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ABSTRACT As various video services become popular, video streaming will dominate the mobile data
traffic. The H.264 standard has been widely used for video compression. As the successor to H.264,
H.265 can compress video streaming better, hence it is gradually gaining market share. However, in the short
term H.264 will not be completely replaced, and will co-exist with H.265. Using H.264 and H.265 standards,
three types of frames are generated, and among different types of frames exist dependencies. Since the
radio resources are limited, using dependencies and quantities of frames in buffers, an appropriate time
division transmission policy can be applied to transmit different types of frames sequentially, in order to
avoid the occurrence of video carton or decoding failure. Polling models with batch Markovian arrival
process (BMAP) and across-queue state-dependent service discipline are considered to be effective means
in the design and optimization of appropriate time division transmission policies. However, the BMAP
and across-queue state-dependent service discipline of the polling models lead to the large state space and
several coupled state transition processes, which complicate the performance analysis. There have been
very few researches in this regard. In this paper, a polling model of this type is analyzed. By constructing
a supplementary embedded Markov chain and applying the matrix-analytic method based on the semi-
regenerative process, the expressions of important performance measures including the joint queue length
distribution, the customer blocking probability and the customer mean waiting time are obtained. The
analysis will provide inspiration for analyzing the polling models with BMAP and across-queue state-
dependent service discipline, to guide the design and optimization of time division transmission policies
for transmitting the video compressed by H.264 and H.265.

INDEX TERMS Across-queue state-dependent, batch Markovian arrival process, H.264/H.265, polling
model, video streaming.

I. INTRODUCTION
With the fast development in the fields of mobile communica-
tions and Internet of Things (IoT) technologies, the number of
network access devices is increasing dramatically. Ericsson’s
mobility report [1] reveals that, by the end of 2024 there will

The associate editor coordinating the review of this article and approving
it for publication was Zhihan Lv.

be 8.9 billion mobile subscriptions, excluding the cellular IoT
connections and fixed wireless access subscriptions. More-
over, the video services are becoming common, such as video
part of most online content (news, ads, social media, etc.),
video anywhere and anytime, emerging immersive media for-
mats and applications (360-degree video, AR, VR), etc. In the
future, the video streamingwill dominate themobile data traf-
fic. Ericsson’s mobility report [1] reveals that, in 2024 video
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will account for around 74% of mobile data traffic. Thus,
it is worth improving the quality of video services in mobile
networks with limited radio resources.

The H.264 video compression standard was developed
in 2003, and it is suitable for encoding High Definition (HD)
video (1920 × 1080 resolution or higher) [2]. Up till now,
H.264 has been widely used for video compression. In 2013,
the video compression standard H.265 was developed as the
successor to H.264. H.265 has better compression for video
streaming, and it is suitable for high-resolution compression
such as 4K (4096 × 2160 resolution) and 8K (7680 × 4320
resolution) [3]. Compared with H.264, H.265 can save up to
50% of bandwidth and storage for the same video quality.
Nevertheless, the H.265 standard needs more resources to
decode or encode. In view of the cost and user’s necessary
needs, H.264 will not be completely replaced in the short
term, and it will co-exist with H.265. Using H.264 and
H.265 standards, three types of frames are generated in video
compression, as I-frame (intra frame), P-frame (predictive
frame) and B-frame (bi-predictive frame). As shown in Fig. 1,
I-frames are complete pictures and don’t require other types
of frames to decode; P-frames require I-frames and other
P-frames to decode; B-frames require I-frames and P-frames
to decode. If one I-frame is lost, some P-frames and B-frames
may not be decoded accurately; if one P-frame is lost, some
B-frames and other P-frames may not be decoded accurately.

FIGURE 1. Diagram of the relationship among I-frame, P-frame and
B-frame.

In wireless networks, some devices and data centers are
responsible for transmitting the collected or stored video data
to the destination. For example, the cameras transmit the
collected video data to the processing center through wireless
networks, and the cloudlet/fog is deployed on the edge of
wireless networks to transmit the stored video to the request-
ing user. The video data can be compressed by H.264 and
H.265 in the upper layer. Due to the dependencies among the
generated frames and the limited radio resources, different
types of frames can be assigned different transmission prior-
ities, as I-frame> P-frame> B-frame, and they are arranged
in different buffers of the data link layer. An appropriate time
division transmission policy is implemented in the scheduler
to transmit different types of frames orderly.

Polling models are considered to be effective means in
the design and optimization of time division transmission
policies. The classical polling model consists of one server

FIGURE 2. Structure of the classical polling model.

and several queues (see Fig. 2), and the server renders ser-
vices to customers in different queues, according to the given
polling and service discipline. For the key concepts and per-
formance measures, the correspondence between the polling
model and the time division transmission policy is shown
in Table 1. In this paper, we study the polling model and its
performance analysis method which can be used in the design
and optimization of time division transmission policies for
transmitting the video compressed by H.264 and H.265.

A. RELATED WORKS
Up to now, various polling models have been analyzed. These
polling models can be divided into two categories, i.e. ones
with intra-queue autonomous service discipline and ones with
across-queue state-dependent service discipline, according to
whether the service discipline attached to one queue depends
on the states of other queues.

1) POLLING MODELS WITH INTRA-QUEUE
AUTONOMOUS SERVICE DISCIPLINE
In this type of polling models, the service discipline attached
to each queue is independent of the states of other queues. For
each queue, the common used service disciplines are exhaus-
tive, gated, number-limited, time-limited and their variations.
Some examples are listed in the following.

In [4], Sikha and Manivasakan analyzed the polling model
which consists of one server and two finite-buffer queues.
The service disciplines attached to the two queues both are
number-limited, and the limited number for the first queue
is more than the one for the second queue. Customers arrive
at the first queue according to the Poisson process, and
the second queue is assumed to be saturated. The steady
state queue length distribution of the first queue at server
departure epochs was analyzed, and its calculation formula
was obtained. In [5], Winands et al. analyzed the polling
model which consists of one server and two infinite-buffer
queues. The server alternately attends the two queues, and the
service disciplines attached to the first and second queue are
respectively exhaustive and number-limited. The customer
arrival processes of the two queues are independent Poisson
processes. The probability generating functions of the joint
and marginal queue length distributions both at service com-
pletion epochs and at arbitrary instants were obtained, and
they are the basis of calculating the mean queue lengths.
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TABLE 1. The correspondence between the polling model and the time division transmission policy.

In [6], Boxma et al. analyzed the polling model which
consists of one server and multiple infinite-buffer queues.
The server attends these queues periodically according to
a general service order table, and the queues with higher
priority are attended frequently. Each queue is attached to one
of the three service disciplines, including exhaustive, gated
and number-limited (1-limited). For each queue, the numbers
of arrivals in every time slots are independent and identically
distributed random variables. The pseudoconservation law
for this model was derived, and it can be used to obtain
approximations for individual mean waiting times. In [7],
van Wijk et al. analyzed the polling model which also con-
sists of one server and multiple infinite-buffer queues. The
server attends these queues in a cyclic manner, and each
queue is served according to themultigated service discipline.
The customer arrival processes of the queues are indepen-
dent Poisson processes. The mean visit time of each queue,
the pseudoconservation law, the distribution of waiting times
and the mean waiting times were derived.

In [8], Saffer and Telek presented a unified analysis method
for the cyclic polling model which consists one server and
multiple infinite-buffer queues. The server is entitled to
serve the queues in a cyclic manner, and the service dis-
ciplines attached to the queues have the following prop-
erties: memoryless property, work-conservation property,
non-preemptive service property, determination property.
The most commonly known disciplines, such as exhaustive,
gated, binomial exhaustive, binomial-gated, non-exhaustive,
semi-exhaustive, limited-N and non-preemptive limited-T, all
satisfy the above properties. The customer arrival processes
of the two queues are independent batch Markovian arrival
processes (BMAPs) [9].

2) POLLING MODELS WITH ACROSS-QUEUE
STATE-DEPENDENT SERVICE DISCIPLINE
For this type of polling models, there is at least one queue
whose service discipline depends on the states of other
queues. Some examples are listed in the following.

In [10], the polling model consists of one server and two
infinite-buffer queues. The first queue is served according

to the exhaustive service discipline until it is empty, at this
time, if the second queue is not empty, the server switches
to the second queue. During the service time of the second
queue, (a) if the second queue is not empty while the number
of customers in the first queue exceeds a certain threshold,
the server switches to the first queue immediately; (b) if the
second queue is empty while the number of customers in the
first queue does not exceed a certain threshold, the server still
switches to the first queue. The customer arrival processes
of the queues are independent Poisson processes. The joint
queue length distribution was determined.

In [11], [12], the polling models consist of one server
and three infinite-buffer queues. The first queue is served
according to the exhaustive service discipline until it is empty,
then the server switches to the second queue. During the
service time of the second queue, if there exist some cus-
tomers arriving at the first queue, the service in progress
(if any) is interrupted and the server switches to the first queue
immediately; otherwise, the second queue is served until it
is empty, and then the server switches to the third queue.
During the service time of the third queue, if there exist some
customers arriving at the first queue, the service in progress
(if any) is interrupted and the server switches to the first
queue immediately; otherwise if the number of customers
in the second queue exceeds a certain threshold, the service
in progress (if any) is interrupted and the server switches to
the second queue immediately, otherwise the third queue is
served until it is empty, and then the server switches to the sec-
ond queue. In the second and third queue, the interrupted
service will be started from beginning again in the next cycle.
For each queue, customers arrive independently according to
the Poisson process. In [11], the exact heavy-traffic limits
of the polling system were derived first, and then based on
these results, an approximation of the tail asymptotics of the
stable queues was provided, which describes the heavy-traffic
behaviors more distinctly. In [12], the stationary joint queue
length distributions were derived, and then the behaviors in
the light-traffic and heavy-traffic scenarios were presented,
finally, interpolation approximations of the mean sojourn
times were provided.
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In [13], Cao and Xie proposed a cyclic polling model with
BMAP and across-queue state-dependent service discipline,
and analyzed its stability. In this polling model, there are one
server and two infinite-buffer queues. The customers arrive
at the two queues according to two independent BMAPs;
the server is entitled to serve the two queues in a cyclic
manner. The customers in the first queue have the higher
service priority, and they are served according to the gated
service; the customers in the second queue have the lower
service priority, and they are served according to the across-
queue state-dependent time-limited service discipline. As the
length of the first queue increases, the mean predetermined
service time of the second queue either decreases or remains
the same.

For more polling models, see [14]–[21] and references
therein. According to the existing literature, in the current
researches on polling models, the customer arrival processes
are mostly assumed to be the Poisson processes. For the
Poisson arrival process, the customers arrive independently,
and the inter arrival times are independent and identically
distributed exponential random variables. Hence, the Poisson
arrival process can’t effectively describe the arrival charac-
teristics of the video streaming that have correlated frames.
Fortunately, the BMAP can capture the batch, correlated
and bursty nature of the video streaming [22]–[25]. More-
over, it includes the Poisson process, the PH-renewal pro-
cess, the Markov-modulated Poisson process, the Markovian
arrival process as special cases. In addition, the weighted
round-robin (WRR) policies are commonly used to transmit
data with different priorities [26], [27]. In WRR, the used
weights are set statically according to the prior traffic infor-
mation. In the dynamic weighted round-robin (DWRR),
the weights are set dynamically according to the time-varying
characteristics of traffic. It was shown in [28], [29] that
DWRR can achieve better performance than WRR, without
the prior traffic information. Based on this result and the
dependencies among the frames generated by H.264 and
H.265, it is inferred that the time division transmission pol-
icy with across-buffer state-dependent property can effec-
tively improve the transmission quality of the compressed
video. The transmission policy attached to one buffer can
be dynamically adjusted based on the time-varying charac-
teristics of frames in other buffers with higher priorities.
Therefore, the polling models with BMAP and across-queue
state-dependent service discipline are worth studying. And
they are effective analysis tools to guide the design and opti-
mization of time division transmission policy, for transmitting
the video compressed by H.264 and H.265. However, there
have been very few researches in this regard. To the best of
our knowledge, in 2017, a polling model of this type was
proposed firstly [13], and up to now its performancemeasures
have not been analyzed. The method proposed in [8] is not
suitable for the model in [13], since the service disciplines
need to be independent of the history of the model, whereas
in [13], the service time of the second queue depends on the
length of the first queue. In [30], Vishnevsky et al. indicated

that a polling model can be analyzed by the decomposition
of the polling model into a set of vacation queueing models.
But, this method is also not suitable for the model in [13],
due to the across-queue state-dependent service discipline
attached to the second queue. Indeed, the BMAP and across-
queue state-dependent service discipline lead to the large state
space and several coupled state transition processes, which
complicate the performance analysis.

In this paper, we will analyze the performance of the cyclic
polling model, as presented in [13]. The buffer sizes of the
two queues are finite in our analysis. The motivation of this
paper includes two aspects. First, the performance analysis
of the cyclic polling model in this paper can be used as
a basis of analyzing the cyclic polling model in [13] with
infinite-buffer queues, by increasing the buffer sizes. Second,
since the polling models with BMAP and across-queue state-
dependent discipline can be used to guide the design and
optimization of time division transmission policies for trans-
mitting the video compressed by H.264 and H.265, we will
explore the method to analyze this type of polling model by
concentrating on the two-queue model, whenever possible,
suggest extensions to the multi-queue model in the future.

B. OUR MAIN CONTRIBUTIONS
By constructing a supplementary embedded Markov chain
and applying the matrix-analytic method based on the semi-
regenerative process [31], some important performance mea-
sures of the polling model presented are analyzed.
• The expressions of three joint queue length stationary
distributions are obtained, including: the joint queue
length stationary distribution, at queue 1 polling epochs
when the server arrives at the first queue; the joint queue
length stationary distribution, at queue 2 polling epochs
when the server arrives at the second queue; the joint
queue length stationary distribution at arbitrary time.

• The expressions of customer blocking probabilities in
different queues are derived.

• The expressions of customer mean waiting times in
different queues are obtained.

