
Received August 20, 2019, accepted August 31, 2019, date of publication September 4, 2019, date of current version
September 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939332

Generalized Belief Entropy and Its Application
in Identifying Conflict Evidence
FAN LIU1,2, XIAOZHUAN GAO3, JIE ZHAO3, AND YONG DENG 3
1Yingcai Honors of School, University of Electronic Science and Technology of China, Chengdu 610054, China
2School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
3Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding author: Yong Deng (dengentropy@uestc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573290, Grant 61503237, and Grant
61973332.

ABSTRACT Dempster-Shafer evidence theory has wide applications in many fields. Recently, A new
entropy called Deng entropy was proposed in evidence theory. Some scholars have pointed out that Deng
Entropy does not satisfy the additivity in uncertain measurements. However, irreducibility may have a huge
effect. The derived entropy from complex systems is often irreducible. Inspired by this, generalized belief
entropy is proposed. The belief entropy implies the relationship between Deng entropy, Rényi entropy,
Tsallis entropy. In addition, numerical examples demonstrate the flexibility of the proposed Rényi-Deng
(R-D) entropy to measure the uncertainty of basic probability assignment (BPA). Finally, a method for
identifying contradictory evidence based on Rényi-Deng (R-D) entropy is proposed. The experiment show
the effectiveness of the proposed method.

INDEX TERMS Belief entropy, Deng entropy, Rényi entropy, Tsallis entropy, uncertaintity, Dempster Shafer
evidence theory, conflict evidence.

I. INTRODUCTION
Dempster-Shafer theory of evidence [1], [2] was proposed
by Dempster [1] and developed by Shafer et al. [2].
Evidence theory as a framework of uncertain reasoning is
closely related to probability theory. It can be considered as
a generalization of probability, assigning belief to power set
of the propositions rather than single elements. This theory
allows for the combination of evidence from different sources
and draws a certain degree of conclusion, taking into account
all available evidence. There are a lot of applications based
on Dempster-Shafer theory and fuzzy sets theory, such as
uncertainty [3]–[12], data fusion [13], [13]–[20], decision
[16], [20]–[28].

How to measure uncertainty has always received
widespread attention in evidence theory. Most of the
measurements on uncertainty are related to Shannon
entropy [29]. Yager [30] generalizes the entropy in prob-
ability theory to evidence theory. This entropy is based
on the belief structure, which provides an indicator of the
quality of the evidence. Maeda and Ichihashi [31] propose an
uncertain measurement method. This uncertainty consists of
two types, one containing the uncertainty of Shannon entropy
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determination and the other related to the cardinality of the
set.

Recently, a new entropy namedDeng entropy [32] has been
proposed to solve uncertain measurement. This entropy is
directly related to basic probability assignment. When the
belief is assigned to the element of frame of discernment
instead of the power set, this entropy is degenerated into the
Shannon entropy. Deng entropy quickly attracts the attention
of many scholars. Abellán [33] discusses the property of
Deng entropy and points out that this entropy could quantify
two types of uncertainty in evidence theory. There are other
discussions and applications about Deng entropy such as
decision, Uncertainty [34], [35], data fusion.

Entropy is diverse [36]–[39]. After Clausius [40] proposed
the concept of entropy, various entropies were raised.
Rényi et al. [41] proposed an entropy called Rényi entropy.
Rényi entropy [41] has many applications in quantum infor-
mation [42], information theory [43], and fractal theory [44].
Tsallis entropy as an extension of Boltzmann entropy is a
non-extensive entropy [45]. Tsallis entropy has been con-
troversial since it was proposed [46]. After many complex
systems are derived from Tsallis entropy [47], Tsallis entropy
has received a lot of attention.

It can be proved that Shannon entropy [29] is a
special case of Tsallis entropy [45], Rényi entropy [41].
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So a natural question is what is the relationship between
Deng entropy [32] and Rényi entropy [41] and Tsallis
entropy [45] ? Therefore, in order to explore the relation-
ship between Deng entropy [32] and these two entropies.
In this paper, we propose generalized Deng entropies,
which reveal the relationship with these entropies. With the
discussion of the generalized Deng entropy, Rényi-Deng
(R-D) entropy demonstrates the potential for uncertain mea-
surements. Finally, a method based on Rényi-Deng (R-D)
entropy to identify contradictory evidence is proposed.

The structure of this article is shown as follows. Section 2
introduces some basic knowledge. Section 3 proposes the
generalized Deng entropy. In section 4, some examples are
discussed. Section 5 shows how to identify contradictory
evidence. Finally, conclusion is given.

