)

where T denotes a proper (positive) threshold, go to step 6);
otherwise, proceed with the next step.

5) Cancellation of the last identified target - Cancel the
contribution of the last target in the measured frequency
response by computing the residual frequency response

H̃(l+1)t [n] , H̃(l)t [n]− ĥlat (θ̂l, fn)b
(
τ̂l, fn

)
, (17)

for n = 0, 1, . . ., Nf − 1. Then, increase the iteration index l
by one and go to step 2);

6) End - The final output provided by the algorithm is
expressed by the set of values {(θ̂l, τ̂l, ĥl); l = 0, 1 , . . .,
L̄ − 1}, where L̄, the estimate of L, is given by the last value
taken on by the index l.
It is important to point out that, before executing the

CLEAN algorithm, a proper value for the threshold T appear-
ing in eq. (16) must be selected. In fact, on the one hand,
relevant echoes might be missed if T is too large; on the other
hand, false targets might be identified if T is too small. This
problem can be circumvented by estimating L before running
the CLEAN algorithm (so that step 4) is no more accom-
plished). In principle, this result can be achieved by exploiting
the minimum description length (MDL) method [31] or the
Akaike Information Criterion (AIC) [32]; in practice, how-
ever, this entails a significant computational cost. Finally, it is
worth mentioning that the cancellation procedure expressed
by eq. (17) may suffer from error accumulation; this is due
to the fact that the effects of estimation errors accumulate
over successive iterations. This may result in poor accuracy;
in particular, in the presence of multiple and/or closely spaced
targets this could even result in the identification of false
targets.

C. THE WAX AND LESHEM ESTIMATION METHOD
In this subsection, we first describe a specific instance of the
estimation algorithm proposed byWax and Leshem [26] (this
algorithm is dubbed WLA in the following); then, we show
how this method can be modified to solve the numerical
problems experienced in its use.

The WLA is an iterative method devised to solve the prob-
lem of jointly estimating the DOA’s and the time delays of
multiple reflections occurring in a 2D multi-target scenario,
in which a known narrowband signal is transmitted; its main
feature is represented by the fact that it requires solving
one-dimensional (1D) optimizations only. Despite the differ-
ences between the scenario described in [26, Sec. II] and the
one considered in this paper (in which a wideband signal is
radiated), this algorithm can be properly modified to solve
our estimation problem since: 1) it operates in the frequency
domain (in fact, it processes the output of a DFT fed by the
time domain samples of the received signal); b) the struc-
ture of the received signal vector in the frequency domain
is similar to the one adopted for H̃t [n] (6) (the structures
become equivalent if we set s(ωk ) = 1 in eq. (9) of [26,
Sec. III]). A detailed derivation of the formulas employed
by the WLA can be found in [26, Sec. IV]; in the follow-
ing, we limit to summarise the steps it consists of and to
illustrate the employed formulas. Similarly as the CLEAN
algorithm, the WLA, in each of its iterations, estimates the
parameters of a new target; however, unlike the CLEAN
algorithm, the WLA updates the estimates of the parameters
related with the previously identified targets. Let us assume
now that, at beginning of the l-th iteration of the WLA (with
l = 1, 2, . . .), the estimates {(ĥ(l−1)k , θ̂

(l−1)
k , τ̂

(l−1)
k ), k =

0, 1, . . . , l − 1} of the l triplets {(hk , θk , τk ), k = 0, 1, . . . ,
l−1} are available. Then, the processing accomplishedwithin
this iteration evolves through the four steps described below.

1. Coarse estimation of a new DOA - In this step, a coarse
estimate θ̌ (l)l of the azimuth θl referring to the new (i.e.,
to the l-th) target is computed on the basis of the alternating
projection method illustrated in [27]. This requires:
a) computing the NR[t]× NR[t] covariance matrix

R(l)
xx ,

1
Nf

Nf−1∑
n=0

H̃(l)t [n]
(
H̃(l)t [n]

)H
(18)

of the residual channel response

H̃(l)t [n],H̃t [n]−
l−1∑
k=0

ĥ(l−1)k b
(
τ̂
(l−1)
k , fn

)
at (θ̂

(l−1)
k , fn); (19)

b) defining the orthogonal projection matrix

P
(
θ̃
(l))

, At

(
θ̃
(l))

Dt

(
θ̃
(l))−1

At

(
θ̃
(l))H

, (20)

where

At

(
θ (l)
)
, [at (θ0, fr ) , at (θ1, fr ) , . . . , at (θl, fr )] , (21)

is a NR[t]×(l+1) matrix,Dt (θ (l)) , AH
t (θ̃

(l)
)At (θ̃

(l)
), θ (l) ,

[θ0, θ1, . . . , θl], θ̃
(l)

, [θ̂ (l−1)0 , θ̂
(l−1)
1 , . . . , θ̂

(l−1)
l−1 , θ̃] and fr
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is a proper reference frequency (in our work, fr is always
equal to the central frequency fc of the wideband radiated
signal). In fact, given the matrices R(l)

xx (18) and P(θ̃
(l)
) (20),

the estimate θ̌ (l)l is computed as

θ̌
(l)
l = argmax

θ̃∈S
θ̃

tr
(
P
(
θ̃
(l))

R(l)
xx

)
, (22)

where Sθ̃ = [θ0, θNθ−1] is the search interval considered for
the azimuth of the new target, θ0 and θNθ−1 represent its lower
and upper limits, respectively, and tr(X) denotes the trace of
the square matrix X.