In addition, the analysis method applied in this paper can
provide inspiration for analyzing the polling models with
BMAP and across-queue state-dependent service discipline.

C. NOTATIONS
Throughout this paper, unless otherwise stated, notations are
used as follows. N = {0, 1, 2, . . .}; N+ = {1, 2, 3, . . .};
e denotes a column vector of appropriate size consisting
of 1’s; ek (k ∈ N+) denotes a k-dimensional column vector
consisting of 1’s; 0 denotes a vector or matrix of appropriate
size consisting of 0’s; 0k (k ∈ N+) denotes a k×k matrix con-
sisting of 0’s; 0k1×k2 (k1, k2 ∈ N+) denotes a k1 × k2 matrix
consisting of 0’s; I denotes an identity matrix of appropriate
size; Ik (k ∈ N+) denotes a k × k identity matrix. For any
n1, n2 ∈ N, if n1 = n2, then δn1,n2 = 1; otherwise, δn1,n2 = 0.
Given two sets A and B, A\B = {x|x ∈ A and x /∈ B}. Given a
matrix A whose elements (which may be blocks) are indexed
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by (i, j) ∈ �1 × �2, where the set �1 consists of the row
indices which are all either scalars or row vectors with the
same dimension, and the set�2 consists of the column indices
which are all either scalars or row vectors with the same
dimension, A can be denoted by A =

(
Ai,j : i ∈ �1, j ∈ �2

)
,

where Ai,j represents the (i, j)-th element, and no matter
the indices are scalars or vectors, the elements in each row
(column) are arranged in the lexicographical order among
the corresponding row (column) indices. Given a row vector
B whose elements (which may be blocks) are indexed by
i ∈ �, where the set � consists of the indices which are all
either scalars or row vectors with the same dimension, B can
be denoted by B = (Bi : i ∈ �), where Bi represents the
i-th element, and no matter the indices are scalars or vectors,
the elements are arranged in the lexicographical order among
the corresponding indices. BT represents the transposition
of the row vector B; whether or not blocks, Bi, i ∈ �, are
the transposed atomic elements.

The rest of this paper is organized as follows. The system
model is presented in Section II. In Section III, firstly a
supplementary embedded Markov chain is constructed; and
then the joint queue length stationary distributions at queue 1
polling epochs and at queue 2 polling epochs are analyzed.
In Section IV, the joint queue length stationary distribution
at arbitrary time is analyzed. The blocking probabilities and
waiting times of customers in different queues are analyzed in
Section V. In Section VI, a numerical example is carried out
to illustrate the calculations of performance measures which
have been analyzed, and some numerical experiments are
carried out to show the effectiveness of the proposed polling
model. Finally, the conclusion is given in Section VII.

II. MODEL DESCRIPTION
The cyclic polling model considered in this paper consists
of a single server and two finite-buffer queues. The cus-
tomers arrive at the two queues according to two indepen-
dent BMAPs. Upon arrival, if there is not enough space
in the buffer, a part of the current batch will be rejected.
The customers in the first queue have the higher service
priority than the customers in the second queue. The server
attends the two queues in a cyclic manner. The first queue is
served according to the gated service discipline. The second
queue is served according to an across-queue state-dependent
time-limited service discipline with the preemptive repeat-
different property. Namely, the predetermined time of the
server’s visit to the second queue is time-limited, and its
probability distribution function depends on the length of the
first queue at the instant when the server started to depart
from the first queue last time. As the length of the first
queue increases, the mean predetermined limited time either
decreases or remains the same. Because of the preemptive
repeat-different property, in the second queue, the service
in progress (if any) is interrupted when the predetermined
limited time expires. The interrupted service will be started
from beginning again in the next cycle, and its service time is
newly sampled from the same service time distribution of the

FIGURE 3. The dependency diagram of two queues.

customers in the second queue. In addition, for the two service
disciplines, the service orders are first in first out (FIFO); and
the switchover times of the server transferring from a queue
to the other one are considered. Fig. 3 shows the dependency
of two queues. The following assumptions are made.
(1) The length of a queue counts the number of customers

whose services are not finished in the queue.
(2) The length of a queue is always less than the buffer

size of the queue, either when the service of a customer
in the queue just terminates or when a customer just
departs from the queue after being served.

(3) When the server arrives at each queue, it immediately
begins to serve the customers (if any), and the service
progress is not broken until the current service period
ends according to the used service discipline.

The ι-th queue is called the queue ι and the customer in
the queue ι is called the ι-customer, where unless otherwise
stated, ι ∈ {1, 2} throughout this paper. The epoch just
when the server arrives at any queue is called the polling
epoch; the epoch just when the server arrives at queue ι is
called the queue ι polling epoch. Without loss of generality,
suppose that each cycle begins at queue 1 polling epochs.
If queue 1 is not empty at the queue 1 polling epoch, the server
starts to serve the present 1-customers until the services of
these 1-customers are completed, and then the server departs
from queue 1; otherwise the server immediately departs from
queue 1. After departing from queue 1, the server transfers
to queue 2. If queue 2 is not empty at the queue 2 polling
epoch, the server starts to serve the 2-customers until the
predetermined limited time for queue 2 expires or queue 2 is
empty (whichever occurs first), and then the server departs
from queue 2; otherwise the server immediately departs from
queue 2. After departing from queue 2, the server transfers to
queue 1. And the next cycle will begin.

The buffer size of queue ι is denoted by Qι
(
Qι ∈ N+

)
.

The predetermined limited time for queue 2 is denoted by the
random variableHj, which obeys the exponential distribution
with the parameter γj

(
0 < γj <∞, j ∈ {0, 1, . . . ,Q1 − 1}

)
,

where j denotes the length of queue 1 when the server last
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departed from queue 1. For j1, j2 ∈ {0, 1, . . . ,Q1 − 1},
if j1 > j2, then γj1 ≥ γj2 . The switchover time of the server
transferring from queue ι to the other queue is denoted by
the random variable Rι, which obeys the general distribution
with the distribution function Rι(t) and the mean rι, where
t ∈ [0,+∞), Rι(0) = 0 and rι ∈ (0,+∞). For the
same queue, the service times of the customers are inde-
pendent and identically distributed. The service time of the
ι-customer is denoted by the random variable Bι, which obeys
the general distribution with the distribution function Bι(t)
and the mean bι, where t ∈ [0,+∞), Bι(0) = 0 and bι ∈
(0,+∞). According to Theorem 9.14 in [32], any probability
distribution on [0,+∞) can be approximated by a proba-
bility distribution of phase type (PH-distribution). Moreover,
in analyzing the queueing model with BMAP by the matrix-
analytic method, some numerical integrals can be avoided
by applying the PH-distribution. So, suppose that Rι(t) has
the phase type representation (αι,Rι) of order mRι , where
mRι ∈ N+ and αιe = 1, and that Bι(t) has the phase type
representation

(
β ι,Bι

)
of order mBι , where mBι ∈ N+ and

β ιe = 1. From Theorem 2.2.1 in [33], for a PH-distribution,
if the given representation is reducible, its irreducible repre-
sentation can be obtained by deleting the superfluous states of
the Markov chain corresponding to the given representation.
So, suppose that the representations of the PH-distributions
involved in this paper are all irreducible.

The BMAP corresponding to the ι-customers is denoted
by the BMAP-ι, which is defined by a two-dimensional
continuous-time Markov chain X (ι)(t) on the state space S(ι),

X (ι)(t) = {Nι(t),Vι(t); t ≥ 0} ,

S(ι) = {(iι, vι) : iι ∈ N, vι ∈ Mι} ,

where Mι = {1, 2, . . . ,mι}, mι ∈ N+. Nι(t) represents a
counting variable denoting the number of arrivals in (0, t];
Vι(t) represents a phase variable denoting the phase of the
BMAP-ι at time t .
P(ι) (n, t), n ∈ N, t ≥ 0, is defined as a mι × mι matrix,

P(ι) (n, t) =
(
P(ι)
vι,v′ι

(n, t) : vι, v′ι ∈ Mι

)
,

where P(ι)
vι,v′ι

(n, t) represents the following conditional
probability,

P(ι)
vι,v′ι

(n, t)=P
{
Nι(t)=n,Vι(t) = v′ι|N (0) = 0,V (0) = vι

}
.

P(ι) (n, t) satisfies the following Chapman-Kolmogorov
equations,

P′(ι) (n, t) =
n∑
j=0

P(ι) (j, t)D(ι)
n−j, n ∈ N, t ≥ 0, (1)

P(ι) (0, 0) = Imι . (2)

D(ι)
j (j ∈ N) is a mι × mι matrix. For vι, v′ι ∈ Mι and vι 6=

v′ι,
(
D(ι)
0

)
vι,v′ι

is nonnegative and characterizes the transition

intensity of X (ι)(t) from the state (iι, vι) to the state
(
iι, v′ι

)
,

iι ∈ N; for vι ∈ Mι,
(
D(ι)
0

)
vι,vι

is negative, and its opposite

characterizes the transition intensity of X (ι)(t) from the state
(iι, vι) to any other state in S(ι). For j ∈ N+ and vι, v′ι ∈
Mι,

(
D(ι)
j

)
vι,v′ι

is nonnegative and characterizes the transition

intensity ofX (ι)(t) from the state (iι, vι) to the state
(
iι + j, v′ι

)
,

iι ∈ N.
The matrix generating function of D(ι)

j (j = 0, 1, 2, . . .) is
defined as

D(ι)(z) =
∞∑
j=0

D(ι)
j z

j, |z| ≤ 1. (3)

D(ι)(1)e = 0, andD(ι)(1) is briefly denoted byD(ι) throughout
this paper. Assume that D(ι)

6= D(ι)
0 , thus based on Theo-

rem 1.3.17 of [34], thematrixD(ι)
0 is stable.D(ι) can be viewed

as the infinitesimal generator of the irreducible continuous-
time Markov chain v(ι)t (t ≥ 0), which is the underlying
Markov chain of the BMAP-ι and has the state space Mι.
The stationary distribution of v(ι)t is denoted by θ ι, such that
θ ιD(ι)

= 0 and θ ιe = 1. The average arrival rate of BMAP-ι
is defined as λι = θ ι

∑
∞

j=1 jD
(ι)
j e.

The matrix generating function of P(ι) (n, t), n =

0, 1, 2, . . ., is defined as

P(ι) (z, t) =
∞∑
n=0

P(ι) (n, t) zn, |z| ≤ 1. (4)

From (1), (2), (3) and (4), the first derivative of P(ι) (z, t)with
respect to t satisfies

P′(ι) (z, t) = P(ι) (z, t)D (z) ,

P(ι) (z, 0) = Imι .

Moreover, there is the following relation,

P(ι) (z, t) = eD
(ι)(z)t , |z| ≤ 1.

Assume that Rι, Bι, Hj, BMAP-ι (ι = 1, 2; j = 0, 1,
. . . ,Q1 − 1) are mutually independent. The joint arrival
process of the BMAP-1 and the BMAP-2 can be defined by
the four-dimensional continuous-time Markov chain Y (t) =
{N1(t),N2(t),V1(t),V2(t); t ≥ 0}. For Y (t), a m̄ × m̄ matrix
P (n1, n2, t), t ≥ 0, n1, n2 ∈ N, is introduced as follows.

P (n1, n2, t) =
(
P(v1,v2),(v′1,v′2) (n1, n2, t)

: (v1, v2) ,
(
v′1, v

′

2
)
∈ M1 ×M2

)
,

where m̄ = m1m2, and the
(
(v1, v2) ,

(
v′1, v

′

2

) )
-th element

represents the following conditional probability,

P(v1,v2),(v′1,v′2) (n1, n2, t)

= P
{
N1(t) = n1,N2(t) = n2,V1(t) = v′1,V2(t) = v′2
|N1(0) = 0,N2(0) = 0,V1(0) = v1,V2(0) = v2} .

P(n1, n2, t) satisfies the following relation,

P(n1, n2, t) = P(1)(n1, t)⊗ P(2)(n2, t), (5)
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TABLE 2. The value assignment rules for 8(Tn).

where the symbol ⊗ denotes the Kronecker product opera-
tion. Based on (4) and (5), it can be shown that P(n1, n2, t)
satisfies the following Chapman-Kolmogorov equations,

P′(n1, n2, t) =
n1∑
j1=0

P(j1, n2, t)
(
D(1)
n1−j1
⊗ Im2

)
+

n2∑
j2=0

P(n1, j2, t)
(
Im1 ⊗ D(2)

n2−j2

)
, (6)

P (0, 0, 0) = Im̄. (7)

The matrix generating function of P (n1, n2, t), n1, n2 =
0, 1, 2, . . ., is defined as

P (z1, z2, t)

=

∞∑
n1=0

∞∑
n2=0

P (n1, n2, t) z
n1
1 z

n2
2 , |z1| ≤ 1, |z2| ≤ 1.

Based on (4) and (5), there is the following relation,

P (z1, z2, t) = e
(
D(1)(z1)⊕D(2)(z2)

)
t , |z1| ≤ 1, |z2| ≤ 1,

where the symbol ⊕ denotes the Kronecker sum operation.
As the definition of [35], A⊕B = A⊗ Ib+ Ia⊗B, where a
and b denote the orders of the matricesA and B, respectively.

III. TWO JOINT QUEUE LENGTH STATIONARY
DISTRIBUTIONS AT THE POLLING EPOCHS
In this section, we will analyze the joint queue length sta-
tionary distributions at queue 1 polling epochs and at queue
2 polling epochs. In order to prevent some details of the state
transitions of the cyclic polling model being ignored, the sup-
plementary embedded Markov chain at service completion
and switchover termination epochs needs to be constructed
firstly. This supplementary embedded Markov chain is the
basis not only for analyzing the two joint queue length station-
ary distributions at the polling epochs, but also for analyzing
the joint queue length stationary distribution at arbitrary time.