II. PRELIMINARIES
In this section, Dempster shafer evidence theory [1], Deng
entropy [32], Rényi entropy [41], Tsallis entropy [45] will be
briefly introduced.

A. DEMPSTER SHAFER EVIDENCE THEORY
Compared to probability theory, Dempster shafer evidence
theory [1], [2] has a greater advantage to deal with uncertainty
[48]–[53]. First, Dempster shafer evidence theory [1], [2] can
deal with more uncertainty in the real world. In Dempster
shafer evidence theory [1], [2], belief is not only assigned to
a single element but also to a multi-element set [54]. In addi-
tion, it does not require prior information before combining
each individual evidence [55]. Some basic knowledge about
evidence theory is introduced.

Suppose the power set of the frame of discernment X =
{θ1, θ2, . . . , θN } is P(X ). Where the elements of X are mutu-
ally exclusive and exhaustive. For a frame of discernment X ,
the mass function is defined as follows [2].

m : P(X ) 7→ [0, 1] (1)

where m(φ) = 0 and
∑

Ai∈P(X ) m(Ai) = 1.
In evidence theory, mass function is also called basic

probability assignment (BPA), indicating the degree of belief
in Ai ∈ P(X ).
Dempster’s combination rule is a simple method to

combine different evidences. If there are two mass functions:
m1, m2, when combine these two functions. The rule is
presented as follows:

m(A) =

∑
B
⋂
C=A&B,C,A∈P(X )m1(B) · m2(C)

1− K
(2)

with

K =
∑

B∩C=8

m1(B) · m2(C) (3)

where the K is the degree of evidences, the Dempster’s rule
is only applicable to such two evidences, when 0 < K < 1.

B. DENG ENTROPY
Deng entropy in evidence theory is defined as follows [32].

Ed = −
∑
i

m(Ai) ln
m(Ai)

2|Ai| − 1
(4)

where Ai ∈ P(X ) and |Ai| is the cardinality Ai. the
term

∑
i m(Ai) ln(2

|Ai| − 1) can be interpreted as a mea-
sure of total nonspecificity in the BPA m, and the term
−
∑

i m(Ai) lnm(Ai) is the measure of discord of the mass
function among various focal elements [32].

Note that the base of all log functions is taken as a natural
number e.

C. RÉNYI ENTROPY
For a discrete random Y , its probability distribution is PY =
{pi|i = 1, 2, . . . ,N }. Rényi entropy is defined as follows
[41].

Hα =
1

1− α
ln(
∑
i

pαi ) (5)

where α ≥ 0&α 6= 1. When α = 1, the Rényi entropy is
shown as follows.

Hα =
∑
i

pi ln pi

D. TSALLIS ENTROPY
Given a discrete Z , its probability distribution is PZ =
{pi|i = 1, 2, . . . ,N }. Tsallis entropy is defined as follows
[45].

Hq =
k

q− 1
(1−

∑
i

pqi ) (6)

where q and k are parameters. For analysis, k is set to 1, which
means that Tsallis entropy can be expressed as follows.

Hq =
1

q− 1
(1−

∑
i

pqi ) (7)

where q ≥ 0&q 6= 1. When q = 1, the Tsallis entropy is
shown as follows.

Hq =
∑
i

pi ln pi

III. GENERALIZED DENG ENTROPY
In evidence theory, Klir and Wierman define five types of
uncertainty requirements: probability consistency, set con-
sistency, range, subadditive, additivity [56]. Are all the
uncertain measurements satisfying these five requirements?
Abellán [33] points out that Deng entropy [32] does
not satisfy additivity and sub-additiveness. In fact, Tsallis
entropy [45] does not satisfy additivity [57]. Rényi pointed
out that if the additivity of Rényi entropy [41] is strictly satis-
fied, then there are only two possible Kolmogorov-Nagumo
functions [57]. For example, in some systems involving long
range forces [57], this kind of nonlinear system has come to
receive widespread attention [58].
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Deng entropy has been proposed as an entropy in the field
of information [32], although there is currently no physi-
cal explanation. However, this non-additive nature seems to
imply a connection to more complex systems.

A. RÉNYI-DENG (R-D) ENTROPY
In order to bridge the relationship between Deng entropy [32]
and Rényi entropy [41], a generalized Rényi-Deng (R-D)
entropy is proposed as follows.

