
Received July 26, 2019, accepted August 15, 2019, date of publication September 4, 2019, date of current version October 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939498

Rain Attenuation Along Terrestrial Millimeter
Wave Links: A New Prediction Method
Based on Supervised Machine Learning
SPIROS N. LIVIERATOS 1 AND PANAYOTIS G. COTTIS2
1Department of Electrical and Electronic Engineering, School of Pedagogical and Technological Education, 14121 Athens, Greece
2School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

Corresponding author: Spiros N. Livieratos (slivieratos@aspete.gr)

This work was supported by the Special Account for Research of ASPETE through the funding program ‘‘Strengthening ASPETE’s
Research.’’

ABSTRACT During the current decade, wireless data traffic has been increasing very rapidly, a trend
which is expected to accelerate over the next decade driven by the widespread use of video streaming and
the rise of the Internet-of-Things (IoT). In this framework, cellular technology is rapidly moving towards
its 5th generation (5G) that will employ millimeter wave (mmWave) frequencies in the attempt to exploit
more spectrum and offer multi-Gigabit-per-second (Gbps) data rates to mobile devices. Various propagation
phenomena affect adversely mmWave communications, rain fading being the most severe one. The existing
ITU-R prediction model for rain induced attenuation over terrestrial line-of-sight (LOS) links does not
perform accurately on a global level. This weakness constitutes the main motivation to formulate enhanced
models which, by employing appropriate attributes, apply more satisfactorily to specific locations or climatic
zones. ITU-R databank includes experimental data of real LOS links operating in various locations that can
be used to facilitate supervised machine learning (SML) to formulate methods towards accurate prediction
of rain attenuation. Based on a set of past examples or instances, SML aims at exploring/identifying
the relationship between a set of descriptive features (inputs) and a target feature (output). After been
appropriately trained with past data, SML can be used to make predictions about new instances. This
paper proposes a new prediction method which uncovers the latent dependence of rain attenuation on
predictors such as path length, operation frequency, wave polarization, rain rate distribution, etc. ensuring
high prediction accuracy without necessitating complex mathematical expressions.

INDEX TERMS Gaussian processes, machine learning, millimeter wave communications, rain fading,
regression, supervised learning, wireless networks.

I. INTRODUCTION
Learning means finding patterns from previous experience in
the attempt to deal with unknown situations. Learning comes
as the result of repeatedly observing meaningful indicators
that affect the problem each time in hand. When computers
(machines) are involved, the repeated observations come in
the form of data whereas the solution to a new problem
may be perceived/obtained as the output of an algorithm.
Machine learning (ML) aims at automating the process of
extracting knowledge from experience in order to make a
prediction concerning an unknown situation. ML emerged as
a sub-discipline of artificial intelligence and has been applied
in areas such as computer perception, communication and
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reasoning [1]. ML constitutes an alternative for data-driven
decision making or prediction and has become one of the
most powerful artificial intelligence tools [2].

ML is usually classified as supervised or unsupervised
machine learning [3]. In supervised machine learning (SML),
the goal is to learn (determine) how a set of inputs is related
to a set of outputs, given a labeled (known) set of input-output
pairs. In unsupervised learning, sometimes called knowledge
discovery, where only inputs exist, the goal is to extract
interesting patterns governing a set of input data. For two
reasons, problems addressed employing unsupervised learn-
ing are not well-defined. First, it is not a priori known what
kinds of patterns to search for. Second, unlike SML - where
the prediction of the output given the inputs can be compared
to observed values-, there is no error metric to use. Another
type of ML, known as reinforcement learning, is also in use,
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aiming at learning how to act or behave forced by appropriate
reward or punishment signals.

To address the increasing, at a rate of over 50% per
year per subscriber, demand in wireless data traffic, wire-
less networks are migrating to the 5th generation (5G)
standard which will use millimeter wave (mmWave) frequen-
cies ranging from 30GHz to 300GHz, as they offer channel
bandwidths more than ten times wider than the bandwidth
offered by 4G long-term evolution (LTE) networks [4]. Using
service-driven 5G networks, the operators aim at flexibly
and efficiently providing services such as enhanced mobile
broadband, ultra-reliable and low-latency communications
and massive machine type communications [5]. 5G networks
should also support backward compatibility with 4G-LTE
and Wi-Fi. Since, compared to the microwave frequencies
currently used by LTE, the wavelengths at mmWave fre-
quencies are shorter by an order of magnitude ranging from
1mm to 10mm, atmospheric phenomena such as precipita-
tion and diffraction cause stronger attenuation/fading. Hence,
the impact of atmospheric phenomena in the design of new
mmWave communication systems becomes critical, necessi-
tating accurate prediction. Over the past years, measurements
and prediction models concerning a plethora of propaga-
tion scenarios regarding terrestrial line-of-sight (LOS) and
satellite links have been proposed by many companies and
research groups [6]–[8]. The propagation problems related
to mmWave communications, most importantly attenuation
due to rain, affect the physical layer and, subsequently,
the medium access control layer and higher layers; hence,
their expected severe impact on 5G wireless networks neces-
sitates proper handling.

