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ABSTRACT The general sum-connectivity index of a graph G, denoted by χα (G), is defined as∑
uv∈E(G)(d(u)+ d(v))

α , where uv is the edge connecting the vertices u, v ∈ V (G), d(w) denotes the degree
of a vertex w ∈ V (G), and α is a non-zero real number. For α = −1/2 and n ≥ 11, Wang et al. [On the sum-
connectivity index, Filomat 25 (2011) 29–42] proved that K2 + K n−2 is the unique graph with minimum
χα value among all the n–vertex graphs having minimum degree at least 2, where K2 + K n−2 is the join
of the 2-vertex complete graph K2 and the edgeless graph K n−2 on n − 2 vertices. Tomescu [2-connected
graphs with minimum general sum-connectivity index, Discrete Appl. Math. 178 (2014) 135–141] proved
that the result of Wang et al. holds also for n ≥ 3 and −1 ≤ α < −0.867. In this paper, it is shown that the
aforementioned result of Wang et al. remains valid if the graphs under consideration are connected, n ≥ 6
and−1 ≤ α < α0, where α0 ≈ −0.68119 is the unique real root of the equation χα (K2+K 4)−χα (C6) = 0,
and C6 is the cycle on 6 vertices.

INDEX TERMS Chemical graph theory, general sum-connectivity index, topological index.

I. INTRODUCTION
Throughout this paper, the term ‘‘graph’’ refers to a non-
trivial, simple, finite and connected graph. Vertex set and
edge set of a graph G will be denoted, respectively, by V (G)
and E(G). The degree of a vertex u ∈ V (G) and the edge
connecting the two vertices u, v ∈ V (G) will be denoted by
d(u) and uv, respectively. A graph with n vertices will be
referred as an n-vertex graph. Minimum degree of a graph
G is the least number among all the vertex degrees of G.
A vertex v ∈ V (G) of degree 1 is called pendant vertex.
Those graph-theoretic notation and terminology which are
not defined here, can be found in some standard books of
graph theory, like [12], [25].

Finding graph(s) from a certain graph family with extremal
values of those graph invariants which found some appli-
cation(s) in chemistry, is the topic of many publications,
appeared in chemical graph theory [22], [46]. The first Zagreb
index, appeared within the study of total π -electron energy
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of alternant hydrocarbons [24], and Randić index, proposed
for measuring the extent of branching of certain chemical
compounds [38], are perhaps the most studied graph invari-
ants regarding the aforementioned extremal graph-theoretic
problem. Details about the mathematical aspects of the first
Zagreb index (respectively, Randić index) can be found in the
recent surveys [6], [13], [14], recent papers [8], [11], [21],
[28]–[30], [39], [40] (respectively, [5], [17]–[20], [23], [26],
[32], [35]) and related references listed therein.

Inspired by the work done on the Randić index and the
first Zagreb index, Zhou and Trinajstić proposed the sum–
connectivity index (a variant of the both Randić index and first
Zagreb index) [47] and general sum–connectivity index (the
generalized version of the both first Zagreb index and sum–
connectivity index) [48]. The general sum–connectivity index
of a graph G is defined as

χα (G) =
∑

uv∈E(G)

(d(u)+ d(v))α ,

where α is a non-zero real number. The choice α = −1/2
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corresponds to the sum–connectivity index. It needs to be
mentioned here that 2χ

−1 coincides with the well-studied
harmonic index; see [7]. Details about χα can be found
in the recent survey [7], recent papers [1]–[4], [9], [10],
[16], [27], [33], [36], [37], [43] and related references cited
therein.

The Randić index is actually the most widely applied graph
invariant in chemistry and pharmacology [23]. The chemical
applicability of the sum–connectivity index was tested in
[31], [34] and it was concluded that the predictive ability of
the sum–connectivity index and Randić index is practically
same. Consequently, we may say that the sum–connectivity
index is as much important as the Randić index is. But, why
should one consider the general sum–connectivity index in
chemistry, particularly in quantitative structure-property and
structure-activity relations? Actually, the main advantage of
using the general sum–connectivity index is that the value
of α can be determined during the regression procedure in
such a way that the standard error of estimate for a particular
studied property of molecules is as small as possible and the
corresponding correlation coefficient is as large as possible.
Thus, it is meaningful to explore the mathematical aspects of
the general sum–connectivity index.

