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ABSTRACT The presence of specular highlight is a critical issue for both natural and medical images such
as those produced by laparoscopes, which can lead to erroneous visual tracking, stereo reconstruction, and
image segmentation. Specular highlight removal from a single image is necessary for image analysis and
applications. Due to the differences between natural and medical image scenes, existing literature to address
this issue has only been effective on natural images or medical images with textureless regions. To overcome
this limitation, we propose a global optimization method for specular highlight removal from a single image
based on a dichromatic reflection model. In addition to introducing modified illumination chromaticity,
the proposed method consists of two novel steps: one for estimating diffuse chromaticity by correcting
hue and saturation on highlighted regions, and the other for estimating diffuse and specular reflection
coefficients using convex optimization with double regularization. The estimated diffuse chromaticity is
proven to approximate the true diffuse chromaticity and the proposed optimization algorithm is guaranteed
to find the optimal diffuse coefficients. Experimental results show that the proposed method can effectively
remove specular highlights from both natural images and endoscopic images with texture detail preservation.
To further demonstrate the efficacy of our proposed method, an application of stereo reconstruction using
a public dataset illustrates that our highlight removal method can enhance surface reconstruction accuracy
from 1.10mm RMSD to 0.69mm RMSD.

INDEX TERMS Specular reflection separation, highlight removal, diffuse chromaticity estimation, convex
optimization, natural image, endoscopic image.

I. INTRODUCTION
Digital images captured under discrete source illumination
often contain specular reflections, which conceal useful
image features such as colors and textures [1], [2]. Aside
from natural images, the presence of specular highlights fol-
lowing the advancement of minimally invasive surgeries also
becomes an important issue for endoscopic images. Mini-
mally invasive surgery is performed through small incisions
by using small tubes and cameras, leading to less trauma
to the body than the traditional open surgery [3], [4]. Due
to the proximity of the camera light source and organ sur-
faces, endoscopic images often suffer from strong specular

The associate editor coordinating the review of this article and approving
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highlights, which can both negatively affect the visual qual-
ity and degrade the subsequent tasks of computer vision
algorithms, such as visual tracking, stereo reconstruction,
and image segmentation [5], [6]. In addition, regions with
specular highlights may contain vital information relating
to the organ such as color and textures. Therefore, it is
desirable to remove specular reflections while preserving the
original color and texture details of the organ surface for
medical imaging applications. Numerous highlight removal
methods have been presented in the literature. They can be
categorized into multi-and single-image methods. The multi-
image method employs different light information from a
group of images. For example, Wang et al. [22] proposed
a energy minimization with respect to the local weighting
coefficient for highlight removal frommultiple images, based
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on a polarization filter. Shah et al. [17] proposed a specular
highlight removal method from image sequences by using
feature corresponding points. For a detailed survey on high-
light removal methods, the reader may refer to [2] and the
references therein. This paper focuses on specular reflection
removal from a single color image.

In contrast, the single-image method separates the reflec-
tion component using a single image only. In addition to
conventional color histogram analysis [47], categorically
they can be classified into dichromatic reflection model-
based [9]–[21], [23], [42]–[46], inpainting-based [24]–[29]
and learning-based methods [30]–[32]. Since the dichromatic
reflection model was introduced by Shafer [9], many model-
based methods have been presented. These methods were
reported to be effective on natural images, but less so on med-
ical images, since some assumptions made for natural images
are not valid in a medical context such as endoscopy. In
contrast, the inpainting-based method used in medical imag-
ing mainly includes both highlight detection and inpainting
correction. The inpainting-based method provides visually
pleasing and coherent images when highlight regions are very
small, yet their texture details in the inpainted specular high-
light region are often lost, due to neighborhood interpolation
limitation. In recent years, deep learning-based methods have
become popular in the computer vision and medical imaging
community. The learning-based method usually requires a
good training set to be available and thus is not generalizable
for different image scenes. Therefore, developing an accurate
and efficient method for removing specular highlights from
a single image with texture detail preservation remains a
challenging issue.