Due to its stochastic behavior with regard to duration, loca-
tion and occurrence frequency, rainfall is a complex meteo-
rological phenomenon. Since, for any location on Earth, the
statistical distribution of rain attenuation is obtained from
local data concerning the rain rate distribution, the accuracy
of rain rate measurements drastically affects the estimation
accuracy of rain induced attenuation. The existing ITU-R
prediction model for rain induced attenuation over LOS links
does not perform accurately on a global level. This constitutes
the main motivation to formulate alternative models which,
by employing appropriate attributes, apply better to specific
locations or climatic zones. In any case, it is not an easy task
to employ a complex prediction model for rain attenuation
that applies to any location and climatic region. However, the
availability of a plethora of statistically stable measurements
concerning rain rate and rain induced attenuation over real
microwave links operating in various locations encourages
the application of SML based regression methods expect-
ing to achieve more accurate predictions. By appropriately
training the relevant algorithms, a prediction method may be
formulated which:

i. uncovers the latent dependence of rain attenuation on
factors such as path length, operation frequency, wave
polarization, rain rate distribution, etc., without having
to employ complex mathematical expressions

ii. ensures high prediction accuracy

Concluding, SML can enhance the procedure of uncover-
ing the latent relationship between rain rate and rain attenu-
ation which cannot be captured by classic statistical/analytic
methods [5]. By improving the estimation of the spatiotem-
poral behavior of rain attenuation, SML gives rise to a novel
procedure towards calculating the rain fade margins neces-
sary for optimizing the deployment and operation of wireless
networks operating above 5GHz, especially above 10GHz.

The rest of the paper is organized as follows. Section II
presents the rain attenuation prediction models currently
in use. Section III presents the basic mathematical back-
ground referring to (i) SML, (ii) Gaussian processes (GPs)
and (iii) regression techniques that constitute the necessary
steps towards developing the proposed prediction method. In
Section IV, the proposed method is analyzed. Also, its predic-
tion accuracy is validated by performing performance com-
parison with relevant prediction models, taking into account
real data for rain rate and rain attenuation extracted from
the experimental databank of ITU-R. Finally, Section V con-
cludes the paper and presents fields for further study and
application of the proposed method.

II. EXISTING PREDICTION MODELS FOR
RAIN ATTENUATION
In LOS terrestrial links or earth-space links operating above
5GHz, especially above 10GHz, the occurrence of rain along
the transmission path constitutes the most important factor
degrading system performance. The rain attenuation along
a terrestrial path is determined by multiplying the specific
attenuation γR (dB/km) with the effective propagation path
length deff (km). γR, which is the main parameter charac-
terizing rain attenuation on a local basis, depends on the
operation frequency, the wave polarization, and the geo-
graphical coordinates [9], [10]. The ITU-R Recommendation
P.838–3 [11] establishes the procedure relating γR to the
local rain intensity, particularly to the parameter Rpexc (mm/h),
which is determined as the rain rate level exceeded for pexc
time percentage, that is

pexc = Prob
(
Rain Rate > Rpexc

)
(1)

normalized on a per year basis. Based on Rpexc , γR is deter-
mined using the power law relationship

γR = k(Rpexc )
α (2)

where k and a depend on the frequency and polarization of
the electromagnetic wave and on the link elevation angle.
Tables tabulating (k, a) pairs for many locations on Earth are
provided in [11]. Moreover, actual values of k and a can be
obtained via interpolation using a logarithmic scale for k and
a linear scale for a. Then, the rain attenuation A(dB) which
is exceeded for pexc time percentage on a per year basis is
calculated from

A = γRdeff = γRLr (3)
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where deff is determined by multiplying the actual radio link
length L (km) with the path reduction factor r evaluated for
a pexc time percentage. The purpose of introducing the path
reduction factor is to replace the actual path length with a
hypothetical length equivalently affected by uniform point
rainfall. r is addressed by the various existing rain models
for rain attenuation prediction as a parameter intended to
render the prediction of rain attenuation more accurate, if it
is properly determined.

Various prediction models for rain attenuation are
employed in the design of terrestrial or satellite links based
either on cumbersome statistical regression - in case sufficient
local experimental data is available- or on analytical models-
in case only local rain rate measurements are available.
However, it is neither straightforward nor sometimes feasi-
ble to apply a unique prediction model for rain attenuation
employing a complex algebraic statistical expression that fits
to any location or climatic region. Four of the most frequently
employed rain attenuation models are following.

A. ITU-R P. 530-16 MODEL
Based on the previous approach for the calculation of the spe-
cific attenuation, the ITU-R Recommendation P.530-16 [12]
determines the path attenuation exceeded for 0.01% of the
time. R0.01, which is the rain rate exceeded for 0.01% of the
time in a year, is employed in the numerical calculations.
If this information is not locally available, an estimate can
be obtained using the information given in ITU-R Recom-
mendation P.837-7 [13]. Employing an empirical formula,
the results obtained are scaled to percentages of time that
range from 1% to 0.001%. This method is proposed for loca-
tions over the world where the respective national authority
for telecommunications recommends rain attenuation be con-
sidered for any operating frequency from 5GHz to 100GHz
with path lengths up to 60 km. The relevant calculations can
be found in the Appendix.

B. SILVA-MELO MODEL
This model uses the numerical coefficients that are derived
for effective rain rate and equivalent rain cell diameter that
were obtained by multiple non-linear regressions, using the
measured data available in the ITU-R databank. Details of
the model are fully reported in [14] whereas the relevant
calculations can be found in the Appendix.

C. MOUPFOUMA MODEL
Thismodel uses only the parameterR0.01(mm/h)which, in the
area of interest, represents the rain rate value exceeded for
0.01% per year. This model does not need rain rate numerical
values for all time percentages. The detailed approach can be
found in [15] and the relevant calculations can be found in the
Appendix.