Eα(m(Ai)) =
1

1− α
ln

[∑
i

(
m(Ai)

2|Ai| − 1
)α(2|Ai| − 1)

]
(8)

Theorem 1: When α → 1, Rényi-Deng (R-D) entropy
degenerates into Deng entropy.

Proof:

lim
α→1

Eα(m(Ai))

= lim
α→1

∂
∂α

[
ln(
∑

i(
m(Ai)
2|Ai|−1

)α(2|Ai| − 1)
]

∂
∂α
(1− α)

=

∑
i e
α ln( m(Ai)

2|Ai|−1
)
(2|Ai| − 1) ln( m(Ai)

2|Ai|−1
)

−
∑

i(
m(Ai)
2|Ai|−1

)α(2|Ai| − 1)

= −

∑
i

m(Ai) ln
m(Ai)

2|Ai| − 1

�
It can be easily proved that the Rényi-Deng (R-D) entropy

degenerates into Rényi entropy when the belief is assigned
to single elements. Naturally, when α → 1 and belief is
assigned to single elements, the Rényi-Deng (R-D) entropy
degenerates into Shannon entropy.

B. TSALLIS-DENG (T-D) ENTROPY
Tsallis-Deng (T-D) entropy is proposed as follows, which
may expose the relationship between Deng entropy [32] and
Tsallis entropy [45].

Eq(m(Ai)) =
1

q− 1

[
1−

∑
i

(
m(Ai)

2|Ai| − 1

)q
(2|Ai| − 1)

]
(9)

Theorem 2: When q → 1, Tsallis-Deng (T-D) entropy
degenerates into Deng entropy.

Proof:

lim
q→1

Eq(m(Ai))

= lim
q→1

∂
∂q

[
1−

∑
i(

m(Ai)
2|Ai|−1

)q(2|Ai| − 1)
]

∂
∂q (q− 1)

= −

∑
i

e
q ln( m(Ai)

2|Ai|−1
)
(2|Ai| − 1) ln(

m(Ai)
2|Ai| − 1

)

= −

∑
i

m(Ai) ln
m(Ai)

2|Ai| − 1

�
Similarly, it can be proved that the Tsallis-Deng (T-D)

entropy degenerates into Tsallis entropy when the belief is

assigned to single elements. Naturally, when q → 1 and
belief is assigned to single elements, the Tsallis-Deng (T-D)
entropy degenerates into Shannon entropy.

C. MAXIMUM TSALLIS-DENG (T-D) ENTROPY AND
RÉNYI-DENG (R-D) ENTROPY
The principle of maximum entropy is also called the principle
of maximum information. Themaximum entropy distribution
exists in nature. In probability theory, given the basic event,
the maximum Shannon entropy corresponds to the same
probability of all basic events. Then, in the evidence theory,
given the power set of the basic event, how to find the cor-
responding maximum Tsallis-Deng (T-D) and Rényi-Deng
(R-D) entropy? What is the BPA in the case of maximum
confidence entropy?
Theorem 3: the maximum Rényi-Deng (R-D) entropy in

power set if and only if: m(Ai) = 2|Ai|−1∑
j(2
|Aj|−1)

.

Let

qαi = (
m(Ai)

2|Ai| − 1
)α(2|Ai| − 1) (10)

It can be found that

qi =
m(Ai)

2|Ai| − 1
α
√
2|Ai| − 1 ≥ 0 (11)

Then, let

Hα(qi) = Eα(m(Ai)) =
1

1− α
ln

[∑
i

(qi)α
]

(12)

According to [59], the function Hα(qi) is concavity.
Proof: Suppose

Eα(m(Ai)) =
1

1− α
ln

[∑
i

(
m(Ai)

2|Ai| − 1
)α(2|Ai| − 1)

]
and ∑

i

m(Ai) = 1

Let

Fα(m(Ai)) =
1

1− α
ln

[∑
i

(
m(Ai)

2|Ai| − 1
)α(2|Ai| − 1)

]
+ λ(

∑
i

m(Ai)− 1)

In order to deduce the maximum Rényi-Deng (R-D)
entropy in power set, let

∂Fα(m(Ai))
∂m(Ai)

=
1

1− α

( m(Ai)
2|Ai|−1

)α(2|Ai| − 1)∑N
i (

m(Ai)
2|Ai|−1

)α(2|Ai| − 1)
+ λ

That is,

m(A1)
2|A1| − 1

=
m(A2)

2|A2| − 1
= · · · =

m(AN )
2|AN | − 1

where N = 2|X | − 1 and λ is a parameter.
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Therefore, when m(Ai) = 2|Ai|−1∑
j(2
|Aj|−1)

, the Rényi-Deng

(R-D) entropy has maximum entropy. �
The same proof process has
Theorem 4: the maximum Tsallis-Deng (T-D) entropy in

power set if and only if: m(Ai) = 2|Ai|−1∑
j(2
|Aj|−1)

.