In this paper, we propose a global optimization method for
specular highlight removal from a single image. The proposed
method consists of modified illumination chromaticity and
two novel steps: one for estimating diffuse chromaticity by
correcting hue and saturation on highlighted regions, and
another for estimating diffuse and specular reflection coeffi-
cients using convex optimization with double regularization.
Experimental results demonstrate that the proposed method
is more effective at removing specular highlights from both
nature images and medical images, while preserving texture
details. Finally, an application example for stereo reconstruc-
tion further illustrates that the proposed method can be useful
for enhancing surface reconstruction accuracy from 1.10mm
RMSD to 0.69mmRMSD. The contributions of this paper are
four-fold:
• A modified illumination chromaticity with parameter

perturbation is introduced to solve the problem of illumina-
tion chromaticity on fully saturated highlight images.
• A new diffuse chromaticity estimate is proposed by a

joint RGB-space and HSV-space detection set, and an adap-
tive inpainting technique.
• Theoretical analysis proves that the estimated diffuse

chromaticity can approximate the true diffuse chromaticity.
•A double gradient regularization-based convex optimiza-

tion method for reflection coefficients is presented, and an

iteration algorithm is guaranteed to find the optimal reflection
coefficients.

The paper is organized as follows. Section II briefly
reviews related work of single-image methods for specular
highlight removal, while Section III introduces the proposed
method. Section IV gives performance analysis and algorithm
implementation, and Section V reports the experimental
results. Finally, the conclusion and discussion are presented
in Section VI.

II. RELATED WORK
Single-image methods for highlight removal can be divided
into three main categories: dichromatic reflection model-
based, inpainting-based, and learning-based methods.

A. DICHROMATIC REFLECTION MODEL-BASED METHODS
The dichromatic reflection model [9] is widely used for
studying reflection components of a natural color image,
whose intensity I (x) at pixel x = (x, y) can be described
as the combination of diffuse reflection ID(x) and specular
reflection IS (x):

I (x) = ID(x)+ IS (x) = md (x)3(x)+ ms(x)0(x), (1)

where 3(x) and 0(x) are the chromaticity of the diffuse
reflection and illumination (specular) reflection and md (x)
and ms(x) are the diffuse and specular reflection coef-
ficients (parameters), respectively. In RGB color space,
I (x) = [Ir (x), Ig(x), Ib(x)]T is the color intensity vector
at pixel x, 3(x) = [3r (x),3g(x),3b(x)]T is the diffuse
chromaticity vector, and 0(x) = [0r (x), 0g(x), 0b(x)]T is
the illumination chromaticity vector. The goal of specular
highlight removal is to obtain a specular-free image estimate,
based on received highlight image I (x). Because both diffuse
chromaticity and reflection coefficients are unknown, spec-
ular highlight removal is an ill-posed and blind separation
problem.

Many dichromatic reflection model-based methods have
been reported to be effective on natural images [9]–[23].
Considerable efforts were devoted to non-optimization mod-
eling techniques, including pseudo specular-free image, color
clustering, bilateral filter, and intensity ratio, respectively.
In particular, by introducing a pseudo specular-free image
Tan and Ikeuchi [14] proposed a highlight removal method
without explicit color segmentation, based on diffuse pixel
identification and chromaticity analysis [13]. Yang et al. [23]
presented a robust diffuse chromaticity estimation method by
applying a low-pass filter. To enhance computation speed,
Shen and Cai [15] approximated the chromaticity of diffuse
reflection using the pseudo specular-free image. By choos-
ing a proper chromaticity threshold, Shen and Zheng [10]
proposed a intensity ratio-based highlight removal method
with color clustering so that the specular components can be
easily computed. By using a bilateral filter, Yang et al. [11]
proposed a specular highlight removal method under appro-
priate bilateral filter parameters. Suo et al. [8] proposed an
effective highlight removal method, by introducing adaptive
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color clustering so that diffuse components can be recovered
quickly. By using color clustering, Ren et al. [12] proposed
a highlight removal method with color-line constraint so
that the specular and diffuse components can be computed
fast. Recently, for an effective application to ocean surface
remote sensing images, Wang et al. [44] proposed a highlight
removal method by modifying Shen’s method. To further
improve Shen’s method, dos Santos Souza et al. [45] pro-
posed an improved clustering algorithm in the maximum and
minimum chromaticity space derived from a pseudo specular
free image, and then separate diffuse and specular compo-
nents by an adaptive intensity ratio estimate.

Optimization modeling-based methods for specular high-
light removal from natural images have been developed in
recent years. Most of them are based on the variation of the
dichromatic reflection model:

Î (x) = α(x)3(x)+ (1− α(x))0(x)

where

Î (x) =
I (x)

6c∈{r,g,b}Ic(x)
, α(x) =

md (x)
md (x)+ ms(x)

.