D. LIN MODEL
The methodology proposed by Lin in [16] employs the path
reduction factor to estimate rain attenuation statistics on

terrestrial links. The method accounts for partially correlated
rain rate variations along the propagation path length. The
relevant calculations can be found in the Appendix.

III. SUPERVISED MACHINE LEARNING / REGRESSION
AIDED BY GAUSSIAN PROCESSES
SML can be employed in solving either regression prob-
lems or classification problems. In contrast to classifica-
tion problems where discrete classes of outputs are sought,
regression problems deal with the prediction of continuous
quantities. A training set includes the inputs x in1 , x

in
2 , . . . , x

in
d

and the output y incorporating n observations. The inputs
and outputs are alternatively called predictors/features and
targets, respectively. An n × d matrix X =

[
xin1 x

in
2 . . . x

in
d

]
,

where xin1 , x
in
2 , . . . , x

in
d are n×1 column vectors, is introduced

to denote the n observations of the inputs and an n×1 column
vector y is used to denote the n observations of the output.
The known inputs and outputs that constitute the training
dataset are organized as a single n × (d + 1) matrix D =
[X y] [17]. In addition to the training set, a test set exists
which is the dataset including the test observations known
for certain pairs of inputs and outputs. The test set will be
used to check the accuracy of the prediction method after
the application of the SML prediction algorithm. By properly
processing the training data, the main objective of SML is to
make inference about the relationship between the inputs and
the output, i.e. about the conditional probability distribution
of the output given the inputs. To replicate/predict the output
observations ywithout knowing the exact multivariable func-
tion y = f (X), the optimal approach is to infer a conditional
probability distribution, p (f |X, y), over possible regression
functions f given the training data X (inputs) and y (output).
Next, p (f |X, y) will be used to determine the estimated out-
put following the Bayesian prediction property for the test
data [18]

p
(
y∗|X∗,X, y

)
=

∫
p
(
y∗|f ,X∗

)
p (f |X, y) df (4)

where X∗ is the test input matrix and y∗ is the test output
vector. The values of the test output will be compared with
the predicted ones, denoted as f∗, which will be defined later
in the paper. f∗ will be calculated taking as input arguments
the test inputsX∗. There is no need to determine the statistical
distribution of the inputs. Moreover, the prediction method
will be built based on the training dataset D. Applying the
proposed prediction method, the latent relationship between
the training inputsX and the training outputywill be captured.

Under the assumption that the n output observations are
normally distributed, the proposed SML based prediction
methodwill be built employing GPs. As GP regression (GPR)
models are non-parametric kernel-based probabilistic mod-
els, the proposed method constitutes a GPR approach, pro-
vided that the covariance between any pair of the previous
output observations is calculated from the kernel function
adopted. A GP defines a prior distribution over possible
regression functions which can be converted into a posterior
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distribution over possible regression functions if sufficient
experimental data is available [18]. A new output can be
predicted from any new set of inputs by combining the GP
prior distribution with a Gaussian likelihood function for each
of the observations. The posterior distribution that comes
up is also Gaussian with mean and covariance that can be
easily computed by properly processing the observation data.
Although it seems difficult to represent a distribution over a
function, it turns out that it suffices to define a distribution
over a finite set of observations of the function at the points,
say x1, x2, . . . , xn, where xi is a 1×d row vector representing
the inputs of the ith observation or equivalently the ith row
of X matrix. A GP assumes that the probability distribution
p (f (x1) , . . . , f (xn)) is jointly Gaussian, with mean value

m (xi) = E [f (xi)] (5)

and covariance given by

Kij = cov
(
f (xi) , f

(
xj
))
= k

(
xi, xj

)
= E

[
(f (xi)− m (xi))

(
f
(
xj
)
− m

(
xj
))]

(6)

where k(., .) is a positive definite kernel function. The key
idea of a kernel function is that if the inputs xi and xj are
almost the same, the respective outputs will also be almost the
same. Let the prior distribution over possible regression func-
tions f be a GP with parameters expressed in (5) and (6) [18].
For any finite set of inputs, the conditional distribution over
the regression function f is a joint Gaussian distribution

p (f |X) = N (f|µ,K) (7)

where

N (f |µ,K) ,
1

2πn/2|K|1/2
e−

1
2 (x−µ)

TK−1(x−µ) (8)

µ = (m (x1) , . . . ,m (xn)) (9)

and the elements of K are given from (6).
In general, when dealing with realistic situations

y = f (x)+ ε (10)

as there are a lot of external random factors that may affect
the observations by adding noise ε. Assuming additive inde-
pendent identically distributed Gaussian noise ε with vari-
ance σ 2

n , the covariance of the noisy observations is given
from [19]

cov
(
yp, yq

)
= k

(
xp, xq

)
+ σ 2

n δpq or

cov (y) = K (X,X)+ σ 2
n I = Ky (11)

where δpq is the Kronecker delta, which is one, if p = q, and
zero, otherwise. The joint distribution of the observed values
y of the output and the predicted (function) values f∗ at the
test points under the prior distribution is[

y
f∗

]
∼ N

(
0,
[
K (X,X)+ σ 2

n I K (X∗,X)
K (X,X∗) K (X∗,X∗)

])
(12)

If there are n training observations and n∗ test observations,
then K (X,X∗) is the n × n∗ matrix of the covariances eval-
uated at all pairs of training and test observations. Similarly,