2. Estimation of target delays - In this step, an estimate τ̂ (l)k
of the delay τk (with k = 0, 1, . . . , l) is evaluated by solving
(l + 1) 1D optimization problems. This requires computing
first the (l + 1)-dimensional column vector

û(l)t,k [n] , Dt

(
θ̌
(l)
k

)−1
At

(
θ̌
(l)
k

)H
H̃(l)
t [n], (23)

with n = 0, 1, . . ., Nf − 1; here, θ̌
(l)
k , [θ̂ (l−1)0 , θ̂ (l−1)1 , . . .,

θ̂
(l−1)
l−1 , θ̌ (l)l ]. Then, the Nf × (l+1) matrix v̂(l)t,k is generated by
stacking the Nf row vectors {(û(l)t,k [n])

T , n = 0, 1, . . ., Nf −1}
according to their natural order. Finally, τ̂ (l)k is computed as

τ̂
(l)
k = argmax

τ̃∈Sτ̃

∥∥∥bH (τ̃ , fn) v̂(l)t,k∥∥∥2 (24)

for k = 0, 1, . . . , l, where Sτ̃ , [2Rm/c, 2RM/c], and ‖X‖
denotes the Euclidean norm of the complex vector X.
3. Fine estimation of target DOA’s - In this step, a fine

estimate θ̂ (l)k of θk (with k = 0, 1, . . . , l) is evaluated by
solving (l + 1) 1D optimization problems. More specifically,
θ̂
(l)
k is computed as

θ̂
(l)
k = argmax

θ̃∈S
θ̃

‖AH
t (θ̆

(l)
k )B̂(l)

t,k‖
2, (25)

where θ̆
(l)
k , [θ̂ (l)0 , . . . , θ̂

(l)
k−1, θ̃ , θ̂

(l−1)
k+1 . . . , θ̂

(l−1)
l ], B̂(l)

t,k
denotes the k-th column of the NR[t]× (l + 1) matrix

B̂(l)
t =

Nf−1∑
n=0

H̃t [n]rH
(
n, τ̂ (l)

)(Ĉ(l)
)−1

, (26)

r
(
n, τ̂ (l)

)
,
[
b
(
τ̂
(l)
0 , fn

)
, b
(
τ̂
(l)
1 , fn

)
, · · · , b

(
τ̂
(l)
l , fn

)]T
(27)

is an (l+1)-dimensional column vector, τ̂ (l) , [τ̂ (l)0 , τ̂ (l)1 , · · · ,
τ̂
(l)
l ] is an (l + 1)-dimensional row vector and

Ĉ(l) ,

Nf−1∑
n=0

r
(
n, τ̂ (l)

)
rH
(
n, τ̂ (l)

)
(28)

is a (l + 1)× (l + 1) matrix.
4. Estimation of target gains - In this step, the estimate

ĥ(l)k =
∥∥∥At

(
θ̂
(l)
k

)∥∥∥−2AH
t

(
θ̂
(l)
k

)
B̂(l)
t,k (29)

of the complex gain hk is computed for k = 0, 1, . . . , l; here,
θ̂
(l)
k , [θ̂ (l)0 , θ̂

(l)
1 , . . . , θ̂

(l)
l ] and ||At (θ̂

(l)
k )||2 = Nf · NR[t]

(||At (θ̂
(l)
k )||2 = NR[t] if a single frequency is considered).

This concludes the l-th iteration.
The WLA is initialized as follows. A coarse estimate θ̌ (0)0

of the first DOA (i.e., of the DOA referring to the dominant
target) is computed by means of eq. (22), where the covari-
ance matrix R(0)

xx refers to the vector H̃(0)t [n] = H̃t [n] for
any n (see eq. (7)) and At (θ̃0) , at (θ̃0, fr ) is employed in
the evaluation of the projection matrix P(θ̃

(l)
) (20). Then,

the initial estimates ĥ(0)0 and τ̂ (0)0 of the gain h0 and the delay
τ0, respectively, are computed on the basis of the procedure
illustrated in the second and fourth steps, respectively.

This algorithm deserves various comments. First of all, it is
worth mentioning that steps 2. and 3. can be repeatedmultiple
times within the l -th iteration of the WLA (before executing
step 4.) in order to progressively refine the estimates of both
the delays and the DOA’s; however, this results in an increase
of the overall computational cost. Second, a method for lim-
iting the number of iterations accomplished by the WLA is
required. In this case, similarly as the CLEAN algorithm,
the MDL or the AIC techniques can be employed to estimate
L before executing the WLA. However, a simpler alternative
to this approach, based on the evaluation of the energy

E (l)
H̃
=

Nf−1∑
n=0

∥∥∥H̃(l)t [n]
∥∥∥2 (30)

of the residual channel response H̃(l)t [n] (19) at the beginning
of the l-th iteration (with l > 1), can be employed for
estimating L within the WLA. In fact, the new approach
consists in stopping the WLA if

E (l−1)
H̃
− E (l)

H̃
< εH̃ , (31)

where εH̃ is a proper threshold; this means that the new
cancellation (see eq. (19)), based on the parameters of the
target identified in the last (i.e., in the (l−1)-th iteration), has
not resulted in a significant reduction of the residual energy.