A. THE SUPPLEMENTARY EMBEDDED MARKOV CHAIN
AT SERVICE COMPLETION AND SWITCHOVER
TERMINATION EPOCHS
Define an event that either a service completion or a
switchover termination just occurs, and let Tn denote the
instant when this event occurs at the n-th time, where n ∈ N+

and Tn ∈ [0,+∞). Notice that at the instant just when a
switchover of the server terminates, the server just arrives at
either queue 1 or queue 2. Without loss of generality, it is
assumed that T1 is the instant just when the switchover of the
server from queue 2 to queue 1 terminates, or the instant just
when the server arrives at queue 1.

Consider the state of the cyclic polling model at Tn, i.e.

ξ (Tn) =
(
8(Tn),L1(Tn),L2(Tn),V1(Tn),V2(Tn)

)
.

The value assignment rules for 8(Tn) are listed in Table 2.
Vι(Tn) denotes the phase of the BMAP-ι at time Tn, where
Vι(Tn) ∈ Mι. Lι(Tn) denotes the length of queue ι at time Tn,
where Lι(Tn) takes its values as the following way.
(a) If 8(Tn) = (1, i, k), then L1(Tn) ∈ L(1,i−k)1 and

L2(Tn) ∈ L(1)2 , where

L(1,i−k)1 = {i− k, i− k + 1, . . . ,Q1 − 1} ,

L(1)2 = {0, 1, . . . ,Q2} ;

(b) if 8(Tn) = (s1, j), then L1(Tn) ∈ L(s1,j)1 and
L2(Tn) ∈ L(s1)2 , where

L(s1,j)1 = {j, j+ 1, . . . ,Q1} ,

L(s1)2 = {0, 1, . . . ,Q2} ;

(c) if 8(Tn) = (2, j), then L1(Tn) ∈ L(2,j)1 and
L2(Tn) ∈ L(2)2 , where

L(2,j)1 = {j, j+ 1, . . . ,Q1} ,

L(2)2 = {0, 1, . . . ,Q2 − 1} ;

(d) if 8(Tn) = s2, then L1(Tn) ∈ L(s2)1 and L2(Tn) ∈ L(s2)2 ,
where

L(s2)1 = {0, 1, . . . ,Q1} ,L(s2)2 = {0, 1, . . . ,Q2} .

ξ (Tn) is briefly denoted by

ξn =
(
8n,L1,n,L2,n,V1,n,V2,n

)
.

The discrete-time stochastic process
{
ξn; n ∈ N+

}
is con-

structed, and it is a homogeneous Markov chain on the state
space Sξ = S(1)ξ ∪ S

(s1)
ξ ∪ S

(2)
ξ ∪ S

(s2)
ξ , where

S(1)ξ =
Q1⋃
i=1

i⋃
k=1

{
(1, i, k)

}
× L(1,i−k)1 × L(1)2 ×M1 ×M2,
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S(s1)ξ =

Q1−1⋃
j=0

{
(s1, j)

}
× L(s1,j)1 × L(s1)2 ×M1 ×M2,

S(2)ξ =
Q1−1⋃
j=0

{
(2, j)

}
× L(2,j)1 × L(2)2 ×M1 ×M2,

S(s2)ξ = {s2} × L(s2)1 × L(s2)2 ×M1 ×M2.

A matrix P
{
φ′, l ′1, l

′

2|φ, l1, l2
}
is introduced,

P
{
φ′, l ′1, l

′

2|φ, l1, l2
}
=

(
P(v1,v2),(v′1,v′2)

{
φ′, l ′1, l

′

2|φ, l1, l2
}

: (v1, v2) ,
(
v′1, v

′

2
)
∈ M1 ×M2

)
,

where the
(
(v1, v2) ,

(
v′1, v

′

2

) )
-th element represents the

following conditional probability,

P(v1,v2),(v′1,v′2)
{
φ′, l ′1, l

′

2|φ, l1, l2
}

= P
{
ξn+1 =

(
φ′, l ′1, l

′

2, v
′

1, v
′

2
)
|ξn = (φ, l1, l2, v1, v2)

}
.

Let the states in Sξ be listed in the order, i.e. first the states
in S(1)ξ , second the states in S(s1)ξ , third the states in S(2)ξ and

fourth the states in S(s2)ξ are listed in the lexicographical order.
Based on this sequence, the one-step transition probability
matrix M of the Markov chain

{
ξn; n ∈ N+

}
is constructed

as the following,

M =


M1 M2 0 0
0 0 M3 M4
0 0 M5 M6
M7 M8 0 0

 ,
where the matrices Mi (i = 1, 2, . . . , 8) describe the transi-
tion probabilities among the states in Sξ , see Fig. 4. It can be
seen that, some blocks inM are zeromatrices. That is because
the swithover times of the server between the two queues are
not ignored. The structure ofMwill provide conveniences for
the following analysis, see Section III-B and Section III-C.
The details about the matrices Mi (i = 1, 2, · · · , 8) will be
given respectively in the following.

FIGURE 4. The schematic diagram of the one-step transitions among the
states in Sξ .

For making some expressions concise, two notations are
introduced firstly. Let

δ (n1, n2) =
(
δn1,n2 1− δn1,n2

)
,

〈0 (n1, n2)〉 =
(
0 (n1, n2) 0 (n1, n2)
0 (n1, n2) 0 (n1, n2)

)
,

where 0 is a universal symbol, and it will be replaced by
the required symbols in different cases. The meanings and

calculation formulas of 0 (n1, n2), 0 (n1, n2), 0 (n1, n2) and
0 (n1, n2) are presented in Appendix A.
(1) The matrix M1 describes the one-step transitions

among the states in S(1)ξ . Within S(1)ξ , the state with
φ = (1, i, i) can not transfer to any other states, where
i ∈ {1, 2, . . . ,Q1}; the state with φ = (1, i, k) can
transfer to the state with φ = (1, i, k + 1), where
i ∈ {2, 3, . . . ,Q1}, k ∈ {1, 2, . . . , i− 1}. So, M1 has
the following structure.

M1 = diag
(
M1,1 M1,2 · · · M1,Q1

)
,

where M1,1 = 0ς1 , ςn = m̄ (Q1 − n+ 1) (Q2 + 1),
n ∈ {0, 1, . . . ,Q1}; and

M1,i =


0

(
M1,i

)
1,2 · · · 0

...
...

. . .
...

0 0 · · ·
(
M1,i

)
i−1,i

0ς1×ςi 0 · · · 0

 ,
i ∈ {2, 3, . . . ,Q1}.

(
M1,i

)
k,k+1, i ∈ {2, 3, . . . ,Q1}, k ∈

{1, 2, . . . , i− 1}, consists of matrix blocks which are
indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
, (l1, l2) ∈ L(1,i−k)1 ×L(1)2 ,(

l ′1, l
′

2

)
∈ L(1,i−k−1)1 × L(1)2 , where((

M1,i
)
k,k+1

)
(l1,l2),(l′1,l

′

2)

= P
{
(1, i, k + 1) , l ′1, l

′

2| (1, i, k) , l1, l2
}
.

Given i and k , consider each (l1, l2) ∈ L(1,i−k)1 × L(1)2 ,
(a) for

(
l ′1, l
′

2

)
∈ {l1 − 1, l1, . . . ,Q1 − 1} × {l2,

l2 + 1, . . . ,Q2},((
M1,i

)
k,k+1

)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
B1
(
l ′1 − l1 + 1, l ′2 − l2

)〉
δT

×
(
Q1, l ′1 + 1

)
;

(b) for the other
(
l ′1, l
′

2

)
∈ L(1,i−k−1)1 × L(1)2 ,((

M1,i
)
k,k+1

)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(2) The matrixM2 describes the one-step transitions of the
states from S(1)ξ to S(s1)ξ . Consider the states in S(1)ξ , only

the state with φ = (1, i, i) can enter into S(s1)ξ , where
i ∈ {1, 2, . . . ,Q1}. So,M2 has the following structure.

M2 =


M2,1,0 M2,1,1 · · · M2,1,Q1−1
M2,2,0 M2,2,1 · · · M2,2,Q1−1
...

...
. . .

...

M2,Q1,0 M2,Q1,1 · · · M2,Q1,Q1−1

 ,
where

M2,1,j = M2,j, j ∈ {0, 1, . . . ,Q1 − 1},

M2,i,j =

(
0S i−1Q1−1

×ςj

M2,j

)
, i ∈ {2, 3, . . . ,Q1},

j ∈ {0, 1, . . . ,Q1 − 1},
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and Skn = m̄ (Q2 + 1) [n+ (n− 1)+ (n− 2)+ · · ·+
(n− k + 1)]. M2,j, j ∈ {0, 1, . . . ,Q1 − 1}, consists of
matrix blocks which are indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
,

(l1, l2) ∈ L(1,0)1 ×L(1)2 ,
(
l ′1, l
′

2

)
∈ L(s1,j)1 ×L(s1)2 , where(

M2,j
)
(l1,l2),(l′1,l

′

2)
= P

{
(s1, j) , l ′1, l

′

2| (1, i, i) , l1, l2
}
.

Given j, consider each (l1, l2) ∈
(
L(1,0)1 \ {j}

)
× L(1)2 ,

for any
(
l ′1, l
′

2

)
∈ L(s1,j)1 × L(s1)2 ,(
M2,j

)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider each (l1, l2) ∈ {j} × L(1)2 ,

(a) for
(
l ′1, l
′

2

)
∈ L(s1,j)1 × {l2, l2 + 1, . . . ,Q2},(

M2,j
)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R1
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(s1,j)1 × L(s1)2 ,(

M2,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(3) The matrixM3 describes the one-step transitions of the
states from S(s1)ξ to S(2)ξ . In this case, the state with φ =

(s1, j) in S
(s1)
ξ may only transfer to the state with φ =

(2, j) in S(2)ξ , where j ∈ {0, 1, . . . ,Q1 − 1}. So,M3 has
the following structure.

M3 = diag
(
M3,0 M3,1 · · · M3,Q1−1

)
,

where M3,j, j ∈ {0, 1, . . . ,Q1 − 1}, consists of
matrix blocks which are indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
,

(l1, l2) ∈ L(s1,j)1 × L(s1)2 ,
(
l ′1, l
′

2

)
∈ L(2,j)1 × L(2)2 , where(

M3,j
)
(l1,l2),(l′1,l

′

2)
= P

{
(2, j) , l ′1, l

′

2| (s1, j) , l1, l2
}
.

Given j, consider each (l1, l2) ∈ L(s1,j)1 × {0}, for any(
l ′1, l
′

2

)
∈ L(2,j)1 × L(2)2 ,(

M3,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider each (l1, l2) ∈ L(s1,j)1 ×

(
L(s1)2 \ {0}

)
,

(a) for
(
l ′1, l
′

2

)
∈ {l1, l1 + 1, . . . ,Q1} × {l2 − 1, l2,

· · · ,Q2 − 1},(
M3,j

)
(l1,l2),(l′1,l

′

2)
= δ

(
Q2, l ′2 + 1

)
×

〈
Hj ◦B2

(
l ′1−l1, l

′

2−l2+1
)〉

×δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(2,j)1 × L(2)2 ,(

M3,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(4) The matrixM4 describes the one-step transitions of the
states from S(s1)ξ to S(s2)ξ . Any state in S(s1)ξ may enter

into S(s2)ξ . So, M4 has the following structure.

M4 =
(
M4,0 M4,1 M4,2 · · · M4,Q1−1

)T
,

where M4,j, j ∈ {0, 1, . . . ,Q1 − 1}, consists of
matrix blocks which are indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
,

(l1, l2) ∈ L(s1,j)1 × L(s1)2 ,
(
l ′1, l
′

2

)
∈ L(s2)1 × L(s2)2 , where(

M4,j
)
(l1,l2),(l′1,l

′

2)
= P

{
s2, l ′1, l

′

2| (s1, j) , l1, l2
}
.

Given j, consider each (l1, l2) ∈ L(s1,j)1 × {0},
(a) for

(
l ′1, l
′

2

)
∈ {l1, l1 + 1, . . . ,Q1} × L(s2)2(

M4,j
)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R2
(
l ′1 − l1, l

′

2
)〉
δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(s2)1 × L(s2)2 ,(

M4,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider each (l1, l2) ∈ L(s1,j)1 ×

(
L(s1)2 \ {0}

)
,

(a) for
(
l ′1, l
′

2

)
∈ {l1, l1 + 1, . . . ,Q1} × {l2, l2 + 1,

· · · ,Q2},(
M4,j

)
(l1,l2),(l′1,l

′

2)

=

l′1−l1∑
i1=0

l′2−l2∑
i2=0

δ (Q2, l2 + i2)
〈
B2 ◦Hj (i1, i2)

〉
× δT (Q1, l1 + i1) δ

(
Q2, l ′2

)
×
〈
R2
(
l ′1 − l1 − i1, l

′

2 − l2 − i2
)〉

× δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(s2)1 × L(s2)2(

M4,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(5) The matrix M5 describes the one-step transitions
among the states in S(2)ξ . Within S(2)ξ , the state with
φ = (2, j) may only transfer to the state with the same
φ = (2, j), where j ∈ {0, 1, . . . ,Q1 − 1}. So, M5 has
the following structure.

M5 = diag
(
M5,0 M5,1 · · · M5,Q1−1

)
,

where M5,j, j ∈ {0, 1, . . . ,Q1 − 1}, consists of
matrix blocks which are indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
,

(l1, l2) ,
(
l ′1, l
′

2

)
∈ L(2,j)1 × L(2)2 , where(

M5,j
)
(l1,l2),(l′1,l

′

2)
= P

{
(2, j) , l ′1, l

′

2| (2, j) , l1, l2
}
.