In this paper, we prove that the graph which attains min-
imum sum–connectivity index [44] for n ≥ 11 (minimum
harmonic index [15], [45] for n ≥ 4 and minimum general
sum–connectivity index χα [42] for −1 ≤ α < −0.867,
n ≥ 3) in the family of all n-vertex graphs having minimum
degree at least 2, also attains the minimum general sum–
connectivity index χα in the aforementioned graph class for
−1 ≤ α < −0.68119 and n ≥ 6. Since all the graphs
considered in this paper are non-trivial and connected (unless
otherwise stated), the class of graphs with minimum degree at
least 2 is actually equal to the class of graphs without pendant
vertices.

II. STATEMENT OF THE MAIN RESULT AND SOME
PRELIMINARY LEMMAS
In order to state the main result, we need some definitions.
By disjoint graphs G and H , we mean the graphs G and H
are vertex-disjoint as well as edge-disjoint. The join of two
disjoint graphs G1 and G2 is denoted by G1 + G2 and is
defined as the graphwith the vertex setV (G1)∪V (G2) and the
edge set E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1) and v ∈ V (G2)}.
Throughout this paper, join will be taken over disjoint graphs.
Complement of a graph G is the graph G with the vertex set
V (G) and the edge set {uv : uv 6∈ E(G) where u 6= v}. As
usual the n-vertex complete graph and n-vertex cycle graph
will be denoted as Kn and Cn, respectively. Throughout this
paper, we denote by α0 ≈ −0.68119 the unique real root of
the equation χα (K2 + K 4)− χα (C6) = 0. Now, we can state
our main result.
Theorem II-A: If −1 ≤ α < α0 and n ≥ 6 then among all

n–vertex connected graphs having minimum degree at least 2,
K2+K n−2 is the unique graph with minimum χα value, which

is equal to

2(n− 2)(n+ 1)α + 2α(n− 1)α.
For a non-empty set A ⊂ V (G), denote by G − A the

graph obtained from G by removing all the vertices of A
as well as all the edges incident to these vertices. A non-
trivial connected graph G is k-connected if and only if G−X
is a non-trivial connected graph for every X ⊂ V (G) with
|X | < k . Bearing in mind the facts that the graph K2 +

K n−2 is 2-connected and that every 2-connected graph has
minimum degree at least 2, we have the next result as a direct
consequence of Theorem II-A.
Corollary II-B: If−1 ≤ α < α0 and n ≥ 6 then among all

n–vertex 2-connected graphs, K2+K n−2 is the unique graph
with minimum χα value, which is equal to

2(n− 2)(n+ 1)α + 2α(n− 1)α.
In the remaining part of this section, some lemmas are

given, which play a vital role in proving Theorem II-A. The
first such lemma is related to the removal of an edge from a
graph.
Lemma II-C: [42] If v1v2 is an edge of a graph G such

that d(v1)+ d(v2) ≤ d(u)+ d(v) for all uv ∈ E(G), then

χα (G− v1v2) < χα (G)

for −1 ≤ α < 0, where G− v1v2 is the graph deduced from
G by removing the edge v1v2.
The proof of the next lemma is straightforward and hence

omitted.
Lemma II-D: If α < 0, then the function f defined by

f (x, y) = (x + 2)α + (y+ 2)α − (x + y)α , where x, y ≥ 3,

is strictly decreasing in both x and y, on the interval [3,∞).
As mentioned before, in the remaining part of this paper,

we take α0 ≈ −0.68119 as the unique root of the equation
χα (K2+K 4)−χα (C6) = 0whereC6 is the cycle on 6 vertices.
Lemma II-E: If n ≥ 7 and−1 ≤ α < α0 then the function

f defined by

f (α, n) = (2n− 4)(nα − (n+ 1)α)− (2n− 2)α

is positive-valued.
Proof:

By using Lagrange’s mean value theorem, we have

(2n− 4)(nα − (n+ 1)α) = −(2n− 4)αεα−1

> −(2n− 4)α(n+ 1)α−1,

where n < ε < n+ 1. So,

f (α, n) = (2n− 4)(nα − (n+ 1)α)− (2n− 2)α

> −(2n− 4)α(n+ 1)α−1 − (2n− 2)α.