From the process and conclusion of the proof, it can be
found that the maximum Rényi-Deng (R-D) entropy and the
maximum Tsallis-Deng (T-D) are not related to the probabil-
ity of each basic event but to the size of the power subset.
More importantly, the maximum entropy is not affected by
the parameters α and q.

D. RÉNYI-TSALLIS-DENG ( R-T-D)
It should be known that Deng entropy [32], Rényi
entropy [41], Tsallis entropy [45] are three different
entropies. Rényi entropy and Tsallis entropy respectively
generalized to quasi-linear means and non-extensive sys-
tems [57], while Deng entropy comes from evidence theory
based on power set. However, an entropy can be found so
that it can degenerate to non-linear means, non-extensive sets,
power set, respectively.

Masi [57] proposes a unified entropy that links Rényi
entropy [41] and Tsallis entropy [45]. Inspired by him, a
unified form of entropy is proposed which could link Rényi
entropy [41], Tsallis entropy [45] and Deng entropy [32].

Et,r (m(Ai)) =
1

1− r

[∑
i

(
m(Ai)

2|Ai| − 1
)t (2|Ai| − 1)

] 1−r
1−t

− 1


(13)

It can be proved that when r tends to t, the Rényi-Tsallis-
Deng ( R-T-D) degenerates into Tsallis-Deng (T-D) entropy.
when r tends to 1, the Rényi-Tsallis-Deng ( R-T-D) entropy
degenerates into Rényi-Deng (R-D) entropy Eq. 8.
Theorem 5: When r → 1, Tsallis-Deng (T-D) entropy

degenerates into Rényi-Deng (R-D) entropy.
Proof:

lim
r→1

Et,r (m(Ai))

= lim
r→1

∂
∂r

[[∑
i(

m(Ai)
2|Ai|−1

)t (2|Ai| − 1)
] 1−r

1−t
− 1

]
∂
∂r (1− r)

= lim
r→1

1
1− t

[∑
i

(
m(Ai)

2|Ai| − 1
)t (2|Ai| − 1)

] 1−r
1−t

· ln

[∑
i

(
m(Ai)

2|Ai| − 1
)t (2|Ai| − 1)

]

=
1

1− t
ln

[∑
i

(
m(Ai)

2|Ai| − 1
)t (2|Ai| − 1)

]
�

It can be proved that when r tends to t, the R-T-D entropy
degenerates into Tsallis-Deng (T-D) entropy.

FIGURE 1. The relationship between entropies.

To summarize, the relationship between all entropy is
shown in Figure 1.

IV. NUMERICAL EXAMPLES
A. EXAMPLE 1
How to measure uncertainty has always been an important
issue [60], [61]. Since Deng Entropy was proposed, it has
been considered as an effective means of measuring BPA
uncertainty [32]. In order to compare the generalized Deng
entropy with Deng entropy, some special cases are presented
in this subsection.

Iris data set [62] is used to compare the uncertainty of
various entropy measurements. Iris has a total of 150 data in
three categories: Setosa (a), Versicolour (b), andVirginica (c).
There are four attributes for each data: Sepal Length (SL),
Sepal Width (SW), Petal Length (PL), and Petal Width (PW).
There are many ways to generate BPA [63]. A method based
on membership graph is used to generate BPA in this paper.
The 60% data is randomly selected to construct a membership
graph to generate BPA. The membership graph is shown
in Figure 2.

Starting from a value of 0, the step size is 0.1 up to a value
of 10. A total of 101 BPAs are generated, all of which are
shown in Figure 3.
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FIGURE 2. Membership graph.

FIGURE 3. Distribution of different BPA.

FIGURE 4. Rényi-Deng (R-D) entropy and Deng entropy.

First, in order to compare the effects of Rényi-Deng
(R-D) entropy and Deng entropy to measure uncertainty of
BPA. The parameter α is set to three cases. 0 < α < 1, 1 < α,
a >> 1. The specific setting is α1 = 0.5, α2 = 1.5, α3 = 50.
In Figure 4, when α1 = 0.5, the Rényi-Deng (R-D) entropy

is greater than 0, the change trend is the same as Deng
entropy and the change is relatively flat. When α2 = 1.5,
all Rényi-Deng (R-D) entropy are less than 0 and the trend of
change is consistent with Deng entropy. When α3 = 50, all
Rényi-Deng (R-D) entropy basically tends to zero.