K (X,X) is the n×nmatrix of the covariances evaluated at all
pairs of training observations,K (X∗,X∗) is the n∗×n∗matrix
of the covariances evaluated at all pairs of test observations
andK (X∗,X) is the n∗×nmatrix of the covariances evaluated
at all pairs of test and training observations. The conditional
posterior distribution required for the predictions is given
from

p(f∗|X, y,X∗) ∼ N
(
f∗,cov

(
f∗
))

(13)

where

f∗ , E
[
f∗|X, y,X∗

]
= K (X∗,X) [K (X,X)+ σ 2

n I]
−1y = K (X∗,X)K−1y y

(14)

and

cov
(
f∗
)
= K (X∗,X∗)− K (X∗,X) [K (X,X)+ σ 2

n I]
−1

K (X,X∗) = K (X∗,X∗)− K (X∗,X)K−1y K (X,X∗) (15)

To simplify the notation, the compact notations K =
K (X,X) and K∗ = K (X,X∗) are introduced. In case there
is only one test observation x∗, k(x∗)= k∗ is set to denote
the vector of covariances between the test observation and the
n training observations. Using the above compact notations,
(14) and (15) reduce to

f∗ = kT∗(K+ σ
2
n I)
−1y = kT∗K

−1
y y (16)

var
(
f∗
)
= k (x∗, x∗)− kT∗(K+ σ

2
n I)
−1k∗

= k (x∗, x∗)− kT∗K
−1
y k∗ (17)

The function values f∗-corresponding to test inputs X∗-
can be properly sampled from the joint posterior distribution
given from (13), by evaluating the mean and covariance
matrix using (16) and (17). The predictive performance of
GPs depends on the suitability of the type of kernel selected to
represent the covariance function. A stationary kernel k(x, x′)
is a function of the difference x − x′, where x and x′ are
1 × d vector input observations. Moreover, if the kernel is
a function of |x − x′| is called isotropic. Indicative isotropic
kernels combined with GPs are the following:

Squared exponential (SE) class

k
(
x, x′

)
= exp

(
−
|x− x′|2

2l2

)
(18)

Exponential (EXP) class

k
(
x, x′

)
= exp

(
−
|x− x′|

l

)
(19)

Rational Quadratic (RQ) class

k
(
x, x′

)
= exp

(
−α ln

(
1+
|x− x′|2

2αl2

))
(20)

Matern class

k
(
x, x′

)
=

1
2v−10 (v)

(

√
2v
l

∣∣x− x′∣∣)vKv (√2vl ∣∣x− x′∣∣)
(21)
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The parameter l defines the characteristic length-scale.
For the Matern class in particular, the parameters v andl are
positive, whereas Kv is the modified Bessel function [20].
The Matern kernel function becomes simple when v is half-
integer, that is v = z+ 1/

2, where z is a non-negative integer.
The exponential class comes as a special case of the Matern
class by setting v = 1/

2. The rational quadratic class with
α > 0 and l > 0 can be seen as a scale mixture (an infinite
sum) of squared exponential kernel functions with different
characteristic length-scales.

To estimate the parameters of the selected kernel func-
tion, an empirical Bayes approach is employed which will
allow to use much faster continuous optimization methods.
In particular, the marginal likelihood as expressed in (4) will
be maximized. The relevant mathematical analysis, which is
quite cumbersome, can be found in [18]. The quantity to be
maximized is

logp (y|X,ϑ)=−
1
2
yTK−1y y−

1
2
log

∣∣Ky∣∣− n2 log(2π ) (22)

where ϑ represents the vector of kernel parameters, which
are denoted as l , α and v in the previously mentioned
kernel classes. The kernel parameters are also called hyper-
parameters where Ky has been defined in (11). To obtain the
hyper-parameters as a result of maximization of the marginal
likelihood, the partial derivatives of the marginal likelihood
with respect to the hyper-parameters are taken

∂

∂ϑ j
logp (y|X,ϑ) =

1
2
yTK−1y

∂Ky
∂ϑ j

K−1y y−
1
2
tr
(
K−1y

∂Ky
∂ϑ j

)
=

1
2
tr
((
ααT − K−1y

) ∂Ky
∂ϑ j

)
(23)

where

α = K−1y (24)

and the trace function of a n×n square matrix M is defined as

tr (M) =
∑n

i=1
Mii (25)

The form of ∂Ky
∂ϑ j

depends on the kernel class. It is also
mathematically related to the parameter with respect to which
the partial derivative is taken.

Finally, to avoid overfitting, i.e. avoid the danger to fit
exactly the training data and fail to reliably predict future
observations, cross-validation is employed. The k-fold cross-
validation splits the data into k disjoint, equally sized subsets.
Validation is done on a single subset, which has the role of the
so called test set and training is done using the union of the
remaining k − 1 subsets. The former has the role of the so
called training set. The entire procedure is repeated k times,
each time with a different subset for validation/testing. Thus,
a large proportion of the data can be used for training whereas
all cases appear as validation cases. Typical values for k are
in the range 3 to 10. In this work, k = 5.