Now, we need only to show that

−(2n− 4)α(n+ 1)α−1 > (2n− 2)α,

which is equivalent to

−α

(
2−

6
n+ 1

)
>

(
2−

4
n+ 1

)α
.
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Let

g(α, n) = −α
(
2−

6
n+ 1

)
−

(
2−

4
n+ 1

)α
.

Clearly, g is strictly increasing in n, because

∂g
∂n
= −

α

(n+ 1)2

(
4
(
2−

4
n+ 1

)α−1
+ 6

)
> 0.

Consequently, for −1 ≤ α < α0, it holds that

g(α, n) ≥ g(α, 7) = −
5α
4
−

(
3
2

)α
> 0.

because

−α > 0.61 ≈
4
5

(
2
3

)0.68

>
4
5

(
2
3

)−α
.

This completes the proof of the lemma. �
Lemma II-F: If x, y ≥ 3 and −1 ≤ α < 0, then the

function f defined by

f (x, y) = (x − 1)(x + 2)α + (y− 1)(y+ 2)α

−(x − 2)(x + 1)α − (y− 2)(y+ 1)α

+(x + y)α − (x + y− 2)α

is strictly decreasing in both x and y.
Proof: Throughout this proof, we assume that −1 ≤

α < 0 and x, y ≥ 3. One obtains

fx(x, y) = (x + αx − α + 2)(x + 2)α−1

−(x + αx − 2α + 1)(x + 1)α−1

+α(x + y)α−1 − α(x + y− 2)α−1

and

fxy(x, y) = α(α − 1)[(x + y)α−2 − (x + y− 2)α−2] ,

where fx =
∂f
∂x and fxy =

∂2f
∂x∂y . Obviously, the function fxy

is negative-valued. Hence, the function fx is decreasing in y,
which implies that

fx(x, y) ≤ fx(x, 3)=h(x+1)−h(x)+g(x)−g(x + 1), (1)

where

g(x) = −α(x + 2)α−1

and

h(x) = (x + αx − α + 1)(x + 1)α−1.

Cauchy’s mean value theorem guaranties that for every real
number x, there exists a number cx in the open interval (x, x+
1) such that

h(x + 1)− h(x)
g(x + 1)− g(x)

=
h′(cx)
g′(cx)

.

But,

h′(cx)
g′(cx)

=

(
cx + 1
cx + 2

)α−2 (2+ (α + 1)cx
1− α

+ 1
)
,

which is greater than 1 and hence

h(x + 1)− h(x)+ g(x)− g(x + 1) < 0 ,

because the function g is strictly decreasing. Therefore, from
Equation (1), it follows that the function fx is negative-valued
and hence f is strictly decreasing in x. Because of the sym-
metry, we also conclude that f is strictly decreasing in y. �
Lemma II-G: If −1 ≤ α < 0, then the function f defined

by

f (x) = x(x + 2)α − (x − 2)xα ,

is decreasing in x ≥ 2.
Proof: One obtains

df
dx
= g(x)− g(x − 2), (2)

where g(y) = (y+ αy+ 2)(y+ 2)α−1, y ≥ 0. But, under the
given constraint on α, the following inequality holds

dg
dy
= α(y(α + 1)+ 4)(y+ 2)α−2 < 0,

for all y ≥ 0, which implies that the function g is decreasing
in y on the interval [0,∞) and hence from Equation (2), the
desired result follows. �
Lemma II-H: Let

f (α, n) = (n− 5)(n− 1)α − (n− 3)(n+ 1)α

+2α[(n− 3)α − (n− 1)α]+ 4α .

If −1 ≤ α < α0 and n is an integer with n ≥ 9, then
f (α, n) > 0.

Proof: If n ≥ 13, then due to the assumption−1 ≤ α <
α0, we have

n > 1+ 4 · 2(−1/α0) > 1+ 4 · 2−1/α,

which implies that

4α − 2(n− 1)α > 0 (3)

for −1 ≤ α < α0. Also, the inequalities

(n− 3)[(n− 1)α − (n+ 1)α] > 0 (4)

and

2α[(n− 3)α − (n− 1)α] > 0 (5)

hold for all n ≥ 13 and α satisfying−1 ≤ α < α0. By adding
(3)–(5), we get the desired result for n ≥ 13. In the remaining
proof, we assume that 9 ≤ n ≤ 12 and −1 ≤ α < α0. We
note that the function 8, defined by

