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ABSTRACT Studies of cancers have become diversified in recent years, especially with the availability of
multi-omics data. Establishing an effective integrative model to process more types of data has become a new
research hotspot. In order to conduct deeper mining in cancer, building a gene co-expression network based
on multi-omics data for more valuable clues is the useful means in this research. Based on the data-driven
problems of cancer networks, this paper proposes an integrated Graph Regularized Non-negative Matrix
Factorization model that can be used for network analysis called iGMFNA. We apply iGMFNA to two
cancer datasets from The Cancer Genome Atlas (TCGA) for analysis. We demonstrate that our method is
indeed more effective than other integrated methods. In terms of network analysis and mining, we also define
a multi-measure for nodes in the network to identify cancer-related genes. Through text mining, we verify
some genes discovered by iGMFNA.

INDEX TERMS Integrative model, network mining, gene co-expression network, TGCA.

I. INTRODUCTION
With the rapid development of high-throughput technologies,
we can accurately obtain various biological sequencing data
from organisms at various stages of development. These data,
collectively known as multi-omics data, include profiles of
gene expression, gene regulation, protein/RNA interactions,
mutation, methylation, and so on. Multi-omics data provide
the foundation of analysis for the diagnosis and treatment of
cancers [1]. In particular, the popular database, The Cancer
Genome Atlas (TCGA), aggregates these types of data and
provides a powerful channel for the studies of cancers based
on network models in recent years [2]–[4].

Many studies have demonstrated the possibility for deeper
data mining of multi-omics data. Multi-omics data are mea-
sured and collected in different ways; their distributions and
noise are variable. Most importantly, they represent different
aspects of a biological system, providing a variety of useful
views of the complete system. A joint analysis of the same
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set of sample data from a multi-omics group may get more
perceptual results than analyzing a single data and provide
a more comprehensive global view of the biological system.
However, the variety in multi-omics data also presents a new
problem: how to coordinate the differences among the types
of data to better reflect the characteristics of cancers. Individ-
ual models cannot address these data uniformly and achieve
good results. For the analysis of different types of data on
the same cancer, many experts and scholars have proposed
various integrated models. For example, Shen et al. proposed
iCluster to cluster various types of data, which is intended
to find new subtypes [5]. Zhang et al. introduced joint
Non-negative Matrix Factorization (jNMF) which integrated
the basic Non-negative Matrix Factorization (NMF) into an
integrated model and identified feature genes [6]. Wang et al.
proposed a Similarity Network Fusion (SNF) model to con-
duct sample fusion network construction for multi-omics data
and subtype analysis [3]. Yang et al. employed an integrative
NMF (iNMF) approach, which applied the L1-norm, to detect
relevant cancer modules [7]. Stražar et al. introduced an
integrative Orthogonality-regularized NMF (iONMF) model,
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based on NMF with orthogonal constraints, which had suc-
cess in the classification of multi-omics data [8]. In the exist-
ing methods, multi-omics data are typically used for sample
analysis, protein analysis or feature gene extraction analysis,
and the co-expression network is rarely used for analysis and
mining multi-omics information. The analysis of research
based on networks built from multi-omics data may be more
meaningful than networks built from a single type.