Following the procedure mentioned above, the numer-
ical implementation of GPRs is shown in the Algo-
rithm below [19]:

1. inputs: X (predictors), y (target), k (covariance func-
tion), σ 2

n (noise level), x∗ (test input), y∗ (test output)
2. L = Cholesky(Ky) : decomposition of Ky following the

Cholesky method where Ky = LLT

3. α = LT (L\y) : this calculation is α = K−1y y =
L−TL−1y

4. f∗ = kT∗a : calculation of the predictive mean, as in (16)
5. V = Lk∗ = L−1k∗ : calculation of the predictive

variance, as in (17)
6. var

(
f∗
)
= k (x∗, x∗) − VTV : calculation of the

predictive variance, as in (17)
7. logp (y|X) = − 1

2y
Ta −

∑
i logLii −

n
2 log(2π ) : calcu-

lation of the log marginal likelihoo
8. return: f̄∗(mean), var

(
f∗
)
(variance), logp (y|X) (log

marginal likelihood);
If there are more than one set of inputs for which the output

must be calculated, steps 4-6 should be repeated. To assess the
deviation between the actual output value y∗ and the predicted
output value ypredict prediction, a loss function, denoted as
Loss(.), should be employed. To evaluate the accuracy of such
a prediction, the expected loss

E
[
Loss

(
y∗ypredict

)
|x∗
]

=

∫
Loss

(
y∗, ypredict

)
p
(
y∗|x∗,D

)
dy∗ (26)

should be minimized [19]. Hence, the optimal prediction is

yoptimal|x∗ = argminypredictE
[
Loss

(
y∗, ypredict

)
|x∗
]

(27)

In general, the value of yoptimal that minimizes the expected
loss function |ypredict − y∗| is the median of p

(
y∗|x∗,D

)
,

whereas for the squared loss function (ypredict − y∗)
2 it is the

mean of the distribution. When the predictive distribution is
Gaussian, the mean and median values coincide.

As a general remark, it should be noted that failing to
build an analytical prediction method due to the high number
of predictors and to their complex relation with the output,
which is rain induced attenuation in the present work, an SML
based regression method is employed. The prediction algo-
rithm is built taking into account the training dataset and
is tested with the test dataset. If the prediction accuracy is
satisfactory the proposed method can be used for predicting
the attenuation due to rain over working links or links to be
deployed.

IV. THE PROPOSED PREDICTION METHOD. NUMERICAL
RESULTS AND VERIFICATION
ITU-R has proposed a model for the prediction of rain atten-
uation on terrestrial radio links. However, the ITU-R model
does not perform satisfactorily in all climatic zones [21].
In general, it is not possible to apply a prediction model
to any location or any climatic region. As mentioned in
Section I, this weakness constitutes the main motivation to
formulate an alternative prediction method employing SML
based regression techniques which, by adopting appropriate
attributes, apply better to specific locations or climatic zones.
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In general, the inputs required by most prediction models
for rain attenuation over terrestrial links are the rainfall rate
exceeded for a specific time percentage, the propagation
path length, the operation frequency, and the wave polariza-
tion. This paper proposes a new method for the prediction
of rain attenuation over terrestrial microwave links. It is
an SML based regression algorithm employing specific GP
compatible kernel functions. The available training dataset is
extracted from the ITU-R databank and contains 89 experi-
mental links located in the following, alphabetically ordered,
countries: Brazil (14 links), China (2 links), Congo (1 link),
Czech (5 links), Germany (4 links), France (6 links), Italy
(6 links), Japan (15 links), Malaysia (1 link), Netherlands
(1 link), Norway (1 link), Poland (2 links), Sweden (3 links),
Russia (3 links), the United Kingdom (22 links), the United
States of America (3 links). Apparently, the employed geo-
graphical footprint is not limited to specific regions. It spans
over various rain climatic zones, namely C, E, F, G, H, K,
L, N, M and P, and tends to have a global character. From
this perspective the generalization of the proposed method
has been addressed and facilitated. However, the dataset
employed may become more general and possibly more
accurate as long as more locations are included spanning
various climatic zones and the operational characteristics of
the adopted links take a wider range of values. Additional
information is provided within the experimental data con-
cerning the specific relation between specific factors, such
as local rain rate, path length, operation frequency and wave
polarization, with the rain attenuation for specific exceedance
probability levels, namely 0.001%, 0.002%, 0.003%, 0.006%,
0.01%, 0.02%, 0.03%, 0.06% and 0.1%. Hereafter, these
levels will be called reference exceedance probability levels
(REPLs). Moreover, it has to be underlined that 28 experi-
mental links of the employed databank, located in Germany,
Japan, Malaysia, Netherlands, Sweden and the United King-
dom, operate at a frequency higher than 30GHz and below
300GHz, a zone which is considered to be the pure mmWave
frequency band.

The preliminary version of the proposed predictionmethod
comes from formulating an SML regression algorithm for
each one rain attenuation REPL. The 12 inputs (predictors)
of this preliminary version are the path length (PL), the oper-
ation frequency (FREQ), the wave polarization (POL) as well
as the 9 rain rate levels that correspond to the 9 REPLs
just mentioned. These 9 rain rate levels are denoted by the
vector RRexc (all p% levels). To train the algorithm of the
preliminary version of the proposed method, the output (tar-
get feature) is the rain attenuation level exceeded for the
corresponding REPL. This real rain attenuation REPL is
known as part of the experimental data. Symbolically, the
mathematical formulation of the regression function is given
from

RAexc (p%) = fGPR(PL,FREQ,POL,RRexc (allp%levels))

(28)

FIGURE 1. Distribution of path lengths.

FIGURE 2. Distribution of operating frequencies.

where the output (target feature)RAexc (p%) is the rain attenu-
ation in dB exceeded for p%on a per year basis and the inputs
(predictors) are:

PL: path length that ranges from 0.5km to
58km. A histogram of its occurrence
density is given in Fig. 1

FREQ: operating frequency that ranges from
7GHz to 137GHz. A histogram of its
occurrence density is given in Fig. 2

POL: electromagnetic wave polarization that
ranges from 0 degrees to 90 degrees. A
histogram of its occurrence density is
given in Fig. 3

RRexc rain rate in mm/h for the 9 available
(all p% levels ): REPLs which jointly represent the

corresponding local rain rate
distribution. The ranges of the rain
rates corresponding to the 9 REPLs
are given in Table I. As the
dataset employed covers a wide range
of locations, path lengths, operation
frequencies, wave polarization angles,
and rain rates, the proposed method
is expected to have a general
applicability.