8(α) =
(

4
n+ 1

)α
+

(
n− 1
n+ 1

)α
,

is strictly decreasing. Thus,(
4

n+ 1

)α
+

(
n− 1
n+ 1

)α
>

(
4

n+ 1

)α0
+

(
n− 1
n+ 1

)α0
> 3,
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(for n = 9, 10, 11, 12 and −1 ≤ α < α0) which implies that
4α + (n− 1)α − 3 · (n+ 1)α > 0, adding it to the inequality

(n− 6)[(n− 1)α − (n+ 1)α)]+ 2α[(n− 3)α−(n− 1)α]>0

yield f (α, n) > 0. �
In the proofs of some upcoming lemmas, we will write

directly the inequalities related to (3) because their deriva-
tions are fully analogous to that of (3).
Lemma II-I: If α < 0, then the function f defined by

f (x) = (x + 2)α − (x + 3)α ,

is decreasing in x ≥ 2.
Lemma II-J: The function f is defined by

f (α, n) = (2α + 1)[(n− 2)α − (n− 1)α]

+2[(n− 3)nα − (n− 2)(n+ 1)α]+ 5α .

If −1 ≤ α < α0 and n is an integer greater than 6, then
f (α, n) is positive-valued.

Proof: Clearly, the inequality f (α, n) > 0, for n ≥ 14,
can be obtained by adding the following inequalities

5α − 2nα > 0 , (2α + 1)[(n− 2)α − (n− 1)α] > 0 ,

2(n− 2)[nα − (n+ 1)α] > 0 ,

which hold for all n ≥ 14 and α satisfying −1 ≤ α < α0. In
what follows, it is assumed that 7 ≤ n ≤ 13 and −1 ≤ α <
α0. We note that

2(n− 3)
(

n
n+ 1

)α
+

(
5

n+ 1

)α
> 2(n− 3)

(
n

n+ 1

)α0
+

(
5

n+ 1

)α0
> 2(n− 2),

(for n = 7, 8, · · · , 13 and −1 ≤ α < α0) which implies that

2[(n− 3)nα − (n− 2)(n+ 1)α]+ 5α > 0, (6)

adding it to the inequality

(2α + 1)[(n− 2)α − (n− 1)α] > 0

give f (α, n) > 0.
�

Lemma II-K: If −1 ≤ α < 0, then the function f defined
by

f (x) = (x + 3)α + (x − 1)
[
(x + 2)α − (x + 1)α

]
,

is decreasing in x ≥ 3.
Proof: Here, we have

df
dx
= g(x)− g(x + 1)+ h(x + 1)− h(x) (7)

where

g(x) = −α(x + 2)α−1

and

h(x) = (x + αx − α + 1)(x + 1)α−1.

We note that the functions g and h are the same as used in the
proof of Lemma II-F, and hence by using the same reasoning
given there, we have

g(x)− g(x + 1)+ h(x + 1)− h(x) < 0,

under the given constraints. Therefore, from Equation (7),
it follows that df

dx < 0 for all x ≥ 3 and α satisfying
−1 ≤ α < 0. �
Lemma II-L: If n is an integer greater than 8 and −1 ≤

α < α0 then the function f defined by

f (α, n) = (n− 6)(n− 2)α + 2α[(n− 4)α − (n− 1)α]

+(n− 4)(n− 1)α − 2(n− 2)(n+ 1)α

+ nα + 2 · 5α + 4α,

is positive-valued.
Proof: Under the given constraints, it is evident that

f (α, n) > (n− 6)(n− 2)α + 2α[(n− 4)α − (n− 1)α]

+(n− 4)(n− 1)α − 2(n− 2)(n− 1)α

+3 · 5α (8)

= (n− 6)(n− 2)α + 2α[(n− 4)α − (n− 1)α]

−n(n− 1)α + 3 · 5α. (9)

Also, we note that the right hand side of (8) is positive for
n ≥ 16 because the inequalities

3[5α − 2(n− 2)α] > 0 , 2α[(n− 4)α − (n− 1)α] > 0 ,

n[(n− 2)α − (n− 1)α] > 0 ,

hold for all n ≥ 16 and α satisfying the given condition. In
the rest of the proof, we take 9 ≤ n ≤ 15 and −1 ≤ α < α0.
Here, we have