In particular, Zhao et al. [20] proposed solving the following
optimization problem:

min
(α,3)

∑
x

f1(α(x),3(x))+ β1 f2(3(x))+ β2 f3(α(x),3(x))

(2)

where f1 = ‖Î (x) − α(x)3(x) − (1 − α(x))0(x)‖22, f2 =∑
z w(x, z)‖3(x) − 3(z)‖

2
2, and f3 is the structure similarity

function. Kim et al. [21] solved the following problem:

min
(α,3,λ)

∑
x

f1(α(x),3(x))+ β1‖∇(1− α(x))‖2

+‖∇3λ(x))‖1 + β2‖λ(x)‖0 (3)

where ‖ · ‖0 denote l0 norm. Akashi and Okatani [42] pro-
posed a method for separating reflection components based
on a sparse non-negative matrix factorization optimization
method, where the estimation of diffuse colors and the sepa-
ration of reflection components was performed. Li et al. [43]
introduced amodified reflectionmodel for facial skin images.
Based on the reflection model, an optimization method for
the diffuse and specular components was presented, where
the objective function contains a data term as well as two
regularization, isotropic and anisotropic smoothness terms.
Wei et al. [18] presented an optimization method for specular
highlight reduction by assuming that the surface geometry is
known. These methods may estimate simultaneously diffuse
and and specular reflection. Yet, because of the non-convexity
of the associated objective function in thesemethods, an alter-
nating direction algorithm is in general employed, and thus
proper initial points are required due to local minima prob-
lem. For robustness to outliers, Guo et al. [46] proposed a
highlight removal method by solving the following nuclear-
norm and l1-norm optimization problem:

min
(Wd ,0,Ms)

‖Wd‖∗ + λ‖Ms‖1 + τ‖Wd‖1

Y = 8dWd + 0Ms, Wd ≥ O, Ms ≥ O (4)

where ‖ · ‖∗ denotes the nuclear norm, Y is an observed
color matrix, 8d is a color dictionary matrix, Wd is a matrix
of weighting coefficients of pixels, 0 is a column vector of
illumination chromaticity, andMs is a row vector of specular
highlights. Under the condition of a given color dictionary
matrix, an alternating iteration scheme is presented by using
an augmented Lagrange function to solve (4).

B. INPAINTING-BASED METHODS
The inpainting-based method includes two main steps [6].
The first is to detect image highlights in each frame, based
on various color spaces such as RGB, YUV, HSV, and HSI,
respectively. The second is to correct the highlight pixels by
using spatial and temporal pixel interpolation. Tan et al. [24]
first introduced an inpainting method for highlight removal.
Thereafter, joint detection and inpainting-based methods
were presented in [24]–[29], [33], [34]. Oh et al. [33] pro-
posed one HSV space-based method for detecting specular
highlights by using two threshold sets:

S(x) < Ts, V (x) > Tv. (5)

where the highlight image was segmented into two areas,
absolute and relative bright areas. Naturally, the detection
method is effective but the detected relative bright areas
may include white surfaces. Stehle [26] used a inpainting
technique with texture filling, while Meslouhi et al. [28]
employed a reflection enhancement technique to improve
highlight detection accuracy, and an inpainting-based algo-
rithm for specular reflection removal in colposcopic images.
Saint-Pierre et al. [29] presented an inpainting technique
to correct specular reflections in thoracoscopic images.
Arnold et al. [27] proposed a RGB space-based detection
method, while Bernal et al. [34] proposed an modified RGB
space-based method to enhance specular highlight detection.
These inpainting-based methods are only effective on endo-
scopic images with very small highlight regions. In other
cases, the texture details in the inpainted region are often lost
due to neighborhood interpolation limitations.

C. LEARNING-BASED METHODS
Machine Learning approaches have been well used in image
feature extraction, image classification, and image enhance-
ment. Unlike both the dichromatic reflection model-based
method and inpainting-based method, the learning-based
method for highlight removal has no specular highlight
model assumption, yet it needs a proper training set
and time-consuming network training [30], [31]. Recently,
Funke et al. [32] presented a generative adversarial network
for specular highlight removal in endoscopic images. To train
this network, small image patches with specular highlights
and patches without highlights are extracted from endoscopic
videos. As a result, this method was reported to be effective
on small image patches with specular highlights. Neverthe-
less, this method exhibits image contrast and border artifact
problems when integrating highlight-removed patches back
to the complete image.
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FIGURE 1. Scheme of proposed highlight removal method.