The second is to compare the uncertainty of Tsallis-Deng
(T-D) entropy and Deng entropy to measure BPA.

FIGURE 5. Tsallis-Deng (T-D) entropy and Deng entropy.

Corresponding to the three cases of q, respectively, 0 < q <
1, q > 1, q >> 1. Here q is set to q1 = 0.5, q2 = 1.5,
q3 = 50.
In Figure 5, the Tsallis-Deng (T-D) entropy of all cases is

less than 0. When q = 50, the Tsallis-Deng (T-D) entropy
basically approaches −49.

B. EXAMPLE 2
As can be seen from example 1, when 0 < α < 1, the change
trend of R-D entropy is the same as that of Deng Entropy.
Moreover, the trend of change is relatively flat. The influence
of parameter α on Rényi-Deng (R-D) entropy is further dis-
cussed. Given a frame of discernment X = {1, 2, . . . , 15}
with 15 elements. An BPA function is shown as follows.
m({3, 4, 5}) = 0.05, m({6}) = 0.05, m({A}) = 0.8, m({X}) =
0.1. where the elements of set A are gradually increased from
1 to 14 [32].

In Example 2, α is set to α1 = 0.1, α2 = 0.5, α3 =
0.9, respectively. From Figure 6, as the size of A increases,
the values of Rényi-Deng (R-D) entropy and Deng entropy
increase. The value of α is close to 0, and the change of Rényi-
Deng (R-D) entropy is more gentle.

The relative uncertainty between the Rényi-Deng (R-D)
entropy measurement data has the same effect as the Rényi-
Deng (R-D) entropy measurement. It is also adjustable.
The Rényi-Deng (R-D) entropy can adjust the parameter α
according to the actual situation. If the uncertainty value of
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FIGURE 6. Comparison between Deng entropy and Rényi-Deng (R-D)
entropy.

the processed data fluctuates greatly, the parameter a can be
adjusted to be small.

V. IDENTIFY CONFLICT EVIDENCE
In data fusion, when evidence is highly conflicting
[3], [7]–[9], [18], [19], [64], it often leads to counter-intuitive
results. So some scholars have proposed some methods to
solve this problem [65]–[75], which are mainly divided into
two aspects: modifying Dempster’s rule of combination and
evidence [16], [17], [23], [25], [26], [76], [77].

However, there are few ways to identify contradictory
evidence. Based on the graph model, a method for identifying
contradictory evidence has been proposed.

A graph model was proposed to better handle basic prob-
ability assignment(BPA). This model not only exploits the
potential relationship between BPAs, but also does not lose
any valid information.

A. IDENTIFY MODEL
The graph is a mathematical structure that can be used
to study the relationships between objects. In this section,
a mapping is created, which links a set of BPAs to a graph.
Definition 1: The mapping f is definded as follow.

f : M = {m1,m2, . . . ,mN } 7→ G(V ,E) (14)

where M is the set of N BPAs. G(V ,E) is a graph, V and E
are sets of all nodes and edges, respectively.
Note that V = {v1, v2, . . . , vN }, where vi = mi,

(i = 1, . . . ,N ). and E =
{
ekij|i, j ∈ N , k ∈ M

}
, where eij

is the edge of node vi and node vj. The value of ekij represents
the k-th attribute of the relationship between two nodes, such
as distance, similarity, et al.

The main idea is to use the theory and techniques of graph
to study DST. The core issue is how to find a mapping f so
that the graph could reflect some structure between the BPAs.
Inmathematical statistics, relative entropy is a tool tomeasure
the difference between two probability distributions, but this
relative entropy is asymmetrical. Inspired by relative entropy,
a relative Rényi-Deng (R-D) entropy in DST is proposed to
measure the relationship of BPA.

Definition 2: Given two BPAs: m1 and m2, the BPA rela-
tive Rényi-Deng (R-D) entropy is defined as follows.

D(m1||m2) =
1

1− α
ln

 ∑
i(
m1(Ai)
2|Ai|−1

)α(2|Ai| − 1)∑
i(
m2(Ai)
2|Ai|−1

)α−1(2|Ai| − 1)

 (15)

It can be proved that when belief is assigned to a single
element and α tends to 1, relative R-D entropy degenerates
into relative entropy. In order to make the relative Rényi-
Deng (R-D) entropy symmetric, Eq. (15) can be expressed as
follows.