2
(

5
n+ 1

)α
+

(
4

n+ 1

)α
>2

(
5

n+ 1

)α0
+

(
4

n+ 1

)α0
>5,

(for n = 9, 10, · · · , 15 and −1 ≤ α < α0) which implies
that 2 · 5α + 4α − 5(n+ 1)α > 0, adding it to the inequality

[nα − (n+ 1)α]+ (n− 4)[(n− 1)α − (n+ 1)α]

+(n−6)[(n− 2)α−(n+ 1)α]+2α[(n−4)α−(n− 1)α]>0,

yield f (α, n) > 0.
�

Lemma II-M: Let

f (α, n) = 2[(n− 3)nα − (n− 2)(n+ 1)α]

+2α[(n− 2)α − (n− 1)α]+ 4α .

If n is an integer greater than 6 and −1 ≤ α < α0 then
f (α, n) > 0.

Proof: Clearly, the inequality f (α, n) > 0, for n > 12,
can be obtained by adding the inequalities

4α − 2nα > 0 , 2α[(n− 2)α − (n− 1)α] > 0 ,

2(n− 2)[nα − (n+ 1)α] > 0 ,

which hold for all n > 12 and α satisfying −1 ≤ α < α0. In
what follows, we assume that 7 ≤ n ≤ 12 and−1 ≤ α < α0.
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FIGURE 1. All those non-isomorphic graphs on 7 vertices with minimum
degree 2 which satisfy other constraints of Lemma III-B.

From (6), it follows that 2[(n−3)nα−(n−2)(n+1)α]+4α > 0,
adding it to the inequality 2α[(n− 2)α − (n− 1)α] > 0 give
f (α, n) > 0.

�

III. PROOF OF THEOREM I-A
Lemma III-A: Theorem II-A is true for n = 6.
Proof: There are 61 non-isomorphic connected 6-vertex

graphs with minimum degree at least 2. We generate these
graphs by using SageMath [41]. We calculate the general
sum-connectivity indices of these 61 graphs and then we
compare these indices with χα (K2 + K 4), which gives the
desired result. �
Lemma III-B: Let G be an n-vertex connected graph with

minimum degree at least 2. Suppose that G contains at least
one pair of adjacent vertices of degree 2. Also, suppose that if
u, v ∈ V (G) is an arbitrary pair of adjacent vertices of degree
2 then
(i) either u, v have a common neighbor of degree more

than 3,
(ii) or u, v have a common neighbor of degree 3, which is

adjacent to a branching vertex (a vertex with degree
greater than 2).

If −1 ≤ α < α0 and n = 7 or 8, then it holds that

χα (G) > 2(n− 2)(n+ 1)α + 2α(n− 1)α . (10)
Proof: If the minimum degree ofG is at least 3, then we

may choose an edge v1v2 ∈ E(G) satisfying the inequality
d(v1) + d(v2) ≤ d(u) + d(v) for all uv ∈ E(G). Clearly,
the graph G − v1v2 still has minimum degree at least 2, and
by using Lemma II-C, we have χα (G) > χα (G − v1v2) for
−1 ≤ α < α0. Thereby, it is enough to prove the lemma
when G has minimum degree 2.
All those non-isomorphic graphs on 7 vertices with mini-

mum degree 2 are depicted in Figure 1, which satisfy other
constraints of this lemma. Routine calculations yield