Even if the WLA illustrated above is based on a rigor-
ous derivation, our simulations have evidenced that, in our
application, it cannot be employed as it is, since it suffers
from severe ill-conditioning in the presence of multiple and
highly correlated impinging signals. In fact, when this occurs,
some columns of the matrix At (θ̌

(l)
) (21) are similar and

this makes the computation of the projection matrix P(θ̃
(l)
),

of the vectors {û(l)t,k} and, consequently, of the estimates {τ̂ (l)}
(see eqs. (20), (23) and (24), respectively) inaccurate; this
results in a poor accuracy in DOA estimation. In our work,
to circumvent this problem, the WLA has been modified
in way that, when estimating the parameters of a new tar-
get, the presence of all the previously identified targets is
accounted for in the evaluation of the residual H̃(l)t [n] only
(see eq. (19)). This means that, in the l-th iteration, the avail-
ability of the estimates (ĥl, θ̂l, τ̂l) computed for l-th target is
not exploited to refine the estimates associated with the other
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detected targets. For this reason, the following changes are
introduced in the WLA:

a) In step 1., the residual H̃(l)t [n] is computed on the basis
of the recursive formula

H̃(l)t [n] , H̃(l−1)t [n]− ĥl−1b
(
τ̂l−1, fn

)
at (θ̂l−1, fr ), (32)

(which is employed in place of eq. (19)) and the matrix
At (θ̃

(l)
) (21) is replaced by the vector at (θ̃ , fc) (with θ̃ ∈ Sθ̃ )

when computing the projection matrix P(θ̃ ) (see eq. (20 ));
consequently, the optimization problem (22) can be reformu-
lated as (see [27, Sect. IV] for a proof)

θ̌l = argmax
θ̃∈Sθ

aHt,n(θ̃ , fr )R
(l)
xxat,n(θ̃ , fr ), (33)

where at,n(θ̃ , fr ) , ||at (θ̃ , fr )||−1at (θ̃ , fr ) and θ̌l corresponds
to θ̌ (l)l .

b) In step 2., the matrix At (θ̌
(l)
k ) is replaced by the vector

at (θ̌l, fc) in computing the vector û(l)t,l on the basis of eq. (23).
c) In step 3., the vector r(n, τ̂ (l)) (27) is replaced by the

scalar b(τ̂ (l)l , fn) in the evaluation of the matrix Ĉ(l)(28) (that
turns into a scalar too) and of the matrix B̂(l)

t,k (26).
The estimation algorithm resulting from all these modifi-

cations is called modified WLA (MWLA) in the following.
It is worth mentioning that:

1. The frequency domain cancellation formula (19)
employed in the MWLA is similar to that adopted in the
CLEAN algorithm (see eq. (17)). For this reason, the accu-
racy of the MWLA is also affected by the phenomenon of
error accumulation described at the end of subsection III-B.
2. In the l-th iteration of the MWLA, the parameters esti-

mated for the l -th target can be progressively refined by
repeating steps 2. and 3. multiple times. However, in this case,
the modified versions of eqs. (24) and (25) are employed for
k = l only.

3. The MWLA is faster than the CLEAN algorithm; this is
mainly due to the fact that the former algorithm, unlike the lat-
ter one, requires solving only 1D optimizations and does not
always exploit the information available at theNf frequencies

(for instance, the projection matrix P(θ̃
(l)
) (20) is computed

at the reference frequency only). Moreover, our computer
simulations have evidenced that the MWLA is numerically
stable and much faster than the WLA and that, despite the
substantial simplifications adopted in its derivation, achieves
a good accuracy.

D. AN EM-BASED ALGORITHM FOR REFINING THE
ESTIMATES OF TARGET PARAMETERS
As illustrated in the previous two subsections, the estimates
{(θ̂k , τ̂k , ĥk ); k = 0, 1, . . ., l}, referring to l distinct tar-
gets, are available at the end of the l-th iteration of both
the CLEAN algorithm and the MWLA. However, unlike the
WLA, no attempt is made in these two algoritms to refine
the estimates {(θ̂k , τ̂k , ĥk ); k = 0, 1, . . ., l − 1} computed
in the previous iterations, once the new estimate (θ̂l, τ̂l, ĥl)
becomes available at the end of the l-th iteration. Moreover,

as already mentioned at the end of the previous subsection,
the MWLA does not fully exploit the information available
at all the transmitted frequencies, since part of its processing
involves the measurements acquired at a reference frequency
only; this may substantially affect its accuracy.

These considerations have motivated the work illustrated
in this subsection and concerning the development of a com-
putationally efficient technique that, based on the whole set of
available measurements, can refine the estimates made avail-
able by the CLEAN algorithm or by the MWLA at the end
of a) each iteration or b) their final iteration. The technique
we have developed for this task is based on the EM algorithm
[28] and has been inspired by the fact that, for a given l, the n-
th measurement H̃t,r [n] (6) acquired on the r-th RX antenna
can seen as the superposition of (l+ 1) distinct deterministic
samples {hkat,r (θk , fn)b (τk , fn) ; k = 0, 1, . . . , l} (charac-
terized by the parameters {(hk , θk , τk ), k = 0, 1, . . . , l})
with a noise sample (including the contribution of both the
AWGN and the (L − 1− l) ignored targets). For this reason,
the frequency domain measurement model (6) is structurally
similar to the time domain model expressed by eq. (50)
in ref. [33, Sect. IV] and referring to the case in which a
deterministic waveform is received in the presence of channel
noise and multipath. This similarity allows us to develop an
EM-based iterative algorithm (called EM–based estimator,
EMBE) potentially able to refine the estimates of the param-
eters {(θk , τk , hk ), k = 0, 1, . . . , l} starting from their initial
values {(θ̂k , τ̂k , ĥk ); k = 0, 1, . . ., l}. Each of the EMBE
iterations consists of an estimation (E) step, followed by a
maximization (M) step; such steps are described below for the
p-th iteration (with p = 1, 2, . . . ,NEM , where NEM denotes
the overall number of iterations).
E step - This step aims at computing the NR[t]×Nf matrix

X(p)
t [k] = Ĥt

(
h̃(p−1)k , θ̃

(p−1)
k , τ̃

(p−1)
k

)
+β

(l)
k

H̃t −

L−1∑
q=0

Ĥt

(
h̃(p−1)q , θ̃ (p−1)q , τ̃ (p−1)q

)
(34)

for k = 0, 1, . . . , l; here, (θ̃ (p−1)q , τ̃
(p−1)
q , h̃(p−1)q ) denotes

the estimate of (θq, τq, hq) computed in the previous (i.e.,
in the (p − 1)-th) iteration of the EMBE for any q, H̃t is the
NR[t] × Nf measurement matrix resulting from the ordered
concatenation of the Nf column vectors {H̃t [n], n = 0, 1,
. . ., Nf − 1},