III. PROPOSED METHOD
To reduce the limitation of current highlight removal meth-
ods we propose a global optimization method for specular

highlight removal from a single image based on the dichro-
matic model. First, we estimate the hue and saturation in
HSV color space and obtain a diffuse chromaticity estimate
by using the inverse transformation of HSV in RGB space.
Second, using both the diffuse chromaticity estimate and
modified illumination chromaticity, we minimize a double
gradient regularization-based convex optimization problem
to estimate diffuse reflection coefficients. Fig. 1 displays the
workflow of our highlight removal method, which shows the
relationship among various components that are discussed in
subsequent subsections.

As an illustrative example, Fig. 2 displays highlight
removal results of both natural and medical images by
three methods, where Figs. 2 (a) and (e) are high-
light images. Figs. 2(b) and (f) are results by using our
method, (c) and (g) are results by using an inpainting-
based method [29], and (d) and (h) are results by using a
model based-method [12], where the specular free images
are shown in the upper row and the separated specular

FIGURE 2. Highlight removal results of both natural and medical images. (a) and (e) input highlight images, (b) and (f) results by our
method, (c) and (g) results by inpainting-based method [29], and (d) and (h) results by model based-method [12], where the specular
free images are displayed in upper row and the separated specular components are shown in lower row.
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TABLE 1. Comparison of characteristics of highlight removal methods.

components are shown in the lower row. As shown in
Figs. 2(c) and (g)(upper), the inpainting-basedmethod cannot
effectively remove highlights on the natural image and it
loses the texture details in the inpainted region of the medical
image. From Fig. 2(d)(upper) we observe that the model-
based method is more effective on the nature image but
Fig. 2(d)(lower) displays its incorrect specular components.
From Fig. 2(h)(upper), it is seen that the model-based method
is less effective on the medical images due to color distortion
in the highlight region. In contrast, Figs. 2(b) and (f) show our
highlight removal results. It is seen that our proposed method
can effectively remove the highlight from both natural and
medical images, while preserving the textures and color of
the original scene.

Table 1 summarizes a comparison of the proposed method
and current highlight removal methods in terms of technique
characteristics and the scope of their application. Section IV
shows the approximation of the estimated diffuse reflec-
tion and the global convergence of the proposed algorithm,
respectively. Section V validates the effectiveness of the
proposed method on specular highlight removal from a sin-
gle natural image and endoscopic image with texture detail
preservation.

A. MODIFIED ILLUMINATION CHROMATICITY
The current dichromatic reflection model-based methods are
less effective on endoscopic images, since the illumination
chromaticity is often assumed to be uniform for a given RGB
image such that 0r (x) = 0g(x) = 0b(x). Most of these
approaches normalize the dichromatic reflection model by

dividing the summation of its observed color image channels
so that0(x) = [1/3, 1/3, 1/3]T [10]. It is also common in the
literature to have unnormalized I (x) in the range [0, 1], where
0(x) = [1, 1, 1]T , and 0 ≤ md (x),ms(x) ≤ 1 [9]. However,
because of the proximity of the light source to the organ
surface, the specular highlights in endoscopic images are
much stronger than those in natural images, such that some
of the highlight pixels are saturated at maximum intensity.
In other words, max{Ir (x), Ig(x), Ib(x)} = 1.

Without the loss of generality, we consider unnormalized
endoscopic images. Let X0 denote the fully saturated high-
light region. Then I (x) = [1, η, θ ]T for any x ∈ X0 since
Ir (x) ≥ max{Ig(x), Ib(x)}, where 0 ≤ η ≤ 1 and 0 ≤ θ ≤ 1.
As a special case, I (x) = [1, 1, 1]T for all x ∈ X0. From
model (1) we thus have

(1− ms(x))0(x) = md (x)3(x). (6)

Since in vivo tissue is seldom pure white due to the presence
of hemoglobin, the case that3r = 3g = 3b is mostly invalid
for the endoscopic images. As a result, from0(x) = [1, 1, 1]T

or 0(x) = [1/3, 1/3, 1/3]T we get md (x) = 0 for any x ∈ X0
and thus ID(x) = md (x)3(x) = 0, which would force the
restored specular-free image surface to contain a black hole
on X0.