Based on the above problems, we discover that the series
of NMF for integrative models have good performance for
the reconstruction and mapping of multi-omics data. In view
of previous work on NMF integrated models, we propose an
integrated graph regularized non-negative matrix factoriza-
tion model that is based on the perspective of gene network
analysis and takes the spatial genometry of the genes into
consideration. This model is similar to the above-mentioned
integrated NMFmodels in form. However, the existing model
is slow when dealing with large-scale data. In addition, cur-
rent network models seldom consider the spatial geometric
characteristics of the data, and most of them lack guid-
ance for the construction of the gene co-expression network.
We expand a Graph Regularized Non-negativeMatrix Factor-
ization (GNMF) [9] into an integrative model for multi-omics
data network analysis, called iGMFNA. This model draws on
the data reconstruction characteristics of NMF and the inter-
nal mapping advantages of graph regularization. We apply
it to multi-omics data through matrix decomposition and
iteration and provide a considerable foundation for the con-
struction of gene expression networks. We confirm the effec-
tiveness of the method by studying three types of multi-omics
data for two cancers from TCGA: gene expression data
(GE), copy number variation data (CNV), and methylation
data (ME). The datasets from TCGA are high-dimensional
with small samples, and we hope to identify or predict
some cancer-related genes by establishing networks in large
number genes. Firstly, we introduce iGMFNA to carry out
data decomposition and fusion. Then, the gene co-expression
networks are constructed by mapping variables matrix that
corresponding three datasets. Finally, we can find some infor-
mation related to cancers from the networks by text mining.
In the aspect of network mining, to find more suspicious
nodes, we combine the local and global properties of nodes
of the networks.

The rest of this paper is organized as follows: Section II
introduces related methods and Section III is the introduction
for iGMFNA; the experiment results on two cancers data are
given in Section IV; and Section V provides the conclusion
of this paper.

II. RELATED WORKS
A. NMF
The original solution algorithm for NMF was proposed by
Lee and Seung [10], [11]. NMF has extensive applications in
image processing and bioinformatics. Given a non-negative
data matrix X ∈ Rm×n, two non-negative matrices W ∈

Rm×r and H ∈ Rn×r (r << min {m, n}) can approximate it

by minimizing the objective equation:

O1 =

∥∥∥X−WHT
∥∥∥2 , (1)

where X is original cancer data matrix in our hypothetical
experiment, m represents the number of genes (or samples)
and n is the number of samples (or genes). r is a measure
of dimensionality reduction. It can also be interpreted as the
projection center of dataX onW andH. The NMFmodel can
simply and effectively classify samples and identify differen-
tially expressed genes that are widely accepted by researchers
in bioinformatics.

B. GNMF
Compared with other improved NMF algorithms, NMF with
manifold learning considers the internal spatial structure of
the data and shows remarkable performance. The GNMF
model is a classical improved NMF algorithm that incorpo-
rates manifold learning. The model minimizes the following
equation:

O2 =

∥∥∥X−WHT
∥∥∥2 + λTr (HTLH

)
, (2)

where L = D − E (L ∈ Rn×n or Rm×m, Dii =
∑

j Eij),
D is diagonal matrix and the parameter λ ≥ 0 controls the
degree of smoothness of the equation. L is the Laplacian
matrix, whose concept is based on spectral graph theory and
manifold learning theory. Assume that the data vectors are
distributed on a low-dimensional manifold embedded in a
high-dimensional space: if two vectors xi and xj are close in
the high-dimensional data space, then zi and zj are also close
in the low-dimensional data space. Considering the neighbor
geometry structure, we can easily find k nearest neighbors of
every point xi and assign the edges to them. Then, we can
define the matrix of weight: E. There are usually three ways
to assign E. The most commonly used and most effective
way is 0-1 weight: eij = 1 if vertex i connects vertex j
or eij = 0. We also redefine a new vector to indicate xi
on low-dimensional space, Z = [z1, z2 · · · · · · , zN]T , inside
zi = [vi1, vi2, · · · , vik ]T , and European distance is defined as
follows:

D
(
zi, zj

)
=
∥∥zi − zj

∥∥2 . (3)

With the weight matrix, the initial equation can be written as:

R =
1
2

∑N

i,j=1

∥∥zi − zj
∥∥2Eij

=

∑N

i=1
zTi ziDii −

∑N

i,j=1
zTi zjEij

= Tr
(
HTDH

)
− Tr

(
HTEH

)
= Tr

(
HTLH

)
. (4)