Ĥt

(
h̃, θ̃ , τ̃

)
, h̃Mt

(
θ̃ , τ̃

)
, (35)

Mt (θ̃ , τ̃ ) represents an NR[t]× Nf matrix, whose element
lying on its r-th row and its n-th column is defined as

mt,r,n(θ̃ , τ̃ ) , at,r
(
θ̃ , fn

)
b (τ̃ , fn) , (36)
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and {β(l)k , k = 0, 1, . . . , l} are real parameters (also known as
mixing coefficients) such that: a) βk > 0 for any k ; b)

l∑
k=0

β
(l)
k = 1. (37)

M step - In this step, the three-dimensional (3D) optimiza-
tion problem

min
h̃,θ̃ ,τ̃

∥∥∥X(p)
t [k]− h̃Mt

(
θ̃ , τ̃

)∥∥∥2→ h̃(p)k , θ̃
(p)
k , τ̃

(p)
k (38)

is solved, so generating the new (and, hopefully, more accu-
rate) estimate (θ̃ (p)k , τ̃

(p)
k , h̃(p)k ) of the triplet (θk , τk , hk ) (with

k = 0, 1, . . ., l). This problem can be efficiently solved by
first evaluating the minimum of the cost function appearing
in eq. (38) with respect to h̃, given the couple (θ̃ , τ̃ ); this
produces the estimate

ȟ(p)k
(
θ̃ , τ̃

)
=
(
nR[t]Nf

)−1
·

NR[t]−1∑
r=0

Nf−1∑
n=0

X (p)
t,r,n [k]m

∗
t,r,n

(
θ̃ , τ̃

)
(39)

of hk , where X
(p)
t,r,n [k] denotes the element lying on the r-th

row and the n-th column of X(p)
t [k] ( 34). Then, setting

h̃ = ȟ(p)k (θ̃ , τ̃ ) in the RHS of eq. (38) results in the 2D
optimization problem

min
θ̃ ,τ̃

∥∥∥X(p)
t [k]− ȟ(p)l

(
θ̃ , τ̃

)
Mt

(
θ̃ , τ̃

)∥∥∥2→ θ̃ (p)q , τ̃ (p)q , (40)

that can be solved through an exhaustive search over the
domain Sθ̃ × Sτ̃ , where Sθ̃ = [θ0, θNθ−1] and Sτ ,

[2Rm/c, 2RM/c]. Once θ̃
(p)
q and τ̃ (p)q become available, h̃(p)q =

ȟ(p)k (θ̃ (p)q , τ̃
(p)
q ) is computed on the basis of eq. (39). This

concludes theM step and, consequently, the p -th iteration of
the EMBE. At the end of the last (i.e., of theNEM -th) iteration
of the EMBE, the new estimate

(θ̂k , τ̂k , ĥk ) =
(
θ̃
(l,NEM+1)
k , τ̃

(l,NEM+1)
k , h̃(l,NEM+1)k

)
(41)

of the triplet (θk , τk , hk ) becomes available (with
k = 0, 1, . . . , l). Note also that the initialization of the first
iteration is simply accomplished by setting (θ̃ (0)k , τ̃

(0)
k , h̃(0)k ) =

(θ̂k , τ̂k , ĥk ) for k = 0, 1, . . ., l.
The EMBE deserves the following comments:
1. It does not have to be executed at the end of each iteration

of the CLEAN algorithm or of theMWLA; for instance, it can
employed once the most important targets (i.e., the targets
most contributing to the initial energy E (0)

H̃
; see eqs. (12)

and (30)) have been identified. Postponing the parameter
refinement based on the EMBE can have a significant impact
on the computational cost of the overall estimation procedure.

2. Its accuracy and convergence are influenced by the
values of the mixing coefficients {β(l)k , k = 0, 1, . . . , l}. The
simplest choice for these coefficients consists in assigning
the same value to all of them, so that β(l)k = 1/(l + 1) (with
k = 0, 1, . . . , l). However, our computer simulations have

evidenced that the estimation accuracy can be improved by
selecting

β
(l)
k ∝ |ĥk |

2 (42)

for k = 0, 1, . . . , l; in this case, the second term appearing
in the RHS of eq. (34) plays a more important role in the
case of stronger echoes. Note also that no rule is available
for a priori selecting a proper value for the parameter NEM ;
however, it should be expected that the EMBE convergence
becomes slower as l (i.e., as the number of identified targets)
increases.

3. Its most computationally intensive task is represented
by the solution of the 2D optimization problem (40). The
computational complexity of this problem can be mitigated
by restricting the search domain from Sθ̃ × Sτ̃ to [θ̃ (p−1)q −

1θEM/2, θ̃
(p−1)
q + 1θEM/2] × [τ̃ (p−1)q − 1τEM/2, τ̃

(p−1)
q +

1τEM/2], where the parameter1θEM (1τEM ) represents the
size of the new azimuth (delay) domain (the correspondig
size for the range domain is 1REM = 2c/1τEM ); the res-
olutions adopted for the range and the azimuth over the new
domain are denoted Rres and θres, respectively. This strategy
is motivated by the fact that the quality of the initial estimates
provided by the CLEAN algorithm (or by the MWLA) to
the EMBE is not usually poor; consequently, it is expected
that the new estimates θ̃ (p)q and τ̃ (p)q generated by the EMBE
in its p -th iteration will not be too far from θ̃

(p−1)
q and

τ̃
(p−1)
q , respectively. A potential alternative to this approach
is represented by the use of interpolation techniques in the
search of the local minima of the cost function appearing in
eq. (40) (see [34, Sec. IV]); however, this possibility is not
discussed further and is left for future research.