Given j, consider each (l1, l2) ∈ L(2,j)1 × {0}, for any(
l ′1, l
′

2

)
∈ L(2,j)1 × L(2)2 ,(

M5,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider each (l1, l2) ∈ L(2,j)1 ×

(
L(2)2 \ {0}

)
,

(a) for
(
l ′1, l
′

2

)
∈ {l1, l1 + 1, . . . ,Q1} × {l2 − 1, l2,

· · · ,Q2 − 1},(
M5,j

)
(l1,l2),(l′1,l

′

2)
= δ

(
Q2, l ′2 + 1

)
×

〈
Hj ◦B2

(
l ′1−l1, l

′

2−l2+1
)〉

×δT
(
Q1, l ′1

)
,
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(b) for the other
(
l ′1, l
′

2

)
∈ L(2,j)1 × L(2)2 ,(

M5,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(6) The matrixM6 describes the one-step transitions of the
states from S(2)ξ to S(s2)ξ . Any state in S(2)ξ may enter

into S(s2)ξ . So, M6 has the following structure.

M6 =
(
M6,0 M6,1 M6,2 · · · M6,Q1−1

)T
,

where M6,j, j ∈ {0, 1, . . . ,Q1 − 1}, consists of
matrix blocks which are indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
,

(l1, l2) ∈ L(2,j)1 × L(2)2 ,
(
l ′1, l
′

2

)
∈ L(s2)1 × L(s2)2 , where(

M6,j
)
(l1,l2),(l′1,l

′

2)
= P

{
s2, l ′1, l

′

2| (2, j) , l1, l2
}
.

Given j, consider each (l1, l2) ∈ L(2,j)1 × {0},

(a) for
(
l ′1, l
′

2

)
∈ {l1, l1 + 1, . . . ,Q1} × L(s2)2 ,(

M6,j
)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R2
(
l ′1 − l1, l

′

2
)〉
δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(s2)1 × L(s2)2 ,(

M6,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider each (l1, l2) ∈ L(2,j)1 ×

(
L(2)2 \ {0}

)
,

(a) for
(
l ′1, l
′

2

)
∈ {l1, l1 + 1, . . . ,Q1} × {l2, l2 + 1,

· · · ,Q2},(
M6,j

)
(l1,l2),(l′1,l

′

2)

=

l′1−l1∑
i1=0

l′2−l2∑
i2=0

δ (Q2, l2 + i2)
〈
B2 ◦Hj (i1, i2)

〉
× δT (Q1, l1 + i1) δ

(
Q2, l ′2

)
×
〈
R2
(
l ′1 − l1 − i1, l

′

2 − l2 − i2
)〉

× δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(s2)1 × L(s2)2 ,(

M6,j
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(7) The matrix M7 describes the one-step transitions of
the states from S(s2)ξ to S(1)ξ . Only the state with φ =

(1, i, 1) in S(1)ξ can be reached, where i ∈ {1, 2,
. . . ,Q1}. So,M7 has the following structure.

M7 =
(
M7,1,1 M7,1,2 M7,1,3 · · · M7,1,Q1

)
,

where

M7,1,1 = M7,1,

M7,1,i =

(
M7,i 0

ς0×S
i−1
Q1

)
, i ∈ {2, 3, . . . ,Q1} .

M7,i, i ∈ {1, 2, . . . ,Q1}, consists of matrix blocks
which are indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
, (l1, l2) ∈

L(s2)1 × L(s2)2 ,
(
l ′1, l
′

2

)
∈ L(1,i−1)1 × L(1)2 , where(

M7,i
)
(l1,l2),(l′1,l

′

2)
= P

{
(1, i, 1) , l ′1, l

′

2|s2, l1, l2
}
.

Given i, i ∈ {1, 2, . . . ,Q1}, consider (l1, l2) ∈(
L(s2)1 \ {i}

)
× L(s2)2 , for any

(
l ′1, l
′

2

)
∈ L(1,i−1)1 × L(1)2 ,(

M7,i
)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider (l1, l2) ∈ {i} × L(s2)2 ,

(a) for
(
l ′1, l
′

2

)
∈ L(1,i−1)1 × {l2, l2 + 1, . . . ,Q2},(

M7,i
)
(l1,l2),(l′1,l

′

2)
= δ
(
Q2, l ′2

)〈
B1
(
l ′1−l1+1, l

′

2−l2
)〉

× δT
(
Q1,l ′1 + 1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(1,i−1)1 × L(1)2 ,(

M7,i
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

(8) The matrix M8 describes the one-step transitions of
the states from S(s2)ξ to S(s1)ξ . Only the state with φ =

(s2, 0) in S
(s1)
ξ can be reached. So,M8 has the following

structure.

M8 =

(
M8,0 0

ς0×S
Q1−1
Q1

)
,

where M8,0 consists of matrix blocks which are
indexed by

(
(l1, l2) ,

(
l ′1, l
′

2

) )
, (l1, l2) ∈ L(s2)1 × L(s2)2 ,(

l ′1, l
′

2

)
∈ L(s1,0)1 × L(s1)2 , where(

M8,0
)
(l1,l2),(l′1,l

′

2)
= P

{
(s1, 0) , l ′1, l

′

2|s2, l1, l2
}
.

Consider (l1, l2) ∈
(
L(s2)1 \ {0}

)
× L(s2)2 , for any(

l ′1, l
′

2

)
∈ L(s1,0)1 × L(s1)2 ,(

M8,0
)
(l1,l2),(l′1,l

′

2)
= 0m̄;

consider (l1, l2) ∈ {0} × L(s2)2 ,

(a) for
(
l ′1, l
′

2

)
∈ L(s1,0)1 × {l2, l2 + 1, . . . ,Q2},(

M8,0
)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R1
(
l ′1, l
′

2 − l2
)〉
δT
(
Q1, l ′1

)
,

(b) for the other
(
l ′1, l
′

2

)
∈ L(s1,0)1 × L(s1)2 ,(

M8,0
)
(l1,l2),(l′1,l

′

2)
= 0m̄.

The states of the Markov chain
{
ξn; n ∈ N+

}
satisfy the

properties.
Property 1: For the zero state (s2, 0, 0, v1, v2), v1 ∈ M1,

v2 ∈ M2, it can be reached from any state in Sξ . The reason is
that the BMAP-1 and the BMAP-2 are independent; D(1) and
D(2) are irreducible; D(1)

0 and D(2)
0 are stable.

Property 2: There is a state subspace denoted by Ŝξ , which
consists of the states (s2, 0, 0, v1, v2), v1 ∈ M1, v2 ∈ M2,
and the states which can be reached from any of the states
(s2, 0, 0, v1, v2), v1 ∈ M1, v2 ∈ M2. So, Ŝξ is irreducible
and aperiodic. From this and Property 1, it follows that the
Markov chain

{
ξn; n ∈ N+

}
has the stationary distribution in

its state space Sξ .
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B. THE JOINT QUEUE LENGTH STATIONARY
DISTRIBUTION AT QUEUE 1 POLLING EPOCHS
Consider the event that a switchover of the server from
queue 2 to queue 1 just terminates. Let T ′n

(
n ∈ N+

)
be

the instant when this event occurs at the n-th time. The
state of the cyclic polling model at T ′n is denoted by
ξ ′(T ′n) =

(
L1(T ′n),L2(T

′
n),V1(T

′
n),V2(T

′
n)
)
, where Lι(T ′n)

and Vι(T ′n) represent the same meanings as the ones cor-
responding to ξ (Tn). ξ ′(T ′n) is briefly denoted by ξ ′n =(
L ′1,n,L

′

2,n,V
′

1,n,V
′

2,n

)
. The discrete-time stochastic process{

ξ ′n; n ∈ N+
}
is constructed, and it is a homogeneousMarkov

chain on the state space S ′ξ = L(s2)1 ×L(s2)2 ×M1×M2. Based
on the one-step transition probability matrixM of theMarkov
chain

{
ξn; n ∈ N+

}
, the one-step transition probabilitymatrix

W of the Markov chain
{
ξ ′n; n ∈ N+

}
can be given by

W =

M7,1 +

Q1∑
i=2

M7,i

i∏
k=2

(
M1,i

)
k−1,k


×

Q1−1∑
j=0

M2,j

[
M4,j +M3,j

(
∞∑
k=0

Mk
5,j

)
M6,j

]

+M8,0

[
M4,0 +M3,0

(
∞∑
k=0

Mk
5,0

)
M6,0

]
. (8)

Based on Property 1 and Property 2, it can be proved by
contradiction that the Markov chain

{
ξ ′n; n ∈ N+

}
has the

stationary distribution in S ′ξ . Let the probability vector ω
denote the stationary distribution of

{
ξ ′n; n ∈ N+

}
, i.e.

ω =
(
ω(l1,l2) : (l1, l2) ∈ L(s2)1 × L(s2)2

)
,

where

ω(l1,l2) =
((
ω(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)
,(

ω(l1,l2)
)
(v1,v2)

= lim
n→∞

P
{
ξ ′n = (l1, l2, v1, v2)

}
.

ω is also the joint queue length stationary distribution at
queue 1 polling epochs, where

(
ω(l1,l2)

)
(v1,v2)

represents
the stationary probability that, at queue 1 polling epochs,
the length of queue 1 is l1, the length of queue 2 is l2, the phase
of the BMAP-1 is v1, and the phase of the BMAP-2 is v2.
ω satisfies the following relations,{

ωW = ω,
ωe = 1.

(9)

Based on the GTH algorithm [36], ω can be obtained by
solving the system of linear equations (9).

C. THE JOINT QUEUE LENGTH STATIONARY
DISTRIBUTION AT QUEUE 2 POLLING EPOCHS
Consider the event that a switchover of the server from
queue 1 to queue 2 just terminates. Let T ′′n

(
n ∈ N+

)
be the

instant when this event occurs at the n-th time. The state of
the cyclic polling model at T ′′n is denoted by

ξ ′′(T ′′n ) =
(
8(T ′′n ),L1(T

′′
n ),L2(T

′′
n ),V1(T

′′
n ),V2(T

′′
n )
)
,

where 8(T ′′n ), Lι(T
′′
n ) and Vι(T

′′
n ) represent the same mean-

ings as the ones corresponding to ξ (Tn). ξ ′′(T ′′n ) is briefly
denoted by ξ ′′n =

(
8′′n,L

′′

1,n,L
′′

2,n,V
′′

1,n, V ′′2,n
)
. The discrete-

time stochastic process
{
ξ ′′n ; n ∈ N+

}
is constructed, and it is

a homogeneous Markov chain on the state space S(s1)ξ .
Based on Property 1 and Property 2, it can be proved by

contradiction that the Markov chain
{
ξ ′′n ; n ∈ N+

}
has the

stationary distribution in S(s1)ξ . Let the probability vector θ
denote the stationary distribution of

{
ξ ′′n ; n ∈ N+

}
.

θ =
(
θ (s1,0) θ (s1,1) · · · θ (s1,Q1−1)

)
,

where for each j ∈ {0, 1, . . . ,Q1 − 1},

θ (s1,j) =
(
θ
(s1,j)
(l1,l2)

: (l1, l2) ∈ L(s1,j)1 × L(s1)2

)
,

θ
(s1,j)
(l1,l2)

=

((
θ
(s1,j)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)
,(

θ
(s1,j)
(l1,l2)

)
(v1,v2)

= lim
n→∞

P
{
ξ ′′n =

(
(s1, j) , l1, l2, v1, v2

)}
.

There is the following relationship between θ and ω.

θ (s1,0) = ω

{M7,1 +

Q1∑
i=2

M7,i

i∏
k=2

(
M1,i

)
k−1,k

M2,0

+M8,0

}
, (10)

θ (s1,j) = ω

M7,1 +

Q1∑
i=2

M7,i

i∏
k=2

(
M1,i

)
k−1,k


×M2,j, j ∈ {1, 2, . . . ,Q1 − 1} . (11)

Let the probability vector η denote the joint queue length
stationary distribution at queue 2 polling epochs.

η =
(
η(l1,l2) : (l1, l2) ∈ L1 × L2

)
,

where L1 = {0, 1, . . . ,Q1}, L2 = {0, 1, . . . ,Q2},

η(l1,l2) =
((
η(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)
,

(
η(l1,l2)

)
(v1,v2)

=

l1∑
j=0

(
θ
(s1,j)
(l1,l2)

)
(v1,v2)

. (12)

(
η(l1,l2)

)
(v1,v2)

represents the stationary probability that,
at queue 2 polling epochs, the length of queue 1 is l1,
the length of queue 2 is l2, the phase of the BMAP-1 is v1,
and the phase of the BMAP-2 is v2.

IV. THE JOINT QUEUE LENGTH STATIONARY
DISTRIBUTION AT ARBITRARY TIME
From Property 2, the Markov chain

{
ξn; n ∈ N+

}
has the

stationary distribution in the state space Sξ . Let the stationary
distribution be denoted by the probability vector π , which
satisfies the following relations,

πM = π , πe = 1. (13)
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π can be divided into four parts, i.e.

π =
(
π (1) π (s1) π (2) π s2

)
.

(1)

π (1) =
(
π (1,1,1) π (1,2,1) π (1,2,2) · · ·

π (1,Q1,1) π (1,Q1,2) · · · π (1,Q1,Q1)
)
,

where for i ∈ {1, 2, . . . ,Q1}, k ∈ {1, 2, . . . , i},

π (1,i,k) =
(
π
(1,i,k)
(l1,l2)

: (l1, l2) ∈ L(1,i−k)1 × L(1)2

)
,

π
(1,i,k)
(l1,l2)

=

((
π
(1,i,k)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)
,(

π
(1,i,k)
(l1,l2)

)
(v1,v2)

= lim
n→∞

P
{
ξn =

(
(1, i, k) , l1, l2, v1, v2

)}
;

(2)

π (s1) =
(
π (s1,0) π (s1,1) · · · π (s1,Q1−1)

)
,

where for j ∈ {0, 1, . . . ,Q1 − 1},

π (s1,j) =
(
π
(s1,j)
(l1,l2)

: (l1, l2) ∈ L(s1,j)1 × L(s1)2

)
,

π
(s1,j)
(l1,l2)

=

((
π
(s1,j)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)
,(

π
(s1,j)
(l1,l2)

)
(v1,v2)

= lim
n→∞

P
{
ξn =

(
(s1, j) , l1, l2, v1, v2

)}
;

(3)

π (2) =
(
π (2,0) π (2,1) · · · π (2,Q1−1)

)
,

where for j ∈ {0, 1, . . . ,Q1 − 1},

π (2,j) =
(
π
(2,j)
(l1,l2)

: (l1, l2) ∈ L(2,j)1 × L(2)2

)
,

π
(2,j)
(l1,l2)

=

((
π
(2,j)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)
,(

π
(2,j)
(l1,l2)

)
(v1,v2)

= lim
n→∞

P
{
ξn =

(
(2, j) , l1, l2, v1, v2

)}
;

(4)

π s2 =
(
π
s2
(l1,l2)

: (l1, l2) ∈ L(s2)1 × L(s2)2

)
,

where

π
s2
(l1,l2)

=

((
π
s2
(l1,l2)

)
(v1,v2)

:(v1, v2)∈M1×M2

)
,(

π
s2
(l1,l2)

)
(v1,v2)

= lim
n→∞

P
{
ξn = (s2, l1, l2, v1, v2)

}
.