To investigate which kernel function performs better,
the training of the algorithm is performed employing the
four kernel functions given by (18) - (21) under a 5-fold
cross-validation scheme. At this point, a brief discussion on
cross-validation should be done. Cross-validation estimates
the performance of an algorithm when employing a new
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FIGURE 3. Distribution of polarization angles.

dataset compared to the training dataset. It is used to select
themodel whichminimizes the prediction error. Furthermore,
cross-validation protects against overfitting. First, a number
of folds is assumed to partition the dataset. This partitioning
is made in a stratified way, that is, both the training and the
test datasets have roughly the same class proportions as in the
entire dataset and are formed as representative as possible.
If a 5-fold cross-validation is selected, as it is done in this
work, then (i) the entire dataset is partitioned into 5 disjoint
sets or folds, (ii) for each fold a model is trained using
the out-of-fold observations and its performance is assessed
using in-fold data and (iii) the average test error over all
folds is calculated. This method gives a good estimate of the
predictive accuracy of the final algorithm trained employing
the entire dataset. Although it requires multiple fits, it makes
efficient use of the entire dataset.

After the algorithm training, the rain attenuation level is
predicted applying (28). As expected, there is a difference
between the predicted and the actual values of the outputs,
which is known as the residual (error) of the prediction.
The effectiveness of the regression is expressed employing
the R2 metric that ranges from 0 to 1. R2 is a statistical
measure called coefficient of determination and provides a
measure of how well the observed outputs are replicated by
the algorithm. R2 essentially expresses the proportion of the
variance in the dependent response that is predictable from
the independent predictors. Indicatively, the interpretation
of R2 = 0.85 is that 85% of the variance in the response
can be attributed to the predictors employed whereas the
remaining 15% can be attributed to unknown, lurking pre-
dictors or inherent variability. In Fig. 4, R2 is plotted for the
set of REPLs given in Table I. The horizontal axis represents
the levels of rain attenuation exceeded for the time percent-
ages correspondingly dictated by the 9 REPLs. As readily
observed from Fig. 4, the regression effectiveness decreases
as the exceedance time level of the rain attenuation decreases.
Such a low prediction accuracy does not allow to use the
preliminary version by itself without enhancement.

Next, the training process of the proposed SML regression
algorithm is enhanced by introducing as an additional pre-
dictor the rain attenuation estimateRA_Est ITUexc (p%) as calcu-
lated from the ITU-Rmodel [12]. Hereafter, this estimate will
be called ITU-R estimate. The kernel functions employed and
the cross-validation scheme are kept the same. Hence, in the

FIGURE 4. Regression effectiveness expressed in the form of R2

employing the four GPs referred to in Sec.III, and taking into account
12 predictors, namely the path length, operation frequency, wave
polarization, and the 9 REPLs of rain rate.

TABLE 1. Range of rain rate for the 9 available REPLs.

enhanced version of the proposed method, 12+ 1 predictors
are involved in the regression function, which is symbolically
written as

RAexc (p%)= fGPR(PL,FREQ,POL,RRexc (all p% levels ),

RA_Est ITUexc (p%)) (29)

The R2 results of the enhanced SML based prediction method
are plotted in Fig. 5.

Two important conclusions can be deduced from Fig. 5.
First, the incorporation of the ITU-R estimate as an additional
input (predictor) has enhanced the training process leading
to a significant improvement in the regression accuracy. This
improvement is verified by the significantly higher R2 values
observed in Fig. 5 compared to the respective ones observed
in Fig. 4. Second, the Rational Quadratic GPR performs better
than the other GPRs for all the REPLs considered.

It is important to examine how the enhanced version of the
proposed method performs in comparison to the established
prediction models for rain attenuation presented in Section II.
In this framework, numerical calculations were performed
using rain rate data extracted from the same ITU-R data-
bank. To become comparable, the respective results have been
normalized adopting the test variable ρV proposed by ITU-R
in Recommendation P.311-13 [22]. According to P.311-13,
for each time percentage examined and each radio link of
the ITU-R databank considered, say the ithlink, the ratio of
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FIGURE 5. Same as in Fig. 4, but employing the ITU-R estimate as an
additional predictor.

FIGURE 6. Regression effectiveness expressed in the form of the test
variable ρV employing various rain attenuation prediction models and the
enhanced version of the proposed SML prediction method. For this
comparison, the Rational Quadratic kernel function is employed.

the predicted rain attenuation, Ap(dB), to the measured rain
attenuation, Am(dB), is calculated from

Si =
Ap,i
Am,i

(30)

Next, the variable Vi is calculated from

Vi =

(
Am,i
10

)0.2lnSi, for Am,i < 10dB

lnSi, for Am,i ≥ 10dB
(31)

Then, the mean µV and the standard deviation σV of the
Vi values for each time percentage are calculated. Finally,
the test variable is determined as the rms (root mean square)
value

ρV =

√
µ2
V + σ

2
V (32)

In comparing the various prediction methods, it should be
noted that the lower the test variable is the better the pre-
diction method. The numerical results obtained following the
above comparison procedure are depicted in Fig. 6.