D(m1||m2) =
1

2(1− α)
ln

 ∑
i(
m1(Ai)
2|Ai|−1

)α(2|Ai| − 1)∑
i(
m2(Ai)
2|Ai|−1

)α−1(2|Ai| − 1)


+

1
2(1− α)

ln

 ∑
i(
m2(Ai)
2|Ai|−1

)α(2|Ai| − 1)∑
i(
m1(Ai)
2|Ai|−1

)α−1(2|Ai| − 1)


(16)

The specific method can be seen in Algorithm 1.

Algorithm 1 Identify Conflict Evidence Algorithm
Input:

The set of BPAs, M = {m1,m2, . . . ,mN };
Output:

Adjacency matrix of G(V ,E), A;
1: for i = 1 to N do
2: for j = 1 to N do
3: eij = D(mi||mj);
4: end for
5: end for
6: for i = 1 to N do
7: for j = 1 to N do
8: if 0 < eij < λ then
9: aij = 1;
10: else
11: aij = 0;
12: end if
13: end for
14: end for

Where aij is the element of matrix A and λ is a threshold.
In Algorithm 1, the output is a Adjacency matrix A that

represents the connection between the evidences. When the
node i and node j are linked, the evidence mi and mj are
considered to be non-conflicting, otherwise the conflicting.

In thismodel, the attribute assigned to the edge eij is the dif-
ference between the evidences (relative entropy of evidence).
In relative entropy, if the relative entropy of the two proba-
bility distributions is smaller, the difference is considered to
be smaller. Therefore, it can be reasonably considered that
when eij is less than the threshold l, the evidences m1 and m2
are disconnected (conflicting).

In order to better verify Algorithm 1, an example is
described.
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FIGURE 7. Connection of Evidence.

TABLE 1. Comparison with other methods.

Example 1: In a multi-target recognition system, it is
known that there are a total of three targets: X = {a, b, c}.
Assuming that there are a total of five sensors, respectively
obtaining five evidences [78]:
m1 : m1(a) = 0.41,m1(b) = 0.29,m(c) = 0.30;
m2 : m2(a) = 0.00,m2(b) = 0.90,m(c) = 0.10;
m3 : m3(a) = 0.58,m2(b) = 0.07,m(a, c) = 0.35;
m4 : m4(a) = 0.55,m4(b) = 0.10,m(a, c) = 0.35;
m5 : m5(a) = 0.60,m5(b) = 0.10,m(a, c) = 0.30;
In this example, λ is set

∑
i,j eij/(N (N − 1)).

According to Algorithm 1, its final result is shown in
Figure 7.
According to the results, it is shown that the evidences:

m1,m3,m4, andm5 are not conflicting, but the evidencem2 is
in conflict with any other evidence. Therefore, there is reason
to believe that the evidencem2 is a ‘‘problem’’ evidence. Then
the evidence m2 is removed. After re-using the dempster’s
rule of combination, the comparison with other methods is
shown in Table 1.
In Table 1, the evidence m2 is the cause of the failure of

the Dempster’s rule of combination [79]. After the evidence
m2 is removed, the other evidences are merged one after the
other. The judgment target obtained is consistent with the
judgment result of the method proposed by Murphy [80],
Yong et al. [81], and Jiang et al. [78]. Therefore, identifying
conflicting evidence is also a feasible way to resolve the
fusion of evidence, when evidences are highly conflicting.

VI. CONCLUSION
In this paper, we proposed generalized Deng entropies.

Our contributions are to propose generalized Deng
entropies which reveal the relationship among Deng entropy,

Rényi entropy and Tsallis entropy. Then, explain how the
generalizedDeng entropy degenerates into different entropies
by simple proof. Further, we discuss the generalized Deng
entropy and find that the parameters do not affect the distri-
bution of the maximum entropy.

Finally, the numerical examples are used to compare the
uncertainty of BPA with Deng entropy and Tsallis-Deng
(T-D) and Rényi-Deng (R-D) entropy. Rényi-Deng (R-D)
entropy has a great advantage in measuring the uncertainty
of BPA. It not only has Deng Entropy to measure the same
effect of BPA uncertainty but also has adjustability. Because
the value of parameter α can be set according to the actual
situation. In addition, an identify model was proposed based
on Rényi-Deng (R-D) entropy to identify contradictory evi-
dence, experiment showing the effectiveness of the method.

The shortcoming of our work is that we only unify these
three kinds of entropy from the formula, not to derive a more
unified one from the micro level, and we will work hard in
this direction in the future.
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