Based on the relations in (13) and the structures of
M and π , there are the following relations.

π (1,i,1) = π s2M7,i, i ∈ {1, 2, . . . ,Q1} , (14)

π (1,i,k) = π (1,i,k−1)
(
M1,i

)
k−1,k , i ∈ {2, 3, . . . ,Q1} ,

k ∈ {2, 3, . . . , i} ; (15)

π (s1,0) = π s2M8,0 +

Q1∑
i=1

π (1,i,i)M2,0, (16)

π (s1,j) =

Q1∑
i=1

π (1,i,i)M2,j, j ∈ {1, 2, . . . ,Q1 − 1} ; (17)

π (2,j) = π (s1,j)M3,j
(
I−M5,j

)−1
,

j ∈ {0, 1, . . . ,Q1 − 1} . (18)

From (14), (15), (16), (17) and (18), it can be seen that if π s2
is given, the other parts of π can be calculated directly. There
is a constant c (0 < c <∞), such that π s2 = cω. So, the sta-
tionary distribution π can be obtained as the following way.
First, set π s2 = ω; then from the relations (14), (15), (16),
(17) and (18), the vectorπ is calculated; finally, the stationary
distribution is obtained by normalizing π .

Let

S̃ξ = S̃(1)ξ
⋃

S̃(s1)ξ

⋃
S̃(2)ξ

⋃
S̃(s2)ξ ,

where

S̃(1)ξ =
Q1⋃
i=1

i⋃
k=1

{(1, i, k)} × L(1,i−k)1 × L(1)2 ,

S̃(s1)ξ =

Q1−1⋃
j=0

{(s1, j)} × L(s1,j)1 × L(s1)2 ,

S̃(2)ξ =
Q1−1⋃
j=0

{(2, j)} × L(2,j)1 × L(2)2 ,

S̃(s2)ξ = {s2} × L(s2)1 × L(s2)2 .

From
{
ξn; n ∈ N+

}
, a Markov renewal process {ξn,Tn;

n ∈ N+
}

can be constructed. The mean time between
two successive renewals of the Markov renewal process{
ξn,Tn; n ∈ N+

}
is denoted by τ , and it can be calculated by

τ =

Q1∑
i=1

i∑
k=1

Q1−1∑
l1=i−k

Q2∑
l2=0

π
(1,i,k)
(l1,l2)

m(1,i,k)
(l1,l2)

+

Q1−1∑
j=0

Q1∑
l1=j

Q2∑
l2=0

π
(s1,j)
(l1,l2)

m(s1,j)
(l1,l2)

+

Q1−1∑
j=0

Q1∑
l1=j

Q2−1∑
l2=0

π
(2,j)
(l1,l2)

m(2,j)
(l1,l2)

+

Q1∑
l1=0

Q2∑
l2=0

π
s2
(l1,l2)

ms2
(l1,l2)

. (19)
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(1) Given
(
(1, i, k) , l1, l2

)
∈ S̃(1)ξ , m(1,i,k)

(l1,l2)
is a

m̄-dimensional column vector,

m(1,i,k)
(l1,l2)

=

((
m(1,i,k)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)T
,

where the (v1, v2)-th element denotes the mean time
from a renewal with the state

(
(1, i, k) , l1, l2, v1, v2

)
to the next renewal. For any

(
(1, i, k) , l1, l2

)
∈ S̃(1)ξ ,

m(1,i,k)
(l1,l2)

=

{
b1em̄, for k < i,
r1em̄, for k = i.

(2) Given
(
(s1, j) , l1, l2

)
∈ S̃(s1)ξ , m(s1,j)

(l1,l2)
is a

m̄-dimensional column vector,

m(s1,j)
(l1,l2)

=

((
m(s1,j)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)T
,

where the (v1, v2)-th element denotes the mean time
from a renewal with the state

(
(s1, j) , l1, l2, v1, v2

)
to

the next renewal. Consider each
(
(s1, j) , l1, l2

)
∈ S̃(s1)ξ ,

(a) for l2 = 0,

m(s1,j)
(l1,l2)

= r2em̄;

(b) for l2 6= 0,

m(s1,j)
(l1,l2)

=

∫
∞

t=0

{
1−

∫ t

x=0

[
1− Hj (x)

]
dB2 (x)

−

∫ t

x=0
[1− B2 (x)] dHj (x)

×R2 (t − x)
}
dtem̄

=

{
β2

(
γjImB2 − B2

)−1
emB2−α2R

−1
2 emR2

×

[
γjβ2

(
γjImB2 − B2

)−1
emB2

]}
em̄.

(3) Given
(
(2, j) , l1, l2

)
∈ S̃(2)ξ ,m(2,j)

(l1,l2)
is a m̄-dimensional

column vector,

m(2,j)
(l1,l2)

=

((
m(2,j)
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)T
,

where the (v1, v2)-th element denotes the mean time
from a renewal with the state

(
(2, j) , l1, l2, v1, v2

)
to

the next renewal. Consider each
(
(2, j) , l1, l2

)
∈ S̃(2)ξ ,

(a) for l2 = 0,

m(2,j)
(l1,l2)

= r2em̄;

(b) for l2 6= 0,

m(2,j)
(l1,l2)

=

∫
∞

t=0

{
1−

∫ t

x=0

[
1− Hj (x)

]
dB2 (x)

−

∫ t

x=0
[1− B2 (x)] dHj (x)

×R2 (t − x)
}
dtem̄

=

{
β2

(
γjImB2−B2

)−1
emB2−α2R

−1
2 emR2

×

[
γjβ2

(
γjImB2 − B2

)−1
emB2

]}
em̄.

(4) Given (s2, l1, l2) ∈ S̃(s2)ξ , ms2
(l1,l2)

is a m̄-dimensional
column vector,

ms2
(l1,l2)

=

((
ms2
(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ M1 ×M2

)T
,

where the (v1, v2)-th element denotes the mean time
from a renewal with the state (s2, l1, l2, v1, v2) to the
next renewal. Consider each (s2, l1, l2) ∈ S̃

(s2)
ξ ,

(a) for l1 = 0,

ms2
(l1,l2)

= r1em̄;

(b) for l1 6= 0,

ms2
(l1,l2)

= b1em̄.

Let χ (t) =
(
L1 (t) ,L2 (t) ,V1 (t) ,V2 (t)

)
denote the state

of the cyclic polling model at arbitrary time t (t ≥ 0), where
Lι(t) and Vι(t) represent the same meanings as the ones cor-
responding to ξ (Tn) in Section III-A, Lι(t) ∈ Lι, Vι (t) ∈ Mι.
Consider the stochastic process {χ (t) ; t ≥ 0} on the state
space S = L1×L2×M1×M2, and assume that for any sample
path t → χ (t), it is right continuous and has left-hand limit.
According to the definition 10.6.1 of [31], {χ (t) ; t ≥ 0} is
a semi-regenerative process with the corresponding Markov
renewal process

{
ξn,Tn; n ∈ N+

}
.

For (φ, l1, l2) ∈ S̃ξ ,
(
l ′1, l
′

2

)
∈ L1 × L2, define the matrix

K
(
(φ, l1, l2) ,

(
l ′1, l
′

2

)
, t
)
,

K
(
(φ, l1, l2) ,

(
l ′1, l
′

2
)
, t
)

=

(
K(v1,v2),(v′1,v′2)

(
(φ, l1, l2) ,

(
l ′1, l
′

2
)
, t
)

: (v1, v2) ,
(
v′1, v

′

2
)
∈ M1 ×M2

)
,

where the
(
(v1, v2) ,

(
v′1, v

′

2

) )
-th element denotes the

following conditional probability,

K(v1,v2),(v′1,v′2)
(
(φ, l1, l2) ,

(
l ′1, l
′

2
)
, t
)

= P
{
L1 (t) = l ′1, L2 (t) = l ′2, V1 (t) = v′1, V2 (t) = v′2,

t < T | 8(0) = φ, L1 (0) = l1, L2 (0) = l2,

V1 (0) = v1, V2 (0) = v2
}
,

T is a random variable denoting the time from the renewal
with the state (φ, l1, l2, v1, v2) to the next renewal of the
Markov renewal process {ξn,Tn; n ∈ N+

}
. The expression
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for each K
(
(φ, l1, l2) ,

(
l ′1, l
′

2

)
, t
)
is given in Appendix B.

And

Kφ
(l1,l2),(l′1,l

′

2)
=

∫
∞

t=0
K
(
(φ, l1, l2) ,

(
l ′1, l
′

2
)
, t
)
dt <∞,

where the calculation formula of each Kφ
(l1,l2),(l′1,l

′

2)
is also

given in Appendix B.
Based on Property 1 and Property 2,

{
ξn,Tn; n ∈ N+

}
can enter into the state subspace Ŝξ eventually and is an
irreducible aperiodic recurrent process in Ŝξ . According to
Theorem 10.6.12 of [31], {χ (t) ; t ≥ 0} has the stationary
distribution denoted by p, as t →∞.

p =
(
p(l′1,l′2) :

(
l ′1, l
′

2
)
∈ L1 × L2

)
,

where

p(l′1,l′2) =
((

p(l′1,l′2)
)
(v′1,v

′

2)
:
(
v′1, v

′

2
)
∈ M1×M2

)
,(

p(l′1,l′2)
)
(v′1,v

′

2)
= lim

t→∞
P
{
χ (t) =

(
l ′1, l
′

2, v
′

1, v
′

2
)}
.

p is also the joint queue length stationary distribution at arbi-
trary time, where

(
p(l′1,l′2)

)
(v′1,v

′

2)
represents the stationary

probability that, at arbitrary time, the length of queue 1 is l ′1,
the length of queue 2 is l ′2, the phase of the BMAP-1 is v′1,
and the phase of the BMAP-2 is v′2. p can be calculated as
follows. Given

(
l ′1, l
′

2

)
∈ L1 × L2,

p(l′1,l′2) =
1
τ

∑
(φ,l1,l2)∈S̃ξ

π
φ

(l1,l2)
Kφ
(l1,l2),(l′1,l

′

2)
.

(1) For l ′1 = 0, l ′2 = 0,

p(0,0) =
1
τ

{ Q1∑
i=1

π
(1,i,i)
(0,0) K

(1,i,i)
(0,0),(0,0)

+π
(s1,0)
(0,0) K

(s1,0)
(0,0),(0,0) + π

(2,0)
(0,0)K

(2,0)
(0,0),(0,0)

+π
s2
(0,0)K

s2
(0,0),(0,0)

}
; (20)

(2) For l ′1 = 0, l ′2 ∈ {1, 2, . . . ,Q2},

p(0,l′2) =
1
τ


Q1∑
i=1

l′2∑
l2=0

π
(1,i,i)
(0,l2)

K(1,i,i)
(0,l2),(0,l′2)

+

l′2∑
l2=0

π
(s1,0)
(0,l2)

K(s1,0)
(0,l2),(0,l′2)

+

1l′2∑
l2=0

π
(2,0)
(0,l2)

K(2,0)
(0,l2),(0,l′2)

+

l′2∑
l2=0

π
s2
(0,l2)

Ks2
(0,l2),(0,l′2)

 , (21)

where 1l′2
= δQ2,l′2

(Q2 − 1)+
(
1− δQ2,l′2

)
l ′2;

(3) For l ′1 ∈ {1, 2, . . . ,Q1}, l ′2 = 0,

p(l′1,0)

=
1
τ


1l′1∑
l1=1

Q1∑
i=2

min{l1,i−1}∑
η=1

π
(1,i,i−η)
(l1,0)

K(1,i,i−η)
(l1,0),(l′1,0)

+

Q1∑
i=1

1l′1∑
l1=0

π
(1,i,i)
(l1,0)

K(1,i,i)
(l1,0),(l′1,0)

+

Q1−1∑
j=0

l′1∑
l1=j

π
(s1,j)
(l1,0)

K(s1,j)
(l1,0),(l′1,0)

+

Q1−1∑
j=0

l′1∑
l1=j

π
(2,j)
(l1,0)

K(2,j)
(l1,0),(l′1,0)

+

l′1∑
l1=0

π
s2
(l1,0)

Ks2
(l1,0),(l′1,0)

 , (22)

where 1l′1
= δQ1,l′1

(Q1 − 1)+
(
1− δQ1,l′1

)
l ′1;

(4) For l ′1 ∈ {1, 2, . . . ,Q1}, l ′2 ∈ {1, 2, . . . ,Q2},

p(l′1,l′2)

=
1
τ


1l′1∑
l1=1

Q1∑
i=2

min{l1,i−1}∑
η=1

l′2∑
l2=0

π
(1,i,i−η)
(l1,l2)

K(1,i,i−η)
(l1,l2),(l′1,l

′

2)

+

Q1∑
i=1

1l′1∑
l1=0

l′2∑
l2=0

π
(1,i,i)
(l1,l2)

K(1,i,i)
(l1,l2),(l′1,l

′

2)

+

Q1−1∑
j=0

l′1∑
l1=j

l′2∑
l2=0

π
(s1,j)
(l1,l2)

K(s1,j)
(l1,l2),(l′1,l

′

2)

+

Q1−1∑
j=0

l′1∑
l1=j

1l′2∑
l2=0

π
(2,j)
(l1,l2)

K(2,j)
(l1,l2),(l′1,l

′

2)

+

l′1∑
l1=0

l′2∑
l2=0

π
s2
(l1,l2)

Ks2
(l1,l2),(l′1,l

′

2)

 . (23)

Remark 1: The cyclic polling model presented in this
paper is consistent with the one presented by [13], except
that the buffer sizes are finite. In [13], the stability condi-
tion of the cyclic polling model with infinite-buffer queues
was analyzed. Under this stability condition, the joint queue
length stationary distributions of the cyclic polling model
with infinite-buffer queues can be obtained asymptotically,
by increasing the buffer sizes of the corresponding cyclic
polling model with finite-buffer queues.