This model considers the relationship between points, and
it will make the data more modular.
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III. METHOD
A. INTEGRATIVE FORMULA
The integrative model proposed in this paper is a data-
driven model. It is designed for multi-omics data. Gene
co-expression network analysis can increase the amount of
prior knowledge available to the network if it can enhance
intrinsic linkage of genes. Therefore, GNMF is introduced as
the basis for the integrating model. The formula of the model
can be written as follows:

O3 =

d∑
I=1

∥∥∥XI−WIHT
∥∥∥2 + d∑

I=1

λITr(HTLIH)

s.t.WI ≥ 0, H ≥ 0, I = 1, 2 . . . , d, (5)

where d is the number of datasets. One X corresponds to
one L, and the corresponding λ adjusts the smoothness of the
matrix. The iterative formula of the corresponding variable is
shown as follows:

(wI )ij ← (wI )ij
(XIH )ij

(WIHTH )ij
,

hij ← hij

∑d
I=1 (X

T
I WI + λIEIH )ij∑d

I=1 (HIW TW + λIDIH )ij
. (6)

H combines the information about different types of data in
the iterative process, which is more conducive to excavating
information and analyzing data theoretically. For the data
matrix X, the decomposition can get the matrix H related to
the sample. If it is transposed, it will decompose to obtain the
matrix H related to the gene. In the parameter test, we would
conduct the sample clustering to obtain sample information,
and when constructing the network, we want get the informa-
tion about genes to transpose X. In the experiments, we can
obtain a sample-related fusion matrix or a gene-related fusion
matrixH by transposing the dataX, and then carrying out the
network analysis.

B. NETWORK CONSTRUCTION AND MINING
We use the Pearson correlation coefficient (PCC) to measure
the relationships of nodes in networks to obtain the adjacency
matrix, and then sort absolute values of the PCC matrix and
perform polynomial curve fitting. Finally, we choose the first
inflection point as the filtering threshold of the matrix to
obtain final networks.

Node mining is a key step in network mining. We want
to find genes that may affect the entire network. When these
genes are abnormally expressed, they are highly related to
cancer. Therefore, we must consider some specific attributes
of each node. A node has many features and it is difficult
to determine which one is most prominent. Starting from the
local and global characteristics of the nodes, we hope to better
evaluate the criticality of a node in the network by combining
some pivotal features. After evaluating many measures, the
three most commonly applied are degree, betweenness and
closeness. To improve the discovery of abnormal nodes (indi-
cating genes that are associated with pathogenesis), we define

a multi-measure Score for every node x:

Score(x) = D× B
/
C, (7)

where D is degree of x, B is betweenness of x and C is close-
ness of x. Degree represents a local property of the node in
the network, and the betweenness and closeness reflect global
properties of the node in the network, so this metric combines
both global and local features of a node. By examining the
Score for every gene in the network, we can discriminate
which genes are most suspicious. The analysis of iGMFNA
is briefly shown in Figure 1. There are two major steps with
in iGMFNA: the first step is the process of integrative GNMF
and the second step is network construction based on the
fusion matrix and network mining.

FIGURE 1. This is the schematic diagram for network analysis of iGMFNA.
There are 3 types of datasets for cancer in this paper. The fusion matrix
can be calculated by integrative formula and build the networks. Through
the combination of different properties of nodes, some suspicious genes
and pathways can be detected.

IV. RESULTS
A. DATASETS
There are two datasets of cancers used in this study. They
are all multi-omics data: Cholangiocarcinoma (CHOL) and
Pancreatic adenocarcinoma (PAAD), obtained from TCGA.
Both cancer datasets contain three types of data: GE, ME,
and CNV. The integrated model in our experiments is a
three-dimensional integrated model (X1,X2,X3). All three
types of data were collected from the same samples and the
genes have been aligned experimentally. The status of the
samples covers two types: tumor or normal. CHOL contains
19876 genes in 45 samples (36 positive samples). PAAD
contains 19877 genes in 180 samples (176 positive samples).
Some datasets, such as CNV and ME, measured less expres-
sion values of genes than GE. Therefore, for different types
of the same cancer, we retain the common genes of every
datasets to keep the scale of the input matrices consistent.
The datasets are summarized as listed in Table 1. The ME
data contains negative values, so we normalized these data to
maintain suitable input for the model.