To avoid the problem of conventional illumination chro-
maticity on the fully saturated specular reflection region in
the endoscopic images, we introduce the following modified
illumination chromaticity with parameter perturbation:

0ε(x) = [1− ε, 1, 1]T (7)
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where 1 > ε > 0. When the highlight region is very small,
ε is chosen to be 0. Otherwise, ε is in general chosen as
the mean intensity of the neighborhood around the highlight
region.

B. SPECULAR HIGHLIGHT DETECTION
AND COLOR CORRECTION
1) DESIGN OF HIGHLIGHT DETECTION SET
To detect specular highlights, we propose using two detection
sets in RGB and HSV spaces, respectively. Using HSV trans-
formation ϕ(·) [35], we convert the observed image I (x) from
RGB space to hue: H (x), saturation: S(x), and value V (x).
We introduce one threshold detection set in HSV space:

XSV (x) = {x|S(x) < α,V (x) > 1− α} (8)

Using the gradient magnitude of dark-channel image
Î (x) = minc∈{r,g,b} Ic(x) we define another threshold detec-
tion set in RGB space:

XG(x) = {x|G(x) ≥ τ } (9)

where α > 0, τ > 0 are mainly two threshold values and

G(x) =
√

(Î (x+1,y)−Î (x−1,y))2+(Î (x,y+1)−Î (x,y−1))2
2 .

Based on (8) and (9), we propose a joint HSV and
RGB-space detection set as below:

XSVG(x) = XSV (x)
⋃

XG(x). (10)

2) CORRECTION OF HUE AND SATURATION
According to (10), we correct the hue and saturation of the
observed image in HSV space.

For any x ∈ XSVG(x), we correct the hue and saturation by
using the adaptive inpainting update formulas below:

H∗(x) =
1∑

u∈�(x)
wSVG(u)

∑
u∈�(x)

H(u)wSVG(u), (11)

S∗(x) =
1∑

u∈�(x)
wHS (x,u)

∑
u∈�(x)

S(u)wHS (x,u) (12)

where �(x) denotes a window at pixel x and two adaptive
weights are defined as:

wSVG(x) =

{
α, x ∈ XSVG(x)
1, else

(13)

wHS (x,u) = e(
−(H(x)−H(u))2

σ2
)e−(1−S(u))

2) (14)

where σ is the spread parameter commonly used in guided
bilateral filters, which is often taken as 0.01 [14].
Remark 1: In general, the choice of window size �(x)

affects the accuracy and computation of color inpainting
for highlight removal. Taking a smaller window size may
enhance the computation speed but reduce the accuracy of
color inpainting, while a larger window size may improve
the accuracy of color inpainting but increase computational
cost. For a good balance between highlight removal qual-
ity and computational cost, we chose an optimal tradeoff

window size. In Section V, by applying the proposed method
with window sizes from 3×3 up till 11×11 to a natural image
we observed that 7× 7 is a relatively optimal window size.

C. DIFFUSE CHROMATICITY ESTIMATE
Let I∗H and I∗S be the corrected hue and saturation of an
observed image I (x) in HSV color space, respectively. The
proposed diffuse chromaticity estimate is defined as

3∗(x) = ϕ−1(I∗H , I
∗
S , 1) (15)

where ϕ−1(·) is the inverse transformation from HSV color
space to RGB color space.

D. CONVEX OPTIMIZATION FOR DIFFUSE REFLECTION
According to (15) and Theorem 1 in Section IV, we see that
IDV may be viewed as a diffuse coefficient. So, the nonlinear
dichromatic reflection model (1) may be further rewritten as
the following linear dichromatic reflection model:

I (x) = md (x)3∗(x)+ ms(x)0ε(x)+ δ(x) (16)

where δ(x) is the model error.
To minimize the model error defined in (16), we minimize

the data term:

E1(md (x),ms(x)) =
1
2
‖md (x)3∗(x)+ ms(x)0∗ − I (x)‖22

(17)

where ‖ · ‖2 denotes the l2 norm and 0∗ = 0ε . To over-
come the ill-posed problem, we introduce double regulariza-
tion. Because the specular-free image is smooth, its gradient
changes slowly and thus we use one l2-norm regularization
term. The specular image mainly consists of large bright
region and its gradient tends to be sparse, so we use another
l1-norm regularization term. Since the diffuse reflection and
illumination chromaticity are given, we introduce the follow-
ing double gradient regularization term:

E2(md (x),ms(x)) = β1‖∇md (x)‖22 + β2||∇ms(x)||1 (18)

where ‖ · ‖1 denotes l1 norm, β1 and β2 are the regu-
larization parameters, and ∇md (x),∇ms(x) are the gradi-
ent of md (x),ms(x), respectively. Because the two gradient
regularization terms can describe the smoothness and non-
smoothness of diffuse and specular components, it is useful
for texture detail preservation [36], [37].