E. COMPUTATIONAL COMPLEXITY OF THE
PROPOSED ITERATIVE ALGORITHMS
The complexity of all the iterative algorithms described in
the previous paragraphs has been carefully assessed in terms
of number of floating operations (flops) to be executed in
the detection of L targets. The general criteria adopted in
estimating the computational cost of an algorithm are the
same as those illustrated in [35, Appendix A, p. 5420] and
are summarised in the Appendix, where a detailed analysis of
the costs of the different tasks accomplished by each iterative
algorithm is also provided. Our analysis leads to the conclu-
sion that the computational cost of the CLEAN algorithm,
of the MWLA, of the EMBE, of the CLEAN combined with
the EMBE, of the MWLA combined with the EMBE, and
of the MUSIC are approximately of orderO(NCL),O(NMW ),
O(NEMBE ), O(NCLE ), O(NMWE ) and O(NMU ), respectively,
with

NCL = 6Nf Nθ̃Nτ̃Nv + 2Nτ̃Nθ̃Nf
+ 2Nτ̃Nθ̃Nv + 15Nf Nv (43)

NMW = N 2
v
(
6Nf + 8Nθ

)
+ 30Nf Nv

+ 8Nτ̃Nf + 30Nθ̃Nv (44)
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TABLE 1. Azimuth and range of the targets characterizing scenario # 1,
and their estimates computed by three different algorithms (MUSIC,
CLEAN and MWLA).

FIGURE 2. a) Physical URA of the employed radar device;
b) representation of the associated virtual array and of the portion
(enclosed in the dashed rectangle) exploited by our estimation
algorithms.

NEMBE = L
[
28NvNf Nτ̃ ,EMNθ̃ ,EM

]
+ 2L2NvNf (45)

NCLE = 6LNvNf Nτ̃Nθ̃
+ 28LNEMNvNf Nτ̃ ,EMNθ̃ ,EM (46)

NMWE = LN 2
v
(
6Nf + 8Nθ

)
+ 28LNEMNvNf Nτ̃ ,EMNθ̃ ,EM (47)

and

NMU = 17 (l1l2)3 + 16 (l1l2)2
(
p1p2 + Nτ̃Nθ̃

)
. (48)

The parameters l1, l2, p1 and p2 appearing the last formula
are same as those defined in [22, Sec. IV].

IV. NUMERICAL RESULTS
The accuracy of the algorithms illustrated in the previous
Section has been assessed in an indoor area of small size,
because of the limited power radiated by the radar device
employed in our experiments. The numerical results shown in
this section refer to two different scenarios. The first scenario
is characterized by five targets and, more specifically, by
L = 5 identical metal discs, all having a diameter equal to
5.5 cm and placed on an horizontal plastic desk. The exact
range and azimuth of each of these targets are listed in Table 1.
In the second scenario, instead, L = 4 equal coins, having a
diameter of 2.0 cm, are placed at a uniform distance from our
radar device (see Fig. 3); their range and azimuth are listed
in Table 3.

The employed radar has been designed and manufactured
by Vayyar Imaging Ltd Company [36]. It operates in TDM
mode and it is equipped with the uniform rectangular array
(URA) illustrated in Fig. 2-a). This array consists of 20
antennas; moreover, four of them (more precisely, those iden-
tified by the numbers 1, 10, 11 and 20) can be employed
as TX antennas, whereas those identified by the numbers
2 − 20 as RX antennas only. The virtual array associated
with this physical URA is shown in Fig. 2-b) and consists
of 53 antennas; however, only the portion enclosed within the
dashed rectangle and containing 17 virtual elements (forming
a ULA) has been exploited by our estimation algorithms.
Moreover, the following values have been selected for the
parameters characterizing channel sounding in the frequency
domain (see eq. (2)): f0 = 5.05 GHz, 1f = 9.4 MHz and
Nf = 510 (so that the overall sweep bandwidth is about
5.0 GHz).

The raw data acquired by our radar over a single snapshot
have been processed by the algorithms illustrated in the pre-
vious Section. The estimation accuracy of each algorithm
has been assessed by evaluating the root mean square error
(RMSE)

ε̄X ,

√√√√L−1
L∑
l=1

[
Xl − X̂l

]2
(49)

and the peak error

ε̂X , max
l

∣∣∣Xl − X̂l ∣∣∣ (50)

for the range (X = R) and the azimuth (X = θ); here,
Xl and X̂l represent the exact value of the parameter to be
estimated for the l-th target (with l = 0, 1, 2, 3 and 4) and
the corresponding estimate. Our assessment of computational
requirements is based, instead, on assessing both the compu-
tation time (CT) and the overall computational complexity
required for processing the whole set of acquired data and
generating the estimates of range and azimuth for all the
targets.

The accuracy achieved by the standard beamformer,
the CLEAN algorithm and the MWLA in all the considered
scenarios has been assessed under the assumption that the
number of targets is known a priori; moreover, the following
values have been selected for the parameters defining the
search domain of these algorithms: a) θ0 = −90◦, 1θ = 1◦

and Nθ = 181 (Rm = 20 cm, 1R = 0.5 cm, RM = 120 cm
and Nτ = 201) for the sequence {θk} ({Rk}) of trial values
of the azimuth (range). A contour plot of the cost function
Jt (θ̃ , τ̃ ) (9) evaluated by the standard beamformer and the
CLEAN algorithm in the first considered scenario is illus-
trated in Fig. 4; the estimates of the azimuth and of the range
computed by the CLEAN algorithm, the MWLA and the 2D
MUSIC are listed in Table 1 (the acronyms CL, MW and
MU refer to the CLEAN algorithm, the MWLA and the
2D MUSIC algorithm, respectively), together with the exact
values of these quantities. The corresponding values of ε̄θ and
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FIGURE 3. Measurement setup employed in the second scenario. Four
metal coins are placed over a rectangular carton box.