B. MODELS COMPARISON
For the three-dimensional integrative model, the parameters
we need to control are the dimension reduction parameter
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TABLE 1. Summary of dataset.

r and the joining manifold learning parameter λ. In par-
ticular, λ corresponds to three datasets with three variables
(λ1, λ2, λ3). To obtain better parameters and ensure the relia-
bility of the decomposed matrix, we use the sample-related
fusion matrix H that is ready for network construction to
test the effect of iGMFNA model. We determine λ and r by
comparing the clustering effect on the sample-related fusion
matrix H. The clustering effects are assessed by contrasting
clustered labels with true label. The accuracy (ACC) [12] as
evaluation function:

ACC =

∑n
i=1 δ (si,map (l i))

n
, (8)

where n is the total number of samples, δ (x, y) is a delta
function: if x = y, δ (x, y) = 1; otherwise, δ (x, y) = 0.
map (l i) is mapping function that maps each cluster label li to
original label si. Surprisingly, the performances in the experi-
ments are more stable and effective on all datasets when λI is
0.01 (this is the experimental experience value of this paper,
not unique to other datasets). Compared with parameter λ,
the dimension reduction parameter r has a greater impact.
Theoretically, the larger r can obtain the better recovery of
data. However, the principle of NMF is to restore the data best
by setting the smaller r (r << {m, n}) to achieve the purpose
of dimension reduction. We want to get the smaller r when
the clustering effect is guaranteed, and conduct a number of
experiments on every model to select the better parameter r ,
as shown in the Figure 2. As can be seen from Figure 2,
as r increases, the clustering accuracies of the four models
increase overall, especially iGMFNA, the improvement is
relatively stable. The CHOL in Figure 2(a) is more separable
and the overall effects of models are considerable. When
r = 5, the performances of four models are acceptable, and
it is also a stable rising point; the performances of models on
PAAD in Figure 2(b) are more unstable, when r = 40, it is
the point where the four models have the largest increase.

To prove the validity of our method, we compare several
similar types of integrative models. The jNMF model inte-
grates the basic NMF into an integrated model; iONMF and
iNMF aremodels that are based on orthogonal constraints and
sparse norm constraints, as listed in Table 2.

The results in Table 2 are the average clustering accuracy
(ACC_Mean) of 50 runs of each model. The first value is
mean value after 50 times, and the second value is the stan-
dard deviation (the squared value of variance). The setting
of the dimension reduction parameter r is unified across all

FIGURE 2. Selection of parameter r . For NMF, we chose a smaller r in the
better case of data recovery. When r = 5 and 40, the effect of each model
is good.

TABLE 2. Comparison of clustering accuracy for integrative models.

models for each dataset. As observed in Table 2, iGMFNA
is better able to reconstruct the CHOL dataset compared to
other integrative models. Since the CHOL dataset is more
separable, all models have good results. With the PAAD
dataset, the difference in the effect of these models is not par-
ticularly obvious. Further comparisons can better understand
the effects of these models.

Using the PAAD dataset as an example (the convergence
on CHOL is same as PAAD), the convergence of the four
models is presented in Figure 3. The error value [6] is defined
as follows:

Error =
d∑
I=1

mean(mean(
∣∣XI −WIHT

∣∣ ))
mean(mean(XI ))

, (9)

where mean(·) is the mean function (the average of all
the numbers in a matrix). The convergence of iGMFNA is
relatively stable. Although the convergence of iONMF is
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FIGURE 3. Comparison of convergence about four models. The
convergence effect of every model is considerable; the convergence
speed is still relatively fast. Among them, iONMF is the fastest, but
overall, iGMFNA has the best convergence effect. And the convergence
effect is still partially different.