By incorporating both (17) and (18), we propose a convex
optimizationmethod for diffuse reflection coefficients, which
solves the following convex optimization problem:

min
md ,ms

∑
x

= E1(md (x),ms(x))+ E2(md (x),ms(x))

s.t. 0 ≤ md (x) ≤ 1, 0 ≤ ms(x) ≤ 1 (19)

IV. PERFORMANCE ANALYSIS AND
ALGORITHM IMPLEMENTATION
In this section, we analyze the performance of the proposed
method and algorithm implementation.
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A. PERFORMANCE ANALYSIS
As for the modified illumination chromaticity, we have the
following property:
Proposition 1: Let the diffuse chromaticity 3(x) be con-

verted into hue: 3H (x), saturation: 3S (x), and value 3V (x)
in HSV space. If 0ε(x) is taken in model (1) and 3V (x) = 1,
then md (x) > 0 for any x ∈ X0.

Proof: See Appendix.
Remark 2: Proposition 1 shows that 0ε(x) can effectively

handle the black hole problem in the saturated highlight
regions. In addition, from the analysis of Proposition 1 we
see that in the case that I (x) = [1, 1, 1]T on the saturated
highlight regions, Proposition 1 still holds for 0ε(x) =
[1, 1 − ε, 1]T or [1, 1, 1 − ε]T . However, in other cases that
I (x) = [1, η, θ ]T where 0 ≤ η < 1 and 0 ≤ θ < 1, it is
difficult for us to take a proper ε such that md (x) > 0.
To analyze the approximation of the proposed diffuse chro-

maticity estimate, two useful properties of HSV transforma-
tion are first given as follows:
Proposition 2: Let ϕ(·) be an HSV transformation which

converts an image in RGB color space to an image in HSV
color space. Then for any free color value k

ϕ(kR, kG, kB) = (H , S, kV ) (20)

Proof: See Appendix.
Proposition 3: Let ϕ−1(·) be an inverse transformation

from HSV color space to RGB color space. Then

Vϕ−1(H , S, 1) = ϕ−1(H , S,V ) (21)

Proof: See Appendix.
Based on Propositions 2 and 3, we establish our main result

that the estimated diffuse chromaticity can approximate true
diffuse chromaticity:
Theorem 1: Let I∗H and I∗S be corrected hue and saturation

respectively of the observed image I (x) in HSV space, respec-
tively. If I∗H ≈ IDH and I∗S ≈ IDS where IDH and IDS are hue
and saturation elements of diffuse reflection in HSV space,
respectively, then

IDV3∗(x) ≈ md (x)3(x) (22)

where 3(x) is the diffuse chromaticity and 0 ≤ IDV ≤ 1 is
the value element of diffuse reflection in HSV space.
Proof: See Appendix.

B. ALGORITHM IMPLEMENTATION
To implement the proposed optimization method, we first
reformulate (19) based on the following Theorem:
Theorem 2: Solving (19) is equivalent to solving

md (x) = P�1 [md (x)−
∂E
∂md

]

ms(x) = P�2 [ms(x)−
∂E
∂ms

]

p(x) = P�3 [p(x)−
∂E
∂p

],
∂E
∂q
= 0

(23)

where p ∈ R2 and q ∈ R2 are Lagrange multiplier vectors,
and P�1 (·),P�2 (·),P�3 (·) are the projection operators on sets
�1 = {md | 0 ≤ md ≤ 1}, �2 = {ms| 0 ≤ ms ≤ 1}, and
�3 = {p = (p1, p2) | |pi| ≤ 1 (i = 1, 2)}, respectively, and

P�i (z) = arg min
u∈�i
||u− z||2 (i = 1, 2, 3)

Proof: See in Appendix
Next, to compute the gradient in (23), we have

∂E
∂p
= β2∇ms(x),

∂E
∂q
= β1(∇md (x)− q(x)).