χα (H16) = 3(4α + 2 · 8α) ,

χα (H17) = 4α + 3 · 5α + 5 · 7α ,

χα (H18) = 4α + 3 · 6α + 5 · 8α + 10α ,

χα (H19) = 4α + 6α + 2(5α + 2 · 8α + 9α) ,

χα (H20) = 4α + 3 · 5α + 4 · 6α + 7α ,

χα (H21) = 4α + 5α + 2 · 8α + 3(6α + 7α) ,

χα (H22) = 4α + 3 · 8α + 10α + 2(6α + 7α + 9α) ,

χα (H23) = 4α + 5α + 8α + 9α + 2(6α + 2 · 7α) ,

χα (H24) = 2(4α + 3 · 6α)+ 8α ,

χα (H25) = 4α + 4(5α + 6α) ,

χα (H26) = 4α + 5α + 4 · 6α + 3 · 7α + 8α ,

χα (H27) = 4α + 2(6α + 2 · 7α + 8α + 9α) ,

χα (H28) = 4α + 7 · 6α + 2 · 7α ,

χα (H29) = 4α + 5 · 7α + 9α + 2(6α + 8α) ,

χα (H30) = 4α + 3 · 8α + 2(2 · 7α + 9α + 10α) ,

χα (H31) = 4α + 2(2 · 5α + 6α + 7α) ,

χα (H32) = 4α + 3 · 8α + 2(5α + 6α + 7α) ,

χα (H33) = 4α + 2(2 · 6α + 8α + 2 · 9α) ,
χα (H34) = 4α + 3(2 · 6α + 8α) ,
χα (H35) = 4α + 2(2 · 5α + 6α + 7α) ,
χα (H36) = 4α + 3 · 6α + 2(5α + 2 · 7α),
χα (H37) = 4α + 4 · 7α + 3(6α + 8α) ,
χα (H38) = 4α + 5 · 7α + 3(8α + 9α) ,
χα (H39) = 4α + 4(2 · 8α + 10α).

It is not difficult to verify that χα (Hi) > 2(n − 2)(n + 1)α +
2α(n− 1)α for every i ∈ {16, 17, . . . , 39} and −1 ≤ α < α0.
Now, we consider the case n = 8. It is clear that G

contains at least one cut-vertex (a vertex whose removal
disconnects G), which implies that the vertex connectivity
(minimum number of vertices whose removal disconnectsG)
of G is 1. Also, we note that G must not be triangle-free. By
using SageMath [41], we generate all those non-isomorphic
connected 8-vertex graphs with minimum degree 2 and vertex
connectivity 1, which contain at least one triangle. There are
totally 307 graphs. From these 307 graphs, we observe that
exactly 192 satisfy the constraints of the lemma. We calcu-
late the general sum-connectivity indices of the desired 192
graphs and then we compare these indices with χα (K2+K 6),
which gives the desired result. �

The set formed by neighbors of a vertex v ∈ V (G) is
denoted by N (v). For non-empty sets A ⊂ V (G) and B ⊆
E(G), denote by G − A + B the graph deduced from G − A
by adding the edges of B. Let G′ be a graph obtained from
another graphG by applying some graph transformation such
that V (G′) ⊆ V (G). Throughout this section, whenever such
two graphs are under discussion, by the vertex degree d(u),
u ∈ V (G′), we always mean that it is degree of the vertex u
in G.

The next lemma is proved for n = 7. But, throughout the
proof of this lemma, we use n instead of 7, for the purpose of
referring it afterwards for other values of n.
Lemma III-C: Let G be an n-vertex connected graph with

minimum degree at least 2. Suppose that G satisfies at least
one of the following conditions:

(i) G does not contain any pair of adjacent vertices of
degree 2;

(ii) G contains at least one pair of adjacent vertices of
degree 2 having a common neighbor of degree 3, which
is adjacent to only vertices of degree 2;
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(iii) G contains at least one pair of adjacent vertices of
degree 2 without common neighbor.

If n = 7 and −1 ≤ α < α0, then it holds that

χα (G) ≥ 2(n− 2)(n+ 1)α + 2α(n− 1)α (11)

with equality if and only if G ∼= K2 + K n−2.
Proof: Bearing in mind the first paragraph of the proof

of Lemma III-B, it is enough to prove the result when mini-
mum degree of G is 2.
Case 1: G has no pair of adjacent vertices of degree 2.
Let u ∈ V (G) be a vertex of degree 2 having neighbors v

and w.
Subcase 1.1: There is no edge between v and w.
Clearly, it holds that 3 ≤ d(v) ≤ n − 2 and 3 ≤ d(w) ≤

n − 2. If we take G1 ∼= G − {u} + {vw} (noting that G1 has
six vertices), then by using Lemmas II-D, III-A and II-E, we
have

χα (G) = χα (G1)+ (2+ d(v))α + (2+ d(w))α

−(d(v)+ d(w))α

≥ χα (G1)+ 2 · nα − 2α(n− 2)α

≥ 2(n− 2)nα

> 2(n− 2)(n+ 1)α + 2α(n− 1)α.