V. CUSTOMER BLOCKING PROBABILITIES
AND WAITING TIMES
Let k ∈ N+, n1 ∈ {0, 1, . . . ,Q1}, n2 ∈ {0, 1, . . . ,Q2}.
Consider the event that, at arbitrary time the lengths of
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queue 1 and queue 2 are n1 and n2 respectively, and at the
same time there is a batch arrival of size k in queue 1.
The probability that the event occurs can be expressed as

p(n1,n2)
k
(
D(1)
k ⊗Im(2)

)
λ1

em̄. When the size of the batch arriving at
queue 1 is k , if the length of queue 1 is n1 (k > Q1 − n1),
the probability that any customer in this batch is blocked is
k−(Q1−n1)

k . So, the probability that any customer arriving at
queue 1 is blocked can be expressed as the following.

P1,BL

=

Q1∑
n1=0

Q2∑
n2=0

p(n1,n2)

×

∞∑
k=Q1−n1+1

k
(
D(1)
k ⊗ Im(2)

)
λ1

×
k − (Q1 − n1)

k
em̄

=

Q1∑
n1=0

Q2∑
n2=0

p(n1,n2)

×

∞∑
k=Q1−n1+1

λ−11

(
D(1)
k ⊗Im(2)

)
[k−(Q1−n1)] em̄. (24)

Consider the event that, at arbitrary time the lengths of
queue 1 and queue 2 are n1 and n2 respectively, and at the
same time there is a batch arrival of size k in queue 2.
The probability that the event occurs can be expressed as

p(n1,n2)
k
(
Im(1)⊗D

(2)
k

)
λ2

em̄. When the size of the batch arriving at
queue 2 is k , if the length of queue 2 is n2 (k > Q2 − n2),
the probability that any customer in this batch is blocked is
k−(Q2−n2)

k . So, the probability that any customer arriving at
queue 2 is blocked can be expressed as the following.

P2,BL

=

Q1∑
n1=0

Q2∑
n2=0

p(n1,n2)

×

∞∑
k=Q2−n2+1

k
(
Im(1) ⊗ D(2)

k

)
λ2

×
k − (Q2 − n2)

k
em̄

=

Q1∑
n1=0

Q2∑
n2=0

p(n1,n2)

×

∞∑
k=Q2−n2+1

λ−12

(
Im(1)⊗D(1)

k

)
[k−(Q2−n2)] em̄. (25)

Let W̄1 and W̄2 represent the mean waiting times of cus-
tomers in queue 1 and queue 2. It is notice that the customer
waiting time is defined as the time, from the instant when
the customer arrives at the queue (queue 1 or queue 2) until
the instant when the service of the customer is finished.
According to Little’s law, W̄1 and W̄2 can be obtained as
follows.

W̄1 = L̄1/
[
λ1
(
1− P1,BL

)]
, (26)

W̄2 = L̄2/
[
λ2
(
1− P2,BL

)]
, (27)

where L̄1 and L̄2 are respectively the mean lengths of queue
1 and queue 2 at arbitrary time, i.e.

L̄1 =
Q1∑
n1=0

Q2∑
n2=0

n1p(n1,n2)em̄, (28)

L̄2 =
Q1∑
n1=0

Q2∑
n2=0

n2p(n1,n2)em̄. (29)

VI. NUMERICAL EXPERIMENTS
In this section, some numerical experiments will be carried
out to illustrate the calculations of three important perfor-
mance measures and to show the effectiveness of the pro-
posed polling model, respectively.

A. CALCULATIONS OF THREE IMPORTANT
PERFORMANCE MEASURES
A numerical example is given to illustrate the calculations
of the joint queue length distributions, the customer block-
ing probabilities and the customer mean waiting times.
The numerical example has the following parameters. The
BMAP-1 is set as,

D(1)
0 =

(
−0.4650 0.1953
0.5089 −2.8710

)
,

D(1)
1 =

(
0.1927 0
0.2544 1.4328

)
, D(1)

2 =

(
0.0770 0
0.1018 0.5731

)
.

The BMAP-2 is set as,

D(2)
0 =

(
−2.1527 0.9044
2.3559 −13.2916

)
,

D(2)
1 =

(
0.8917 0
1.1780 6.6332

)
, D(2)

2 =

(
0.3566 0
0.4712 2.6533

)
.

The phase type representation of B1(t) is
(
β1,B1

)
, where

β1 =
(
0.5 0.5

)
, B1 =

(
−24.9900 24.9900

0 −24.9900

)
.

The phase type representation of B2(t) is
(
β2,B2

)
, where

β2 =
(
0.5 0.5

)
, B2 =

(
−37.4850 37.4850

0 −37.4850

)
.

The phase type representation of R1(t) is (α1,R1), where
α1 = 1, R1 = −10. The phase type representation of R2(t) is
(α2,R2), where α2 = 1,R2 = −10. LetQ1 = 3 andQ2 = 3.
Hj(t), j = 0, 1, 2, are the exponential distributions with the
parameters γ0 = 0.5, γ1 = 1 and γ2 = 2, respectively.
(1) The matrices Mi (i = 1, 2, . . . , 8) are calculated

firstly, according to the corresponding formulas given
in Appendix A and Section III-A; then, based on the
relation (8), the one-step transition probability matrix
W is obtained; finally, the joint queue length station-
ary distribution at queue 1 polling epochs, namely ω,
is computed by solving the system of linear equations
given in (9).

ω =
(
ω(l1,l2) : (l1, l2) ∈ {0, 1, 2, 3} × {0, 1, 2, 3}

)
,
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TABLE 3. The joint queue length stationary distribution at queue 1
polling epochs.

TABLE 4. The joint queue length stationary distribution at queue 2
polling epochs.

where ω(l1,l2) =
((
ω(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ {1, 2}×

{1, 2}
)
. ω is shown in Table 3, in which the (v1, v2)-

element of the (l1, l2)-th block represents the prob-
ability

(
ω(l1,l2)

)
(v1,v2)

. For example,
(
ω(0,0)

)
(1,1) =

0.54659,
(
ω(0,0)

)
(1,2) = 0.06751,

(
ω(0,0)

)
(2,1) =

0.08188,
(
ω(0,0)

)
(2,2) = 0.01003.

(2) Given ω, the joint queue length stationary distribution
at queue 2 polling epochs, namely η, can be calculated
based on (10), (11) and (12).

η =
(
η(l1,l2) : (l1, l2) ∈ {0, 1, 2, 3} × {0, 1, 2, 3}

)
,

where η(l1,l2) =
((
η(l1,l2)

)
(v1,v2)

: (v1, v2) ∈ {1, 2}×

{1, 2}
)
. η is shown in Table 4, in which the

TABLE 5. The joint queue length stationary distribution at arbitrary time.

(v1, v2)-element of the (l1, l2)-th block represents the
probability

(
η(l1,l2)

)
(v1,v2)

.
(3) Given ω, the stationary distribution π of the supple-

mentary embedded Markov chain is firstly calculated
as the following steps, (a) set π s2 = ω; (b) from
the relations (14), (15), (16), (17) and (18), the vector
π is calculated; (c) the stationary distribution π is
obtained by normalization. Secondly, the mean dura-
tion τ is calculated by the formula (19); and the matri-
ces Kφ

(l1,l2),(l′1,l
′

2)
, (φ, l1, l2) ∈ S̃ξ ,

(
l ′1, l
′

2

)
∈ L1 × L2,

are obtained according to the corresponding formu-
las given in Appendices A and B. Finally, the joint
queue length stationary distribution at arbitrary time,
namely p, is computed by the formulas (20), (21), (22)
and (23).

p =
(
p(l′1,l′2) :

(
l ′1, l
′

2
)
∈ {0, 1, 2, 3} × {0, 1, 2, 3}

)
,

where p(l′1,l′2) =
((

p(l′1,l′2)
)
(v′1,v

′

2)
:
(
v′1, v

′

2

)
∈ {1, 2}×

{1, 2}
)
. p is shown in Table 5, in which the

(
v′1, v

′

2

)
-

element of the
(
l ′1, l
′

2

)
-th block represents the probabil-

ity
(
p(l′1,l′2)

)
(v′1,v

′

2)
.

(4) Based on the joint queue length stationary distribution
p shown in Table 5, (a) according to the expression
given in (24), the customer blocking probability P1,BL
of queue 1 can be calculated, i.e. P1,BL = 0.0544;
according to the expression given in (25), the customer
blocking probability P2,BL of queue 2 can be calcu-
lated, i.e. P2,BL = 0.2095. And then according to the
expressions (26) and (27), the mean waiting times of
customers in queue 1 and queue 2 can be calculated,
i.e. W̄1 = 0.2680 and W̄2 = 0.2159.
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B. EFFECTIVENESS OF THE PROPOSED POLLING MODEL
In this subsection, numerical experiments are carried out to
show the effectiveness of the proposed polling model. The
main features of the proposed polling model lie in the across-
queue state-dependent service discipline attached to queue 2.
Namely, the duration of the server’s visit to queue 2 is prede-
termined and time-limited. This duration has the probability
distribution function Hj(t), which depends on the length j
of queue 1 at the instant when the server started to depart
from queue 1 last time, where j ∈ {0, 1, 2, . . . ,Q1}. There-
fore, we will show the effectiveness of the proposed polling
model by comparing two classes of service disciplines. In the
first class, the predetermined duration of the server’s visit to
queue 2 obeys the fixed probability distribution. In the sec-
ond class, the predetermined duration of the server’s visit to
queue 2 depends on the state of queue 1.

The numerical experiments are carried out with the
following parameters. The BMAP-1 is set as,

D(1)
0 =

(
−0.4650 0.1953
0.5089 −3.8710

)
,

D(1)
3 =

(
0.1927 0
0.2544 0.4328

)
, D(1)

5 =

(
0.0770 0
0.1018 2.5731

)
,

where the average arrival rate λ′1 = 3.6291. The BMAP-2 is
set as,

D(2)
0 =

(
−0.4305 0.1809
0.4712 −3.6583

)
,

D(2)
5 =

(
0.1783 0
0.2356 0.3266

)
, D(2)

7 =

(
0.0713 0
0.0942 2.5307

)
,

where the average arrival rate λ2 = 5.0374. The phase type
representation of B1(t) is

(
β1,B1

)
, where

β1 =
(
0.5 0.5

)
, B1 =

(
−9.9960 9.9960

0 −9.9960

)
.

The phase type representation of B2(t) is
(
β2,B2

)
, where

β2 = β1 and B2 = B1. The phase type representation of
R1(t) is (α1,R1), where α1 = 1, R1 = −10. The phase type
representation ofR2(t) is (α2,R2), whereα2 = 1,R2 = −10.
Let Q1 = Q2 = 10. For Hj(t) (j = 0, 1, 2, . . . , 10),
we compare the following cases in Fig. 5.
• Hj(t) is exponentially distributed with constant parame-
ter, regardless of j (j ∈ {0, 1, 2, · · · , 10}). The following
cases, in which each one has a constant parameter, are
considered.
(a) CV 0.11.1 For j ∈ {0, 1, 2, . . . , 10}, γj = 9.0909,

i.e. hj = 0.11.
(b) CV 0.13. For j ∈ {0, 1, 2, . . . , 10}, γj = 7.6923,

i.e. hj = 0.13.
(c) CV 0.15. For j ∈ {0, 1, 2, . . . , 10}, γj = 6.6670,

i.e. hj = 0.15.
(d) CV 0.17. For j ∈ {0, 1, 2, . . . , 10}, γj = 5.8824,

i.e. hj = 0.17.

1‘‘CV’’ stands for ‘‘constant value’’.

FIGURE 5. For different cases related to Hj (t) (j = 0,1,2, . . . ,10),
the variation of the parameter hj = 1/γj as the length j of queue 1 varies.

FIGURE 6. For different cases related to Hj (t) (j = 0,1,2, . . . ,10),
the variation of customer 1 mean waiting time (MWT) as λ1 varies, where
λ1 = (0.1k + 1)λ′1 (k = 1,2, . . . ,8).

(e) CV 0.19. For j ∈ {0, 1, 2, . . . , 10}, γj = 5.2632,
i.e. hj = 0.19.

• Hj(t) is exponentially distributed with the parameter
varying with j (j = 0, 1, 2, . . . , 10). The following case
is considered.

(f) AQSD value.2 For j = 0, 1, 2, 3, 4, γj = 5,
5.5556, 6.2500, 7.1429, 8.3333 respectively, i.e.
hj = 0.2, 0.18, 0.16, 0.14, 0.12 respectively; for
j = 5, 6, 7, 8, 9, 10, γj = 10, i.e. hj = 0.1.

For each of the above cases related to Hj(t) (j = 0, 1, 2,
. . . , 10), let the parameters of BMAP-1 vary as (0.1k+1)D(1)

0 ,
(0.1k + 1)D(1)

3 and (0.1k + 1)D(1)
5 , where k = 1, 2, . . . , 8

(meanwhile, the average arrival rate λ1 = (0.1k + 1)λ′1
increases from 3.9920 to 6.5324). The variations of cus-
tomer 1 mean waiting time and customer 2 mean waiting time
are displayed in Fig. 6 and Fig. 7 respectively.