As readily observed from Fig. 6, the proposed SML
based prediction method performs significantly better than
the four prediction models under comparison. The proposed
method is much more accurate than those of ITU-R [12]
and Silva-Melo [14], which are considered to perform more
effectively than the others.

At this point, it is worthwhile to investigate the individual
significance of the 13 predictors employed in the proposed
method, expecting that the importance of the ITU-R estimate
will be proven high, since it is determined independently of

FIGURE 7. ICE plots of the predicted A0.01 with respect to the path length
as a predictor.

FIGURE 8. ICE plots of the predicted A0.01 with respect to the wave
polarization as a predictor.

the method under consideration. In this course, the relation-
ship between a predictor and the predicted responses is visu-
alized. Typically, this visualization process has to be repeated
for all the (12+ 1) predictors employed. The visualization is
based on the notion of the individual conditional expectation
(ICE) plot [23]. In the ICE plots there are:
• Black circles that represent the predicted responses for
the predictor each time considered, which for the prob-
lem in hand might be the path length, the wave polariza-
tion, the operation frequency, any of the 9 REPLs, or the
ITU-R estimate.

• Gray lines that visualize the response of the algorithm
for each experiment allowing the predictor examined,
e.g. the path length, to take values over its entire range.

• A red line, called partial dependence plot (PDP), which
visualizes the average relationship between the selected
predictor and predicted responses. In other words, PDP
is the average of the gray lines.

The ICE plots highlight the variation in the fitted values
over the range of the predictor examined each time. As a
criterion, a high variance of the gray lines or alternatively
slow variations of the PDP indicate a low dependence of
the predicted responses on the predictor examined. For the
proposed sensitivity assessment, the ICE plot regarding the
prediction of A0.01 is indicatively considered. A0.01 refers to
0.01% exceeded time percentage for rain attenuation (in dB)
which is the most frequently encountered REPL in rain atten-
uation prediction models.

Next, ICE plots are used to examine the relationship
between the predicted response A0.01, which has been indica-
tively chosen for the sensitivity assessment, with the various
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FIGURE 9. ICE plots of the predicted A0.01 with respect to the operation
frequency as a predictor.

FIGURE 10. ICE plots of the predicted A0.01 with respect to the R0.01 level
as a predictor.

predictors examined. Specifically, in Figs. 7 to 10, ICE plots
are presented concerning, respectively, the predictors (i) path
length, (ii) wave polarization, (iii) operation frequency and
(iv) REPL R0.01, which was indicatively chosen to represent
the set of the 9 REPLs considered. From these plots, it is
readily observed that the variance of the gray lines is high
and the PDP lines look almost straight. Hence, the ICE plots
indicate that the above four predictors do not affect signifi-
cantly the predicted response A0.01. On the other hand, from
Fig. 11 presenting the ICE plot concerning the relationship
between the same indicative predicted response A0.01 with
the ITU-R estimate which was employed as an additional
predictor, it is readily observed that the variance of the gray
lines is much smaller than their variance observed in Figs.
7 to 10 whereas, at the same time, the PDP slope exhibits
drastic fluctuations extending to the entire range of A0.01
values taken into account. Hence, it is verified that the ITU-R
estimate -which is used as an additional predictor in addition
to the 12 predictors used by the preliminary version of the
proposed method- constitutes the predictor that dramatically
improved the prediction accuracy of the proposed SML based
method. It should also be noted that the ITU-R estimate,
which is used as an additional predictor, is not drawn directly
from the experimental data, but it is a macroscopic estimate
obtained employing another prediction model, namely the
ITU-Rmodel [12], which employed the path length, the wave
polarization, the operation frequency and the rain rate RR0.01.
The prediction of rain attenuation for REPLs other than
0.01% is based on scaling methods described in [12].

From the engineering point of view, it is of high importance
to investigate the exceedance probability of rain attenuation,

FIGURE 11. ICE plots of the predicted A0.01 with respect to the ITU-R
estimate as a predictor.

FIGURE 12. Exceedance probability of rain attenuation in Yotsua, Japan.

FIGURE 13. Exceedance probability of rain attenuation in Paranapiacaba,
Brazil.

FIGURE 14. Exceedance probability of rain attenuation in Novara, Italy.

i.e.Prob(Rain attenuation > level), or, equivalently, the com-
plementary cumulative distribution function (ccdf) of rain
attenuation for various links covering various locations, path
lengths, operation frequencies and rain conditions. Particu-
larly, Figs. 12-18 depict the exceedance probability along
experimental links located in Yotsua (Japan), Paranapiacaba
(Brazil), Novara (Italy), Stockholm (Sweden), Chibolton
(UK) and Tokyo (Japan), the operation characteristics of
which are provided in Table II. In all these Figs, the ccdf
obtained employing the proposed SML based method fits
better to the actual measurements than the ccdf obtained
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FIGURE 15. Exceedance probability of rain attenuation in Stockholm,
Sweden.

FIGURE 16. Exceedance probability of rain attenuation in Chibolton, UK
(57GHz).

FIGURE 17. Exceedance probability of rain attenuation in Tokyo, Japan.

FIGURE 18. Exceedance probability of rain attenuation in Chibolton, UK
(137GHz).

employing the ITU-R model. This happens for a wide variety
of locations and a wide range of path length and operation
frequency values, including the mmWave band as well.