TABLE 3. Run time comparison.

fast, the run time of iONMF is spent too much, and the
later convergence effect is inferior to iGMFNA. We also
compare the runtime of these models, as listed in Table 3
(on 64-bit win 7 operating system with 64GB RAM,
i7-6700 CPU, 3.40G HZ); the values of table 3 are the
runtime comparison of the above integrative models with
the same number of iterations. The smaller the runtime
is, the faster the model runs. iGMFNA is superior in run
time. In fact, this process is also related to the solution
of the single model. The solution process of the integrated
model relies mainly on the solution of the single model,
so the choice of single model becomes important in the
calculation.

Based on these experimental effects, we can consider that
the fusion matrixH related with genes based on this model is
reliable for network construction.

C. NETWORK ANALYSIS
For the two cancer datasets, we set 20 nodes as the baseline
to reserve 8 modules for every cancer (CHOL: 698 nodes,
1506 edges; PAAD: 542 nodes, 3211 edges). Modules are
visualized by Cytoscape [13] in Figure 4 and Figure 5. Larger
node size in the figure is related to a higher degree of con-
nectivity and darker color corresponds to larger betweenness.
Every node in the module has its own distinctive Score. The
node with the greatest Score is the object we will excavate.
In Figure 4, we display a major module based on CHOL.

TABLE 4. Genes with higther score on CHOL networks.

TABLE 5. Genes with higther score on PAAD networks.

This module contains the most nodes and can be considered
as the most productive module. The genes (nodes) extracted
from the modules according to their Scores can be as sus-
picious genes. We refer to the annotations on GeneCards
(https://www.genecards.org/) for the top 10 genes, listed
in Table 4.

Many cancers-related genes have been discovered in the
top 10 nodes. For example, research has indicated that poly-
morphisms of IL31 are linked with bladder cancer [14]; and
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FIGURE 4. Network modules construction based on CHOL. There is a major module. According to the definition of node evaluation, we find top 10
abnormal genes such as SMEK3P, OR8H1, IL31, DDX53, CXCL13, PAX4 and so on. Among them, IL31, DDX53, CXCL13 and PAX4 are associated with
cancers. Some genes have significant values on single measure, however, no cancerous records were found.

FIGURE 5. Network modules construction based on PAAD. We also keep 8 major modules. There are 5 genes from top 10 genes that are verified with
cancers (POPDC3, ARMCX3, PCDHGA3, PDK3, CETN2). Among them, CETN2 was validated in PAAD. Some genes with higher Scores have not been clinically
confirmed, such as OR5W2 and SLC25A14; they could be potential research targets.

IL31 has a potential role in the prognosis of endometrial
cancer patients [15]. DDX53 confers resistance to anti-cancer
drugs in breast cancer cells [16]. CXCL13 was shown to be
over-expressed in breast cancer tissues [17]; concentration of
CXCL13 in cerebrospinal fluid has also been correlated with
the degree of blood-brain barrier disruption in lymphoma
cases where malignant lymphocytes that have targeted the

central nervous system (CNS) [18]. Zhang et al. found that the
expression of PAX4 was dysregulated in a variety of human
cancers and considered that it may be important in multiple
tumors as a driver gene [19].

The modules reserved for PAAD are smaller in size,
as shown in Figure 5. We extracted some of the higher-Score
genes from these modules, as listed in Table 5.
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TABLE 6. Pathways detected by networks of different cancers.