FIGURE 4. Contour plot (in Cartesian coordinates) of the cost function
Jt (θ̃ , τ̃ ) (9) evaluated by the standard beamformer for the considered
propagation scenario. The peaks associated with the five targets are
clearly visible.

ε̄R (ε̂θ and ε̂R) computed on the basis of eq. (49) (eq. (50)) are
listed in Table 2 for all the considered algorithms and the 2D
MUSIC algorithm. These results show that all the estimation
algorithms achieve similar accuracies, but the best one is pro-
vided by theMWLA, which, luckily, requires the shortest CT.
Note also that all the iterative algorithms require a substan-
tially shorter CT than the MUSIC algorithm. It is also worth
mentioning that the MWLA offers a substantial advantage in
terms of computational complexity/time even for a different
number of targets. This can be easily inferred from Fig. 5, that
shows the computational complexity (assessed on the basis of
eqs. (43)-(48)) and the CT characterizing all the considered
iterative algorithms for a number of targets ranging from
2 to 8 (no result is shown for the MUSIC algorithm since its
complexity and computation time are much higher than those

FIGURE 5. Computational complexity (black) and computational time
(blue) versus the number of targets (L).

TABLE 2. Root mean square errors, peak errors and computation times
for all the analysed estimation algorithms. Scenario # 1 is considered.

of the other algorithms). The results shown in this figure lead
to the following conclusions:

1) The MWLA requires the lowest complexity. This is due
to the fact that this algoritm computes the steering vector
at the central frequency only and its estimation of targets
parameters does not involve the cost function (9).

2) The complexity assessed for the CLEAN algorithm is
higher than that of the MWLA combined with the EMBE
(MWLA+EMBE), since the most demanding task in the last
algorithm involves a limited search domain, as explained at
the end of subsection III-D. However, the CT observed for the
CLEAN algorithm is lower than that of theMWLA combined
with the EMBE (MWLA+EMBE). This is due to the fact the
MATLAB implementation of the former algorithm is more
efficient than that of the latter one. Note, in particular, that in
the latter algorithm the parameters of search domain Sθ̃ × Sτ̃
(and, consequently, the values of the steering vector) need to
be re-computed any time that a new target is found.

The potential improvement in estimation accuracy pro-
vided by the EMBE has been also assessed when it is
employed at the end of the last (i.e., of the fourth) iteration
of the CLEAN algorithm or of the MWLA, and its mixing
coefficients are computed on the basis of eq. (42). Moreover,
the following values have been selected for the parameters
of the EMBE: a) 1REM/2 = 0.5 cm and 1θEM/2 = 1◦

for the size of the search domain (the adopted resolutions are
Rres = 0.1 cm and θres = 0.1◦ for the range and the azimuth
variables, respectively); b) NEM = 5 for the overall number
of iterations. The estimation accuracies ε̄θ and ε̄R achieved by
combining the EMBE with the CLEAN algorithm and with
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TABLE 3. Azimuth and range of the targets characterising scenario # 2,
and their estimates computed by five different algorithms (MUSIC, CLEAN,
MWLA, CLEAN + EMBE and MWLA + EMBE).

TABLE 4. Azimuth and range of the targets in the considered six
configurations (all related to scenario # 2).

the MWLA are listed in Table 2 (where the acronyms CLE
and MWE refer to the combination of the CLEAN algorithm
with the EMBE, and to that of the MWLA with the EMBE,
respectively). From these results it is easily inferred that:

1) Combining the CLEAN algorithm with the EMBE does
not result in a better accuracy in range estimation, and slightly
improves the accuracy of azimuth estimates.

2) The best accuracy in azimuth estimation is obtained by
combining the MWLA with the EMBE; in fact, this reduces
the azimuth RMSE from 1.6◦ to 0.6◦. This improvement
can be related to the fact that the MWLA benefits from
the beamforming expressed by eq. (39) and accomplished
by the EMBE in estimating hk , given the trial values θ̃ and
τ̃ of the target azimuth and delay, respectively.

Our computer simulations have also evidenced that, if the
EMBE is used at the end of each iteration of the CLEAN algo-
rithm (or of theMWLA), no real improvement is obtained and
the computation time becomes substantially larger.

Let us focus now on the second scenario. In this case,
the estimates of the azimuth and of the range computed by
all the analysed algorithms, together with the corresponding
RMSEs, peak errors and CTs, are listed in Table 3. These
results lead to the conclusion that the MWLA achieves, once

TABLE 5. Average of root mean square errors and peak errors for all the
investigated estimation algorithms. The six configurations described in
Table 4 are considered for target geometry.

again, the best accuracy/CT tradeoff. Moreover, the use of the
EMBE in combination with the CLEAN algorithm or with the
MWLA provides some local improvement in the estimation
of the position of the targets; however, no significant variation
in terms of RMSE and peak errors is observed. Another
interesting result found in this scenario is represented by the
fact that the MWLA exhibits a good accuracy (better than
that of the other algorithms) even if the azimuth of the targets
is not small (e.g., the azimuth of the fourth target is equal
to 25.0◦).
Further numerical results about multiple variants of the

second scenario are given in Table 5. In this case, the number
of targets, that are all placed at a uniform distance (equal to
65 cm) from the radar device, ranges from two to four and a
uniform angular spacing between adjacent targets is selected.
Moreover, six distinct configurations for the target geometry
are considered (the range and azimuth of each target are given
in Table 4). The RMSEs and the peak errors resulting from
an average over the considered six configurations are listed
in Table 5. From these results it is easily inferred that the
iterative algorithms perform well and the best accuracy is
achieved again by the MWLA.