Subcase 1.2: There is an edge between v and w.
In this case, the vertex degrees d(v) and d(w) satisfy the

inequalities 3 ≤ d(v) ≤ n − 1 and 3 ≤ d(w) ≤ n − 1. By
setting G2 ∼= G − {u} and utilizing Lemmas II-F and III-A,
we obtain

χα (G) = χα (G2)+ (2+ d(v))α + (2+ d(w))α

+ (d(v)+ d(w))α − (d(v)+ d(w)− 2)α

+

∑
t∈N (v)\{u,w}

[
(d(v)+ d(t))α

− (d(v)− 1+ d(t))α
]

+

∑
z∈N (w)\{v,u}

[
(d(w)+ d(z))α

− (d(w)− 1+ d(z))α
]

≥ χα (G2)+ (2+ d(v))α + (2+ d(w))α

+ (d(v)+ d(w))α − (d(v)+ d(w)− 2)α

+ (d(v)− 2)
[
(d(v)+ 2)α − (d(v)+ 1)α

]
+ (d(w)− 2)

[
(d(w)+ 2)α − (d(w)+ 1)α

]
= χα (G2)+ (d(v)− 1)(2+ d(v))α

+ (d(w)− 1)(2+ d(w))α + (d(v)+ d(w))α

− (d(v)+ d(w)− 2)α − (d(v)− 2)(d(v)+ 1)α

− (d(w)− 2)(d(w)+ 1)α

≥ χα (G2)+ 2(n− 2)(n+ 1)α

+ 2α[(n− 1)α − (n− 2)α]− 2(n− 3)nα

≥ 2(n− 2)(n+ 1)α + 2α(n− 1)α. (12)

We note that the equality sign holds throughout in (12) if and
only if all the members of the sets N (v)\ {u,w}, N (w)\ {v, u}
have degree 2, both the vertices v, w have degree n − 1 and
G2 ∼= K2 + K n−3. This shows that the equality sign holds
throughout in (12) if and only if G ∼= K2 + K n−2.
Case 2: G contains at least one pair of adjacent vertices of

degree 2 having a common neighbor of degree 3, which is
adjacent to only vertices of degree 2.

Let u, u′ ∈ V (G) be two adjacent vertices of degree 2,
denote by u1 the common neighbor of u and u′, and let
N (u1) = {u, u′, u2} where d(u2) = 2. Let u3 be the neighbor
of u2 different from u1. Clearly, the vertex u3 may be adjacent
to at most n− 4 vertices. If G3 ∼= G− {u2} + {u1u3}, then by
using Lemmas II-I, III-A and II-J, we have

χα (G) = χα (G3)+ 5α + (2+ d(u3))α − (3+ d(u3))α

≥ χα (G3)+ 5α + (n− 2)α − (n− 1)α

≥ 2(n− 3)nα + (2α + 1)(n− 2)α − (n− 1)α + 5α

> 2(n− 2)(n+ 1)α + 2α(n− 1)α.

Case 3: G contains at least one pair of adjacent vertices of
degree 2 without common neighbor.

Let u, u′ ∈ V (G) be a pair of adjacent vertices of degree
2 having no common neighbor. Let u1 be the neighbor of u
different from u′. By setting G4 ∼= G − {u} + {u′u1}, using
Lemmas III-A and II-M, we get

χα (G) = χα (G4)+ 4α

≥ 2(n− 3)nα + 2α(n− 2)α + 4α

> 2(n− 2)(n+ 1)α + 2α(n− 1)α.

This completes the proof. �
From Lemmas III-B and III-C, the next result follows.
Lemma III-D: Theorem II-A is true for n = 7.
Remark III-E: If we replace n = 8 in Lemma III-C, then

the resulting statement remains true due to Lemma III-D
(more precisely, in the proof of Lemma III-C, all the using
of Lemma III-A are replaced by Lemma III-D).

The next lemma follows directly from Lemma III-B and
Remark III-E.
Lemma III-F: Theorem II-A is true for n = 8.
Proof of Theorem II-A. We prove the result by induction

on n. The result is true for n = 6, 7, 8 and −1 ≤ α < α0
because of Lemmas III-A, III-D and III-F. Now, we suppose
that n ≥ 9, −1 ≤ α < α0 and the result is true for all those
graphs of order at most n − 1 whose minimum degree is at
least 2.