The literature has reported that POPDC3 promoter regions
were hypermethylated in the gastric cancer cell lines where
they were silenced [20]. Du et al. discovered that reduction of
ARMCX3 was correlated with the development of non-small
cell lung cancer [21]. In Wilms’ tumor, hypermethylation
of PCDHs including PCDHGA3 led to gene silencing, and
β-catenin protein was elevated, promoting the activity of
β-catenin/T-cell factor (TCF) reporter activity and the Wnt
signaling pathway [22]. PDK3 is a potential target for mito-
chondrial modulation in colorectal cancer [23]. CETN2 and
seven other genes were validated in PAAD in [24]. Some
genes with higher Scores have not been clinically confirmed,
including SMEK3P, OR8H, OR5W2 and SLC25A14; their
potential significance values need further clinical study.

In the networks, we also match some pathways (by KEGG
and Reactome), which with the smaller p-values, as listed
in Table 6. The p-value and FDR are given by Reactome
FI in Cytoscape plugin when carrying out pathway enrich-
ment analysis, based on the fisher’s exact test. When the
p-value is larger, the evidence against the null hypothesis is
weaker. Conversely, the smaller the p-value is, the stronger
the evidence against the null hypothesis. Related studies
have shown that Wnt signaling pathway is closely related to
PAAD [25], [26]; in fact, it is a pathway closely associated
with many other cancers such as breast, lung, ovarian, and
colorectal.

D. DISCUSSION
The generation of multiple types of data makes the use of an
integrated model (sometimes also called a multi-view model)
widely proposed in recent years. Among many machine
learning methods, a series of models based on NMF have
always performed well in data recovery and reconstruc-
tion [27]. For the analysis and construction of the integra-
tion model, we have achieved some improved results in the
fusion matrix obtained by iGMFNA. The integrated model-
iGMFNA, which incorporates manifold learning concepts,
takes the internal geometry of every type of data into account,
allowing the heterogeneity of the data to be captured, so that
the decomposedmatrix maintains the internal relationships of
multi-omics data. Building networks on a fusion matrix with
multi-source information is also conducive to detecting more
information about cancer.

Considering the node mining of the networks, there are
many node properties and each property has a reasonable
interpretability. Within a biological network, it is diffi-
cult to estimate which property can distinguish abnormally
expressed genes well, and it is difficult to have a unified

measure for mining nodes in the network. Since some abnor-
mal nodes may not be prominent when using a single feature.
In this case, it is necessary to combine features in a rational
way to achieve better outcomes, so we define a new scoring
measure by combining several important node features. The
measurement of node mining (Score) is also obtained by a lot
of experimental tests and comparisons. When mining suspi-
cious nodes in the network, we consider the local and global
characteristics of each gene so that every gene is subject to a
relatively comprehensive assessment, leading to the discov-
ery of more valuable nodes. For example, in Figure 4, IL31,
whose abnormal expression was confirmed to be associated
with multi-cancers, was not the most prominent on the three
scales individually (degree, betweenness and closeness), but
it could be detected under the multi-measure Score.

Through the iGMFNA model, we found many genes that
are associated with many cancers. We speculate that the
pathogenesis of the two cancers in this study is likely to
be related to other cancers, and the development of PAAD
and CHOL can be accompanied by the development of other
cancers. Of course, iGMFNA can also be applied for the
mining and analysis of other cancer or disease data, and the
model can be continuously expanded with the increase of
available multi-omics data.

V. CONCLUSION
This paper proposes a network analysis method based on the
integrated model, iGMFNA. By introducing manifold learn-
ing into the integrative model, spatial geometry of different
types of data is detected and the construction of networks for
node relationships is improved. When compared with similar
types of integrated NMF models, iGMFNA is still superior
in data fusion and reconstruction. In terms of node mining,
we comprehensively analyze and combine several different
important properties of nodes in the network to define a
Score with local and global characteristics for each node for
identification of suspicious genes. Based on the networks
constructed from the fusion matrix, we have identified some
higher-Score genes and pathways that are closely related to
the prognosis and pathogenesis of multi-cancers, and it can
be inferred that these genes may have similar effects in the
two cancers we analyzed. Other genes detected in this paper
are also worthy of further clinical validation and analysis.
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