It is shown in Fig. 6 and Fig. 7 that, given the case
‘‘CV 0.15’’, if the parameter γj (or hj) is adjusted as the cases

2‘‘AQSD’’ stands for ‘‘across-queue state-dependent’’.
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FIGURE 7. For different cases related to Hj (t) (j = 0,1,2, . . . ,10),
the variation of customer 2 mean waiting time (MWT) as λ1 varies, where
λ1 = (0.1k + 1)λ′1 (k = 1,2, . . . ,8).

‘‘CV 0.13’’ and ‘‘CV 0.11’’ respectively, customer 1 mean
waiting time is reduced, while customer 2 mean waiting time
is increased; if γj (or hj) is adjusted as the cases ‘‘CV 0.17’’
and ‘‘CV 0.19’’ respectively, customer 1 mean waiting time
is increased, while customer 2 mean waiting time is reduced;
if γj (or hj) is adjusted as the case ‘‘AQSD value’’, customer 1
mean waiting time and customer 2 mean waiting time can be
reduced simultaneously. In addition, according to the char-
acteristics of the proposed polling model, for each queue,
if the customer mean waiting time decreases, the mean queue
length and the customer blocking probability also decrease.

From the above observations, compared with the fixed ser-
vice discipline, the across-queue state-dependent service dis-
cipline can reduce the customermeanwaiting times, themean
queue lengths and the customer blocking probabilities of dif-
ferent queues simultaneously. The reason for these behaviors
is that, the across-queue state-dependent service discipline
can accommodate the fluctuation of the customer arrival
process appropriately. This also show the effectiveness of
the proposed polling model in optimizing the transmission of
compressed video.

VII. CONCLUSION
According to the characteristics of H.264 and H.265 stan-
dards, a polling model with BMAP and across-queue state-
dependent service discipline is proposed and analyzed in
this paper. In this polling model, there are one server and
two finite-buffer queues; the customers arrive at the two
queues as two independent BMAPs; the server is entitled
to serve the two queues in a cyclic manner; the first queue
is served according to the gated service discipline; the sec-
ond queue is served according to the across-queue state-
dependent time-limited service discipline. Since the service
discipline attached to the second queue is an across-queue
state-dependent one, the existing methods for analyzing
polling models with BMAP are not suitable for the model of
this paper. Fortunately, the classical matrix-analytic method

can be applied. By constructing a supplementary embedded
Markov chain, the joint queue length stationary distributions
at queue 1 polling epochs and at queue 2 polling epochs
are obtained firstly; and then based on the semi-regenerative
process and the stationary distribution of the supplementary
embedded Markov chain, the joint queue length stationary
distribution at arbitrary time is obtained; finally, based on
the above results, the blocking probabilities of customers
in different queues are given, and according to Little’s law,
the mean waiting times of customers in different queues can
be calculated.

It has been shown from the numerical experiments that,
compared with the fixed service discipline, the across-queue
state-dependent service discipline can reduce the customer
meanwaiting times, the mean queue lengths and the customer
blocking probabilities of different queues simultaneously.
This indicates that the polling model proposed in this paper
is suitable to design and optimize appropriate time division
transmission policies for the video compressed by H.264 and
H.265. These policies can be used in network devices and
data centers to transmit the collected or stored video data to
the destination through wireless networks.

APPENDIX A
FUNDAMENTAL CONDITIONAL PROBABILITIES
For the calculations of some variables involved in Sections III
and IV, some fundamental conditional probabilities and their
calculation formulas will be given in this section. Given two
general functions F(t) and G(t) on [0,∞), suppose that F(t)
has the phase type representation (α,T) of order mF , where
mF ∈ N+ and αe = 1; and G(t) has the phase type repre-
sentation (β,S) of order mG, where mG ∈ N+ and βe = 1.
Let

P(n1, n2, t) =
∞∑

i1=n1

P(i1, n2, t), (30)

P(n1, n2, t) =
∞∑

i2=n2

P(n1, i2, t), (31)

P(n1, n2, t) =
∞∑

i1=n1

∞∑
i2=n2

P(i1, i2, t). (32)

A. F
(
N1,N2

)
, F

(
N1,N2

)
, F

(
N1,N2

)
, F

(
N1,N2

)
Let

F(n1, n2) =
∫
∞

t=0
P(n1, n2, t)dF(t), (33)

F(n1, n2) =
∫
∞

t=0
P(n1, n2, t)dF(t), (34)

F(n1, n2) =
∫
∞

t=0
P(n1, n2, t)dF(t), (35)

F(n1, n2) =
∫
∞

t=0
P(n1, n2, t)dF(t), (36)

where n1, n2 ∈ N.
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(1) The
(
(v1, v2), (v′1, v

′

2)
)
-th element of F (n1, n2),

i.e. F(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional

probability that, given that the joint phase of the two
BMAPs is (v1, v2) at the initial time, after the time
interval T which obeys the distribution F(t), the joint
number of the arrivals from the two BMAPs is (n1, n2),
and the joint phase of the two BMAPs is (v′1, v

′

2), where
(v1, v2) ,

(
v′1, v

′

2

)
∈ M1 ×M2.

(2) The
(
(v1, v2), (v′1, v

′

2)
)
-th element of F (n1, n2),

i.e. F(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional

probability that, given that the joint phase of the two
BMAPs is (v1, v2) at the initial time, after the time inter-
val T which obeys the distribution F(t), the number of
the arrivals from the BMAP-1 is equal to or greater
than n1, the number of the arrivals from the BMAP-2
is n2, and the joint phase of the two BMAPs is (v′1, v

′

2),
where (v1, v2) ,

(
v′1, v

′

2

)
∈ M1×M2. From the relations

(30), (33) and (34), F(n1, n2) can be expressed in terms
of F(i1, n2) as the following,

F(n1, n2) =
∞∑
i1=0

F(i1, n2)−
n1−1∑
i1=0

F(i1, n2). (37)

(3) The
(
(v1, v2), (v′1, v

′

2)
)
-th element of F (n1, n2),

i.e. F(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional

probability that, given that the joint phase of the two
BMAPs is (v1, v2) at the initial time, after the time inter-
val T which obeys the distribution F(t), the number of
the arrivals from the BMAP-1 is n1, the number of the
arrivals from the BMAP-2 is equal to or greater than n2,
and the joint phase of the two BMAPs is (v′1, v

′

2), where
(v1, v2) ,

(
v′1, v

′

2

)
∈ M1 ×M2. From the relations (31),

(33) and (35), F (n1, n2) can be expressed in terms of
F(n1, i2) as the following,

F(n1, n2) =
∞∑
i2=0

F(n1, i2)−
n2−1∑
i2=0

F(n1, i2). (38)

(4) The
(
(v1, v2), (v′1, v

′

2)
)
-th element of F (n1, n2),

i.e. F(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional

probability that, given that the joint phase of the two
BMAPs is (v1, v2) at the initial time, after the time inter-
val T which obeys the distribution F(t), the number of
the arrivals from the BMAP-1 is equal to or greater
than n1, the number of the arrivals from the BMAP-2 is
equal to or greater than n2, and the joint phase of the two
BMAPs is (v′1, v

′

2), where (v1, v2) ,
(
v′1, v

′

2

)
∈ M1×M2.

From the relations (32), (33) and (36), F (n1, n2) can be
expressed in terms of F(i1, i2) as the following,

F(n1, n2)

=

∞∑
i1=0

∞∑
i2=0

F(i1, i2)−
n1−1∑
i1=0

∞∑
i2=0

F(i1, i2)

−

∞∑
i1=0

n2−1∑
i2=0

F(i1, i2)+
n1−1∑
i1=0

n2−1∑
i2=0

F(i1, i2). (39)

From (37), (38) and (39), it can be seen that the cal-
culations of F(n1, n2), F (n1, n2) and F (n1, n2) can be
reduced to the calculations of the fundamental terms
F(n1, n2),

∑
∞

n1=0 F(n1, n2),
∑
∞

n2=0 F(n1, n2) and
∑
∞

n1=0∑
∞

n2=0 F (n1, n2).

B. F̄
(
N1,N2

)
, F̄

(
N1,N2

)
, F̄

(
N1,N2

)
, F̄

(
N1,N2

)
Let

F̄(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− F(t)] dt, (40)

F̄(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− F(t)] dt, (41)

F̄(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− F(t)] dt, (42)

F̄(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− F(t)] dt, (43)

where n1, n2 ∈ N.
The

(
(v1, v2), (v′1, v

′

2)
)
-th element of F̄ (n1, n2), i.e.

F̄(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional probability

that, given that the joint phase of the two BMAPs is (v1, v2)
at the initial time, before the time interval T expires, where
T obeys the distribution F(t), the joint number of the arrivals
from the two BMAPs is (n1, n2), and the joint phase of the
two BMAPs is (v′1, v

′

2), where (v1, v2) ,
(
v′1, v

′

2

)
∈ M1 ×M2.

The meanings of the elements of F̄ (n1, n2), F̄ (n1, n2) and
F̄ (n1, n2) are explicit, by referring to Appendix A-A and the
above description of F̄ (n1, n2).
Similarly to (37), (38) and (39), F̄ (n1, n2), F̄ (n1, n2)

and F̄ (n1, n2) can be expressed in terms of F̄(i1, n2),
F̄(n1, i2) and F̄(i1, i2), respectively; moreover their calcula-
tions can be reduced to the calculations of the fundamen-
tal terms F̄(n1, n2),

∑
∞

n1=0 F̄(n1, n2),
∑
∞

n2=0 F̄(n1, n2) and∑
∞

n1=0
∑
∞

n2=0 F̄(n1, n2).

C. Ḡ ◦ F
(
N1,N2

)
, Ḡ ◦ F

(
N1,n2

)
, Ḡ ◦ F

(
n1,N2

)
,

Ḡ ◦ F
(

N1,N2

)
Let

Ḡ ◦ F(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− G(t)] dF(t), (44)

Ḡ ◦ F(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− G(t)] dF(t), (45)

Ḡ ◦ F(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− G(t)] dF(t), (46)

Ḡ ◦ F(n1, n2) =
∫
∞

t=0
P(n1, n2, t) [1− G(t)] dF(t), (47)

where n1, n2 ∈ N.
The

(
(v1, v2), (v′1, v

′

2)
)
-th element of Ḡ ◦ F (n1, n2),

i.e. Ḡ◦F(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional prob-

ability that, given that the joint phase of the two BMAPs
is (v1, v2) at the initial time, after the time interval T1,
which obeys the distribution F(t) and is less than the time
interval T2, where T2 obeys the distribution G(t), the joint
number of the arrivals from the two BMAPs is (n1, n2),
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and the joint phase of the two BMAPs is (v′1, v
′

2), where
(v1, v2) ,

(
v′1, v

′

2

)
∈ M1 ×M2. The meanings of the elements

of Ḡ◦F (n1, n2), Ḡ◦F (n1, n2) and Ḡ◦F (n1, n2) are explicit,
by referring to Appendix A-A and the above description of
Ḡ ◦ F (n1, n2).

Similarly to (37), (38) and (39), Ḡ ◦ F (n1, n2), Ḡ ◦
F (n1, n2) and Ḡ ◦ F (n1, n2) can be expressed in terms of
Ḡ ◦ F(i1, n2), Ḡ ◦ F(n1, i2) and Ḡ ◦ F(i1, i2), respectively;
moreover their calculations can be reduced to the calculations
of the fundamental terms Ḡ◦F(n1, n2),

∑
∞

n1=0 Ḡ ◦ F(n1, n2),∑
∞

n2=0 Ḡ ◦ F(n1, n2) and
∑
∞

n1=0
∑
∞

n2=0 Ḡ ◦ F(n1, n2).

D. Ḡ ◦ F̄
(
N1,N2

)
, Ḡ ◦ F̄

(
N1,N2

)
, Ḡ ◦ F̄

(
N1,N2

)
,

Ḡ ◦ F̄
(

N1,N2

)
Let

Ḡ ◦ F̄(n1, n2)=
∫
∞

t=0
P(n1,n2, t)[1−G(t)] [1−F(t)] dt, (48)

Ḡ ◦ F̄(n1, n2)=
∫
∞

t=0
P(n1, n2, t) [1−G(t)] [1−F(t)] dt, (49)

Ḡ ◦ F̄(n1, n2)=
∫
∞

t=0
P(n1, n2, t) [1−G(t)] [1−F(t)] dt, (50)

Ḡ ◦ F̄(n1, n2)=
∫
∞

t=0
P(n1,n2, t) [1−G(t)][1−F(t)] dt, (51)

where n1, n2 ∈ N.
The

(
(v1, v2), (v′1, v

′

2)
)
-th element of Ḡ ◦ F̄ (n1, n2),

i.e. Ḡ◦F̄(v1,v2),(v′1,v
′

2)
(n1, n2), represents the conditional prob-

ability that, given that the joint phase of the two BMAPs is
(v1, v2) at the initial time, after the time interval T , which
is less than not only the time interval T1 but also the time
interval T2, where T1 obeys the distribution F(t) and T2 obeys
the distribution G(t), the joint number of the arrivals from
the two BMAPs is (n1, n2), and the joint phase of the two
BMAPs is (v′1, v

′

2), where (v1, v2) ,
(
v′1, v

′

2

)
∈ M1 ×M2. The

meanings of the elements of Ḡ◦ F̄ (n1, n2), Ḡ◦ F̄ (n1, n2) and
Ḡ ◦ F̄ (n1, n2) are explicit, by referring to Appendix A-A and
the above description of Ḡ ◦ F̄ (n1, n2).
Similarly to (37), (38) and (39), Ḡ ◦ F̄ (n1, n2), Ḡ ◦

F̄ (n1, n2) and Ḡ ◦ F̄ (n1, n2) can be expressed in terms of
Ḡ ◦ F̄(i1, n2), Ḡ ◦ F̄(n1, i2) and Ḡ ◦ F̄(i1, i2), respectively;
moreover their calculations can be reduced to the calculations
of the fundamental terms Ḡ◦ F̄(n1, n2),

∑
∞

n1=0 Ḡ ◦ F̄(n1, n2),∑
∞

n2=0 Ḡ ◦ F̄(n1, n2) and
∑
∞

n1=0
∑
∞

n2=0 Ḡ ◦ F̄(n1, n2).