LetG be an n-vertex graph with minimum degree at least 2.
If the minimum degree of G is at least 3, then we may choose
an edge v1v2 ∈ E(G) satisfying d(v1)+ d(v2) ≤ d(u)+ d(v)
for all uv ∈ E(G). Clearly, the graphG−v1v2 (obtained from
G by removing the edge v1v2) still has minimum degree at
least 2, and by using Lemma II-C, we have χα (G) > χα (G−
v1v2) for −1 ≤ α < α0. Thus, we assume that the minimum
degree of G is 2.
If G does not contain any pair of adjacent vertices of

degree 2, then the proof is fully analogous to that of
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Case 1 in Lemma III-C (more precisely, in the proof of
Lemma III-C, we would use ‘‘induction hypothesis’’ instead
of Lemma III-A).

Suppose that G contains at least one pair of adjacent ver-
tices of degree 2. Let u, v ∈ V (G) be adjacent vertices of
degree 2. Then there are four possibilities:
(i) u and v have no common neighbor;
(ii) u and v have a common neighbor of degree 3, which is

adjacent to only vertices of degree 2;
(iii) u and v have a common neighbor of degree 3, which

is adjacent to a branching vertex (a vertex with degree
greater than 2);

(iv) u and v have a common neighbor of degree more than 3.
The proof of (i) and (ii) are, respectively, fully analogous

to that of Cases 3 and 2 in Lemma III-C.
For (iii) and (iv), denote by u1 the common neighbor of u

and v. Obviously, it holds that 3 ≤ d(u1) ≤ n− 1.
First suppose that u1 has degree 3. Let u2 be the neighbor

of u1 different from u and v. Due to the given constraints, it
holds that 3 ≤ d(u2) ≤ n − 3. If G5 ∼= G − {u, v, u1}, then
by using Lemma II-K, induction hypothesis and Lemma II-L,
we have

χα (G) = χα (G5)+ 4α + 2 · 5α + (3+ d(u2))α

+

∑
z∈N (u2)\{u1}

[
(d(u2)+ d(z))α

− (d(u2)− 1+ d(z))α
]

≥ χα (G5)+ 4α + 2 · 5α + (3+ d(u2))α

+ (d(u2)− 1)
[
(d(u2)+ 2)α − (d(u2)+ 1)α

]
≥ χα (G5)+ 4α + 2 · 5α + nα

+ (n− 4)
[
(n− 1)α − (n− 2)α

]
≥ (n− 6)(n− 2)α + 2α(n− 4)α + nα

+ (n− 4)(n− 1)α + 4α + 2 · 5α

> 2(n− 2)(n+ 1)α + 2α(n− 1)α.

Next suppose that u1 has degree greater than 3. If
G6 ∼= G− {u, v}, then simple computations give

χα (G) = χα (G6)+ 4α + 2(2+ d(u1))α

+

∑
z∈N (u1)\{u,v}

[
(d(u1)+ d(z))α

− (d(u1)− 2+ d(z))α
]

≥ χα (G6)+ 4α + 2(2+ d(u1))α

+ (d(u1)− 2)
[
(d(u1)+ 2)α − (d(u1))α

]
= χα (G6)+ 4α + d(u1)(2+ d(u1))α

− (d(u1)− 2)(d(u1))α.

By using the induction hypothesis, Lemmas II-G and II-H,
we have

χα (G) ≥ χα (G6)+ 4α + (n− 1)(n+ 1)α

−(n− 3)(n− 1)α

≥ (n− 5)(n− 1)α + 2α(n− 3)α

+(n− 1)(n+ 1)α + 4α

> 2(n− 2)(n+ 1)α + 2α(n− 1)α.

This completes the proof of Theorem II-A.

IV. CONCLUSION
We have proved that the graph K2 + K n−2 which attains
minimum sum–connectivity index [44] for n ≥ 11 (minimum
harmonic index [15], [45] for n ≥ 4 and minimum general
sum–connectivity index χα [42] for −1 ≤ α < −0.867,
n ≥ 3) in the family of all n-vertex graphs having minimum
degree at least 2, also attains the minimum general sum–
connectivity index χα in the aforementioned graph class for
−1 ≤ α < −0.68119 and n ≥ 6 (see Theorem II-A).
For sufficiently large n, we expect that the same graph K2 +

K n−2 has minimum general sum–connectivity index χα in the
above-mentioned graph class also for −0.68119 ≤ α < 0;
it would be interesting, in future, to prove this assertion.
But, we remark that the technique (mathematical induction)
adopted in the present paper would not work well in this
regard, because the verification of the induction-base-step
would be much more tedious (as n would be increased when
we considerably increase α in the interval (−0.68119, 0)).
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