The last technical issue analysed in detail in our computer
simulation is represented by the behaviour of the residual
energy E (l)

H̃
( 30) available at the end of the l-th iteration in the

CLEAN algorithm and in the MWLA. Some results referring
to the first scenario are shown in Fig. 6. Note that, in this case,
two distinct sets of values are given for each algorithm, one
computed on the basis of the raw data acquired by our radar
(i.e., of the experimental data), the other one evaluated on the
basis of computer generated data (i.e., of simulated data); in
the last case, five point targets, whose azimuth and range are
the same as those given in Table 1, have been assumed. From
these results it is easily inferred that the iterative cancellation
procedure accomplished by the CLEAN algorithm results in
a steep descrease of the residual energy in the simulated case.
This suggests that a stopping criterion based on the inequality
(31) could be really used in this case. However, a substantially
smaller rate of decrease is observed for the residual energy of
the CLEAN algorithm in the case of experimental data. This
is mainly due to the fact that the metal discs employed in our
experiments cannot be represented as point targets; for this
reason, multiple echoes are received by the radar device from
the same target. As a matter of fact, when experimental data
are processed by the CLEAN algorithm, new echoes, very
close to those already identified, appear if its cancellation pro-
cedure proceeds beyond the 4-th iteration. A gap between the
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FIGURE 6. Normalized residual energy evaluated for the CLEAN algorithm
and the MWLA algorithm for the considered propagation scenario. Both
experimental and simulated data are considered.

residual energy computed on the basis of the simulated data
and that referring to the experimental data is also observed
in the case of the MWLA. However, the rate of decrease is
substantially smaller than that evalauted in the case of the
CLEAN algorithm in both cases. This depends on the fact that
the steering vector at (θ̂l−1, fr ) is evaluated at the reference
frequency fr only in the computation of the residual H̃(l)t [n]
(32) for any n; this unavoidably introduces an error. These
results suggest that, if the MWLA is employed, the stopping
criterion based on the inequality (31) can be still used, but the
threshold εH̃ has to be selected very carefully. Despite this
problem, we believe that the MWLA and the combination of
the MWLA with EMBE represent the best options for range
and azimuth estimation in SFCW MIMO radars.

Finally, it is worth mentioning that, in our measurement
campaigns, other scenarios, characterized by a different num-
bers of metal discs and target coordinates, have been also
considered. However, accuracies similar to the onesmeasured
for the two scenarios described above have been found, pro-
vided that the angular coordinates of the employed targets
were contained in a limited domain. In fact, it is well known
that the angular resolution 1θ of a MIMO radar decreases
proportionally with the deviation of the target direction from
the boresight of the employed array; more specifically, it can
be shown that (see [37, Eq.(14), Sec. II])

1θ =
λ

2D(NR · NT − 1) · cos(θ )
(51)

where D is the spacing of adjacent virtual elements, NR (NT )
is the number of receive (transmit antennas) and θ is the
direction of arrival (azimuth) of the impinging signal.

V. CONCLUSIONS
In this paper, five techniques for jointly estimating ranges and
DOA’s in a MIMO SFCW radar system have been described.
All these techniques are deterministic and estimate target
parameters through iterative cancellation procedures. Our
numerical results, based on real measurements, evidence that,
in a 2D scenario, the range and azimuth estimates computed

by all algorithms are reasonably accurate. However, on the
one hand, the MWLA achieves a slightly better accuracy
and requires a smaller computational effort than the CLEAN
algorithm; on the other hand, limited or no improvement
is found if the estimates generated by these techniques are
processed by an EM-based algorithm for refining them. Our
ongoing work concerns the extension of these techniques to
a 3D propagation scenario.

APPENDIX
In this Appendix, the computational complexity, in terms of
flops, is assessed for the deterministic techniques illustrated
in this paper and for the MUSIC technique. The general crite-
ria adopted in estimating the computational cost of each algo-
rithm are the same as those illustrated in [35, Appendix A,
p. 5420] and [38] and can be summarised as follows:
• 2d − 1 flops are required to compute the inner product
uT v of two d × 1 real column vectors;

• 6d + 2(d − 1) flops are required to compute the inner
product uTc vc of two d × 1 complex vectors;

• m[6n + 2(n − 1)]p flops are required to compute the
product between two complex matrices A ∈ Cm×n and
B ∈ Cn×p;

• d flops are required to find the maximum element of a
vector v ∈ R1×d ;

• O(n3) flops are required in a single iteration of the QR
algorithm employed for the computation of the eigenval-
ues of a square matrix A ∈ Cn×n.

A. COMPUTATIONAL COMPLEXITY OF
THE CLEAN ALGORITHM
The overall computational cost of each iteration of the
CLEAN algorithm can be expressed as

CCL = Cs + Cpd + Cpc + Cec, (52)

where

Cs = Nθ̃Nτ̃
[
2(Nf − 1)+ 2(Nv − 1)+ 6Nf Nv

]
(53)

is the contribution due to the evaluation of the cost function
of the standard beamformer (see eq. (9)), Nv = NT ·NR is the
overall number of virtual elements of radar array,

Cpd = Nθ + Nτ (54)

is the contribution of the search of a single maximum (θ̂l, τ̂l)
of the cost function in eq. (9),

Cpc = Nf (6Nv + 2Nv) (55)

is the contribution of the cancellation produre expressed by
eq. (17), and

Cec = Nf (6Nv + Nv − 1)+ Nf − 1 (56)

is the contribution due to the computation of the residual
energy (see eq. ( 30)). Substituting eqs. (53)-(56) in eq. (52)
and keeping only the most relevant terms leads to eq. (43).
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B. COMPUTATIONAL COMPLEXITY OF THE MWLA
The overall computational cost of each iteration of the
MWLA can be expressed as