The proposedmethod is founded on concrete mathematical
models of stochastic processes. On the one hand, it offers
the advantage of avoiding complex mathematical expres-
sions. On the other hand, it possesses an empirical profile
as it is tuned by regressing data available from the ITU-R

TABLE 2. Operating characteristics of experimental links for figs 12-18.

databank. The reliability of the available data affects the
accuracy of the proposed method. Inefficient experimen-
tal procedures, incorrectly tuned instruments, geographical
limitations and, in general, not properly performed experi-
ments affect adversely the accuracy of the proposed SML
method. As deduced from the comparison with other predic-
tion methods currently in use, it is confirmed that, if suffi-
cient and reliable data is available, the proposed SML based
prediction method can effectively capture the propagation
impairment related to rain attenuation employing rain rate
measurements. Compared to analytic models, SML based
approaches can take into account more predictors, thus being
capable of achieving significantly higher accuracy.Moreover,
to enhance the efficiency of SML based prediction methods,
it is of high importance to look for and employ additional
predictors, not necessarily coming directly from the measure-
ment field but calculated employing other prediction models.
The insertion of such additional predictors to the training
process can lead to a meta-training process in the sense that a
more accurate prediction method is expected to be deployed.
Accurate SML based prediction methods could also be for-
mulated to represent the local rain fading mechanism con-
cerning locations for which sufficient local data is available.
The incorporation of new experimental data can improve the
training of the algorithmwhich, subsequently, may result into
a more accurate prediction.

V. CONCLUSION
In this paper, the concept of SML is combined with GPs
for regression to formulate a new prediction method for rain
attenuation. The proposed method has been validated taking
into account experimental data from the ITU-R databank
concerning LOS terrestrial links. The experimental data used
for the training of the preliminary SML algorithm included
12 predictors which were the path length, the operation fre-
quency, the wave polarization and 9 rain rate levels (REPLs).
The prediction results obtained applying the preliminary ver-
sion were not found more accurate than the corresponding
ones obtained applying the well-established ITU-R model.
The dataset used to develop the SML algorithm has a wide
range of values for all the predictors and does not show
geographical limitations, To enhance the prediction accuracy,
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the rain attenuation estimate obtained applying the existing
ITU-R model for each REPL was considered as an addi-
tional predictor along with the existing 12 predictors coming
from the available experimental data. The numerical results
obtained applying the enhanced version showed a significant
prediction accuracy improvement over the prediction accu-
racy offered by the preliminary version. The performance
comparison conducted to validate the enhanced version of
the proposed SML based prediction method showed a sig-
nificant superiority over other prediction models currently
in use, reaching very high accuracy levels. The applicability
of the proposed method is practically global. However, its
adaptation to specific locations, climatic regions or frequency
zones can be facilitated employing the proper training dataset
that can convey the experimental information related to the
specific problem each time in hand. New experiments can
be properly planned so that additional propagation data can
be collected and processed following the proposed method-
ology towards building prediction tools dealing with vari-
ous propagation phenomena. Finally, if sufficient and both
quantitatively and qualitatively homogeneous actual data can
be included in the dataset for training and testing the ML
algorithm, the proposed SML based prediction method can
get a geographically and climatologically wider scope.

APPENDIX
A. ITU-R P. 530-16 MODEL
Determine the effective path length of the link, deff , by mul-
tiplying the actual path length L (km) by the path reduction
factor r , which can be expressed as:

r=
1

0.477L0.633R0.073a0.01 f 0.123−10.579 (1−exp (−0.024L))
(A.1)

where f (GHz) is the frequency and a is the exponent of the
specific attenuation model. Maximum recommended r is 2.5,
so if the denominator of (A.1) is less than 0.4 use r = 2.5.
R0.01 is the rain rate exceeded for 0.01% of the time in a year.
If this information is not locally available, an estimate can
be obtained from the information given in Recommendation
ITU-R P.837 [17].

The path attenuation exceeded for 0.01% of the yearly time
is calculated as

A0.01 = γRdeff = γRLr (A.2)

The prediction of the full P(A), for 0.001% ≤ P ≤ 1%,
is given by

A (P) = A0.01C1P−(C2+C3log10P) (A.3)

with C1, C2, and C3 being empirical coefficients depending
on frequency f [16].

B. SILVA-MELO MODEL
In the model proposed by Silva-Mello et al. in [18], the
effective path length deff is calculated as:

deff =
1

1+ L
d0

L (A.4)

where

d0 = 119R(P)−0.244 (A.5)

The prediction of the rain attenuation exceeded for P percent
of the time is achieved as:

A (P) = kRaeff deff (A.6)

where Reff , i.e., the effective rain rate, is:

Reff = 1.763R(P)0.753+0.197/L (A.7)

C. MOUPFOUMA MODEL
Similarly to the ITU-R model, the prediction method pro-
posed by Moupfouma in [19] receives R0.01 as the input to
predict A as:

A (P) = kRa0.01Leq(P,L) (A.8)

Leq in (A.8) is the equivalent path length calculated as:

Leq (P,L) = Lexp
(
−

R(P)
1+ ζ (L)R(P)

)
(A.9)

where

ζ (L) =

−100, L ≤ 7(km)

[
44.2
L

]0.78, L > 7(km)
(A.10)

D. LIN MODEL
According to this model, the rainfall attenuation exceeded for
a percentage P of the yearly time can be calculated as:

A (P) = kR(P)aLr (A.11)

R(P) is the rain rate exceeded for the same percentage P of
the time. The factor r takes the followingsimple expression:

r =
1

1+ L
L(R)

(A.12)

where

L (R) =
2623

R (P)− 6.2
(A.13)
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