E. CALCULATION FORMULAS OF THE
FUNDAMENTAL TERMS
The calculations of fundamental conditional probabilities
given in Appendices A-A, A-B, A-C and A-D can be reduced
to the calculations of some fundamental terms. Before giv-
ing the formulas for calculating these fundamental terms,
Theorem 1 is given firstly.
Theorem 1: Given a m× m matrix � and let

9 (�, n1, n2) =
∫
∞

t=0
P(n1, n2, t)⊗ e�tdt,

where m ∈ N+ and n1, n2 ∈ N, if � is stable, then

(1) 9 (�, n1, n2), n1, n2 ∈ N, can be calculated by the
following recursion formulas,

9 (�, n1, n2) = Un1,n2 , n1, n2 ∈ N,

U0,0 = −

(
D(1)
0 ⊕ D(2)

0 ⊕�
)−1

,

Un1,n2 =

n1−1∑
j1=0

Uj1,n2

(
D(1)
n1−j1
⊗ Im2 ⊗ Im

)

+

n2−1∑
j2=0

Un1,j2

(
Im1 ⊗ D(2)

n2−j2
⊗ Im

)
×U0,0, n1 + n2 6= 0;

(2)
∑
∞

n1=09 (�, n1, n2), n2 ∈ N, can be calculated by the
following recursion formulas,

∞∑
n1=0

9 (�, n1, n2) = U(1)
n2 , n2 ∈ N,

U(1)
0 = −

(
D(1)
⊕ D(2)

0 ⊕�
)−1

,

U(1)
n2 =

n2−1∑
j2=0

U(1)
j2

(
Im1 ⊗ D(2)

n2−j2
⊗ Im

)
× U(1)

0 , n2 ∈ N+;

(3)
∑
∞

n2=09 (�, n1, n2), n1 ∈ N, can be calculated by the
following recursion formulas,

∞∑
n2=0

9 (�, n1, n2) = U(2)
n1 , n1 ∈ N,

U(2)
0 = −

(
D(1)
0 ⊕ D(2)

⊕�
)−1

,

U(2)
n1 =

n1−1∑
j1=0

[
U(2)
j1

(
D(1)
n1−j1
⊗ Im2 ⊗ Im

)]
× U(2)

0 , n1 ∈ N+;

(4)
∑
∞

n1=0
∑
∞

n2=09 (�, n1, n2) can be calculated by the
following formula,

∞∑
n1=0

∞∑
n2=0

9 (�, n1, n2) = −
(
D(1)
⊕ D(2)

⊕�
)−1

.

Proof: Since the matrix � is stable, � is invertible and
its eigenvalues are all negative. Let µi (i = 1, 2, . . . ,m)
denote the eigenvalues of �, where µi may be equal to µj
for i 6= j. By using the Jordan canonical form method [37],
e�t can be expressed in terms eµit (i = 1, 2, . . . ,m);
moreover, it follows that limt→∞ e�t = 0. The matrices
D(1)
0 and D(2)

0 are stable; the matrices D(1) and D(2) are
semi-stable [38]. So, based on the eigenvalue property of
Kronecker sum [39], the matrices D(1)

0 ⊕ D(2)
0 ⊕ �, D

(1)
⊕

D(2)
0 ⊕�,D

(1)
0 ⊕D

(2)
⊕� andD(1)

⊕D(2)
⊕� are all invertible.
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Let Un1,n2 = 9 (�, n1, n2), n1, n2 ∈ N. By the partial
integration, Un1,n2 can be expressed as follows.

Un1,n2 = P (n1, n2, t)⊗
(
e�t�−1

)∣∣∣∞
t=0

−

∫
∞

t=0
P′ (n1, n2, t)⊗

(
e�t�−1

)
dt

= −δn1+n2,0

(
Im̄ ⊗�−1

)
−

∫
∞

t=0
P′ (n1, n2, t)⊗

(
e�t�−1

)
dt.

(a) For n1 + n2 = 0,

U0,0 = −Im̄ ⊗�−1−
∫
∞

t=0
P′ (0, 0, t)⊗

(
e�t�−1

)
dt.

(52)

Substitute the relation (6) into (52), there is the follow-
ing relation.

U0,0 =−Im̄⊗�−1−U0,0

[(
D(1)
0 ⊕ D(2)

0

)
⊗�−1

]
. (53)

Post-multiply the relation (53) by Im̄ ⊗ �, then the
calculation formula of U0,0 can be obtained.

U0,0 = −

(
D(1)
0 ⊕ D(2)

0 ⊕�
)−1

.

(b) For n1 + n2 6= 0,

Un1,n2 = −

∫
∞

t=0
P′ (n1, n2, t)⊗

(
e�t�−1

)
dt. (54)

Substitute the relation (6) into (54), there is the follow-
ing relation.

Un1,n2 = −

∫
∞

t=0

n1∑
j1=0

[
P(j1, n2, t)⊗ e�t

]
×

(
D(1)
n1−j1
⊗ Im2 ⊗�

−1
)
dt

−

∫
∞

t=0

n2∑
j2=0

[
P(n1, j2, t)⊗ e�t

]
×

(
Im1 ⊗ D(2)

n2−j2
⊗�−1

)
dt

= −

n1∑
j1=0

[
Uj1,n2

(
D(1)
n1−j1
⊗ Im2 ⊗�

−1
)]

−

n2∑
j2=0

[
Un1,j2

(
Im1 ⊗ D(2)

n2−j2
⊗�−1

)]
− Un1,n2

(
D(1)
0 ⊗ Im2 ⊗�

−1

+Im1 ⊗ D(2)
0 ⊗�

−1
)
. (55)

Post-multiply the relation (55) by Im̄ ⊗� leads to

Un1,n2 (I⊗�) = −
n1∑
j1=0

[
Uj1,n2

(
D(1)
n1−j1
⊗ Im2 ⊗ Im

)]
−

n2∑
j2=0

[
Un1,j2

(
Im1⊗D

(2)
n2−j2
⊗ Im

)]
−Un1,n2

[(
D(1)
0 ⊕ D(2)

0

)
⊗ Im

]
. (56)

From the relation (56), the calculation formula of
Un1,n2 can be obtained.

Un1,n2 =

 n1∑
j1=0

Uj1,n2

(
D(1)
n1−j1
⊗ Im2 ⊗ Im

)

+

n2∑
j2=0

Un1,j2

(
Im1 ⊗ D(2)

n2−j2
⊗ Im

)
×U0,0.

The result (1) of Theorem 1 has been proved. Based on the
result (1), the results (2), (3) and (4) can be proved, and the
processes of these proofs are omitted.
The following formulas are introduced.

8(�1, �2, �3, n1, n2)

= (Im̄ ⊗�1)9 (�2, n1, n2) (Im̄ ⊗�3) ,

81(�1, �2, �3, n2)

= (Im̄ ⊗�1)

∞∑
n1=0

9 (�2, n1, n2) (Im̄ ⊗�3) ,

82(�1, �2, �3, n1)

= (Im̄ ⊗�1)

∞∑
n2=0

9 (�2, n1, n2) (Im̄ ⊗�3) ,

812(�1, �2, �3)

= (Im̄ ⊗�1)

∞∑
n1=0

∞∑
n2=0

9 (�2, n1, n2) (Im̄ ⊗�3) ,

where �1 is a row vector of appropriate size, �2 is a stable
matrix of appropriate size, and �3 is a column vector of
appropriate size.

According to the product property of Kronecker product,
the formulas for calculating the fundamental terms, which are
presented in Appendices A-A, A-B, A-C and A-D, are listed
in Table 6.

APPENDIX B
THE EXPRESSION OF K

((
φ, L1, L2

)
,
(

L′

1, L′

2

)
, T

)
AND

THE CALCULATION FORMULA OF Kφ
(L1,L2),

(
L′

1,L
′

2

)
For convenience, let L1,l1 = {l1, l1 + 1, . . . ,Q1} and L2,l2 =

{l2, l2 + 1, . . . ,Q2}, where l1 ∈ {0, 1, . . . ,Q1} and l2 ∈
{0, 1, . . . ,Q2}; let

〈P (n1, n2, t)〉 =
(
P (n1, n2, t) P (n1, n2, t)
P (n1, n2, t) P (n1, n2, t)

)
,

where t ≥ 0 and n1, n2 ∈ N.
(1) Given

(
(1, i, k) , l1, l2

)
∈ S̃(1)ξ ,

(a) consider
(
l ′1, l
′

2

)
∈ (L1 × L2) \

(
L1,l1 × L2,l2

)
,

K
((
(1, i, k) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)
= 0m̄,

K(1,i,k)
(l1,l2),(l′1,l

′

2)
= 0m̄;
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TABLE 6. The calculation formulas of the fundamental terms.

(b) consider
(
l ′1, l
′

2

)
∈ L1,l1 × L2,l2 ,

for i = k ,

K
((
(1, i, i) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− R1 (t)] ,

K(1,i,i)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R1
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
;

for i 6= k ,

K
((
(1, i, k) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− B1 (t)] ,

K(1,i,k)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
B1
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
.

(2) Given
(
(s1, j) , l1, l2

)
∈ S̃(s1)ξ ,

(a) consider
(
l ′1, l
′

2

)
∈ (L1 × L2) \

(
L1,l1 × L2,l2

)
,

K
((
(s1, j) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)
= 0m̄,

K(s1,j)
(l1,l2),(l′1,l

′

2)
= 0m̄;

(b) consider
(
l ′1, l
′

2

)
∈ L1,l1 × L2,l2 ,

for l2 = 0,

K
((
(s1, j) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− R2 (t)] ,

K(s1,j)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R2
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
;

for l2 6= 0,

K
((
(s1, j) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− B2(t)]

[
1− Hj(t)

]
+

l′1−l1∑
i1=0

l′2−l2∑
i2=0

∫ t

x=0
δ (Q2, l2 + i2) 〈P (i1, i2, x)〉

×δT (Q1, l1 + i1)

× [1− B2 (x)] dHj (x) δ
(
Q2, l ′2

)
×
〈
P
(
l ′1 − i1 − l1, l

′

2 − i2 − l2, t − x
)〉

×δT
(
Q1, l ′1

)
[1− R2 (t − x)] ,

K(s1,j)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
B2 ◦Hj

(
l ′1 − l1, l

′

2 − l2
)〉

×δT
(
Q1, l ′1

)
+

l′1−l1∑
i1=0

l′2−l2∑
i2=0

δ (Q2, l2 + i2)
〈
B2 ◦Hj (i1, i2)

〉
×δT (Q1, l1 + i1) δ

(
Q2, l ′2

)
×

〈
R2
(
l ′1−i1 − l1, l

′

2 − i2 − l2
)〉
δT
(
Q1, l ′1

)
.
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(3) Given
(
(2, j) , l1, l2

)
∈ S̃(2)ξ ,

(a) consider
(
l ′1, l
′

2

)
∈ (L1 × L2) \

(
L1,l1 × L2,l2

)
,

K
((
(2, j) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)
= 0m̄,

K(2,j)
(l1,l2),(l′1,l

′

2)
= 0m̄;

(b) consider
(
l ′1, l
′

2

)
∈ L1,l1 × L2,l2 ,

for l2 = 0,

K
((
(2, j) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− R2 (t)] ,

K(2,j)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R2
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
;

for l2 6= 0,

K
((
(2, j) , l1, l2

)
,
(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− B2 (t)]

[
1− Hj (t)

]
+

l′1−l1∑
i1=0

l′2−l2∑
i2=0

∫ t

x=0
δ (Q2, l2 + i2)

× 〈P (i1, i2, x)〉 δT (Q1, l1 + i1)

× [1− B2 (x)] dHj (x) δ
(
Q2, l ′2

)
×
〈
P
(
l ′1 − l1 − i1, l

′

2 − l2 − i2, t − x
)〉

× δT
(
Q1, l ′1

)
[1− R2 (t − x)] ,

K(2,j)
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
B2 ◦Hj

(
l ′1 − l1, l

′

2 − l2
)〉

×δT
(
Q1, l ′1

)
+

l′1−l1∑
i1=0

l′2−l2∑
i2=0

δ (Q2, l2 + i2)
〈
B2 ◦Hj (i1, i2)

〉
×δT (Q1, l1 + i1) δ

(
Q2, l ′2

)
×

〈
R2
(
l ′1−i1 − l1, l

′

2 − i2 − l2
)〉
δT
(
Q1, l ′1

)
.

(4) Given (s2, l1, l2) ∈ S̃
(s2)
ξ ,

(a) consider
(
l ′1, l
′

2

)
∈ (L1 × L2) \

(
L1,l1 × L2,l2

)
,

K
(
(s2, l1, l2) ,

(
l ′1, l
′

2
)
, t
)
= 0m̄,

Ks2
(l1,l2),(l′1,l

′

2)
= 0m̄;

(b) consider
(
l ′1, l
′

2

)
∈ L1,l1 × L2,l2 ,

for l1 = 0,

K
(
(s2, l1, l2) ,

(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− R1 (t)] ,

Ks2
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
R1
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
;

for l1 6= 0,

K
(
(s2, l1, l2) ,

(
l ′1, l
′

2
)
, t
)

= δ
(
Q2, l ′2

) 〈
P
(
l ′1 − l1, l

′

2 − l2, t
)〉
δT
(
Q1, l ′1

)
× [1− B1 (t)] ,

Ks2
(l1,l2),(l′1,l

′

2)

= δ
(
Q2, l ′2

) 〈
B1
(
l ′1 − l1, l

′

2 − l2
)〉
δT
(
Q1, l ′1

)
.
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