CMW = Cr + Cct + Cv + Cτ + CB
+ Cft + Ch + Cpc + Cec, (57)

where

Cr = 6Nf N 2
v + 2Nv(Nf − 1) (58)

is the contribution due to the computation of the covariance
matrix R(l)

xx (18),

Cct = Nθ̃
(
22Nv + 8N 2

v − 2
)

(59)

is the contribution of the optimization problem expressed
by eq. (33) (this includes also the computation of the norm
||at (θ̃ , fr )||),

Cv = 8Nf Nv + 8Nv − 2Nf − 1 (60)

is the contribution due to the computation of the matrix v̂(l)t,k
(generated by stacking the Nf row vectors {(û(l)t,k [n])

T , n = 0,
1, . . ., Nf − 1} according to their natural order; see eq. (23)),

Cτ = 5Nτ̃ + 8Nτ̃Nf (61)

is the contribution due to the computation of the delays {τ̂ (l)k }
(see eq. (24)),

CB = 8Nf Nv + 8Nf − 2Nv − 2 (62)

is the contribution due to the computation of the matrix B̂(l)
t

(see eq. (26))

Cft = 5Nθ̃ + 8Nθ̃Nv (63)

is the contribution due to the refinement of the fine estimates
{θ̂

(l)
k } (see eq. (25)),

Ch = 17Nv − 1 (64)

is the contribution due to the computation of the complex
gains {ĥ(l)k } (see eq. (29)), Cpc is the cost of the cancella-
tion procedure expressed by eq. (32), and Cec is the contri-
bution due to the computation of the residual energy E (l)

H̃
(see eq. (30)).

Substituting eqs. (58)-(64) in eq. (57) and keeping only the
most relevant terms leads to eq. (44).

C. COMPUTATIONAL COMPLEXITY OF THE EMBE
The overall computational cost of a single iteration of EMBE
in the presence of L targets can be expressed

CEM = Cx + CM + Ch,EM + Co, (65)

where

Cx = 2(L + 2)NvNf (66)

is the contribution due to the computation of the NR[t] × Nf
matrices {X(p)

t [k]} (see eq. (34)),

CM = 6NvNf Nθ̃ ,EMNτ̃ ,EM (67)

is the contribution due to the evaluation of the function
Mt (θ̃ , τ̃ ) in eq. (36) ( Nθ̃ ,EM and Nτ̃ ,EM denote the size of
the sets Sθ̃ ,EM and Sτ̃ ,EM , respectively),

Ch,EM = Nθ̃ ,EMNτ̃ ,EM
[
6NvNf + 2(Nf − 1)

]
+ 2Nθ̃ ,EMNτ̃ ,EM (Nv − 1)+ 2 (68)

is the contribution due to the evaluation of the complex
amplitude ȟ(p)k

(
θ̃ , τ̃

)
(39) and

Co = (16NvNf − 2)Nτ̃ ,EMNθ̃ ,EM + Nθ̃ ,EM + Nτ̃ ,EM (69)

is the contribution originating from the optimization
problem (38).

Substituting eqs. (66)-(69) in eq. (65) and keeping only the
most relevant terms results in eq. (45).

D. COMPUTATIONAL COMPLEXITY OF
COMBINED ALGORITHMS
If the CLEAN algorithm and the MWLA are combined with
the EMBE algorithm, the overall computational costs are

CCLE = LCCL + NEMCEM (70)

and

CMWE = LCMW + NEMCEM , (71)

respectively (it is assumed that at least L targets are known);
here, NEM represents the number of iterations required by the
EMBE for the refinement of the estimated parameters. The
costs CCL , CMW and CEM appearing in the last two formulas
are given by eqs. (52), (57) and (65 ), respectively; substi-
tuting the expressions of these costs in eqs. (70) and (71)
and keeping only the most relevant terms yields eq. (46) and
eq. (47), respectively.

E. COMPUTATIONAL COMPLEXITY OF
THE MUSIC ALGORITHM
Our assessment of the computational complexity of the
MUSIC algorithm is based on the detailed description given
in [22, Sec. IV]; for this reason, the notation employed in that
paper is adopted in this paragraph. The overall computational
cost of this algorithm can be expressed

CMU = Cx + Ce + CM , (72)

where

Cx = 2(l1l2)2(8l1l2 + 8p1p2 − 4) (73)

is the contribution due to the computation of the data
smoothed covariance matrix C (see [22, Sec. IV, Eq. (12)]),

Ce ≈ (l1l2)3 (74)

is the contribution related with the computation of the eigen-
values of the matrix C and

CM = 2Nτ̃Nθ̃
[
8(l1l2)2 − l1l2 (8L − 2)+ L − 1

]
(75)

is the contribution due to the evaluation of the 2D-MUSIC
spectrum (see [22, Sec. IV, Eq. (14)]). Substituting
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eqs. (73)-(75) in eq. (72) and keeping only the most relevant
terms leads to eq. (48).

Finally, it is important to point out that:
a) In principle, the size of the window (l1, l2) and the size

(p1, p2) of the remaining part of the sampled matrix X, com-
puted on the basis of radar measurements (see [22, Eq. (11),
Sec. IV]) and characterized by a size Nf × Nv in our imple-
mentation, can be freely selected. In our work, l1 = 14,
l2 = 250, p1 = Nv − l1 + 1 and p2 = Nf − l2 + 1 have
been chosen.

b) The cost CM (72), unlike that of the other algorithms
considered in our work, does not depend linearly on L.
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