On the other hand, by using the Gauss-Ostrogradsky theo-
rem [7] we have

qT∇md (x) = −md (x)div(q), pT∇ms(x) = −ms(x)div(p)

(24)

where div(p(x)) = ∂p1(x)/∂x + ∂p2(x)/∂y is the divergence
of vector field p(x). Then
∂E
∂md
= (md (x)3∗(x)+ms(x)0∗−I (x))T3∗(x)−β1div(q(x))

and
∂E
∂ms
= (md (x)3∗(x)+ms(x)0∗−I (x))T0∗−β2div(p(x)).

Combining the gradient representations above with (23), we
introduce the following projection gradient algorithm for
solving (19):

mk+1d (x) = P�1 [m
k
d (x)− hk

∂E
∂md

(mkd (x),m
k
s (x),q

k (x))]

mk+1s (x) = P�2 [m
k
s (x)− hk

∂E
∂ms

(mkd (x),m
k
s (x),p

k (x))]

pk+1(x) = P�3 [p
k (x)− hkβ2∇mks (x)]

qk+1(x) = qk (x)− hkβ1(∇mkd (x)− qk (x))
(25)

where hk > 0 is the step length. According to the analysis
given in [38], the projection iterative algorithm can converge
globally to the optimal solution of (19) provided that the step
length is appropriately small. Finally, a specular highlight
removal algorithm is described in Algorithm 1.
Remark 3: There are two threshold and regularization

parameters in Algorithm 1 and their choices may depend on
the lighting conditions of the image scene. For endoscopic
images with bright illumination, because the specular-free
image region is smoother than the specular image region,
the gradient of the specular-free image should be smaller
than the gradient of the specular image. Thus the l2-norm
regularization term needs to be minimized. This implies that
β1 should be greater than β2. On the other hand, α is the
threshold value on the saturation layer. Since the fully sat-
urated highlight region tends to be pure white, setting α to
be small is helpful for its detection. Parameter τ is used to
control the gradient magnitude of dark channel image. Since
endoscopic images have brighter regions than the natural
images, τ value for detecting endoscopic image should be
greater than τ that employed for natural images.
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FIGURE 3. Highlight removal results for analytic natural images: (a) Highlight images, (b) Our method, (c) paper [10], (d) paper [12], (e) paper [11],
(f) paper [34],(g) paper [8],(h) paper [45].

TABLE 2. Quantitative comparison of separation results.

Algorithm 1 For Specular Highlight Removal
1: Input: specular highlight image I (x)
2: Compute {H (x), S(x),V (x)} by HSV transformation
3: Compute highlight detection sets by (8) and (9)
4: Compute Hue estimate H∗(x) by (11)
5: Compute Saturation estimate S∗(x) by (12)
6: Compute diffuse chromaticity estimate by (15)
7: Compute m∗d (x) by updating algorithm (25)
8: Compute I∗D(x) = m∗d (x)3

∗(x)
9: Output: Specular-free image estimate I∗D(x)

V. EXPERIMENTS AND RESULTS
We evaluate the performance of the proposed method by
testing natural and medical images. For natural images,
we use the analytic and benchmark images which were
used in previous studies [12]. For the medical images,
we use the benchmark images from the well-known TMI
dataset [41] and endoscopic images acquired from the
local hospital. For specular highlight removal testing,
we compare our method with five dichromatic reflection
model-based methods: Shen’s [10], Yang’s [11], Suo’s [8],

Ren’s [12], and Souza’s [45] methods, and two inpainting-
based methods: Saint-Pierre’s [29] and Bernal’s meth-
ods [34]. We perform the proposed algorithm on endo-
scopic images under design parameters α = 0.05,
β1 ∈ [1, 5], β2 = 0.1, and τ ∈ [0.01, 0.1], and on natural
images under design parameters α = 0.1, τ = 0.01, β1 = 3,
and β2 = 0.1.

A. NATURAL IMAGE ASSESSMENT
1) ANALYTIC IMAGE TESTING
To analyze the proposed method quantitatively, we compare
our method with the state-of-the art methods on four nat-
ural synthetic images (Masks, Cups, Fruit, and Animals)
that have known ground truth. Figs. 3(b)-(g) demonstrate
highlight removal results by using seven methods. From
them we see that our results are visually similar to those
of Shen and Zheng [10], Yang et al. [11], Suo et al. [8],
Ren et al. [12], and Souza [45], and they are all bet-
ter than Bernal’s approach [34]. Furthermore, to quan-
tify the highlight removal performance, we use the peak
signal-to-noise ratio (PSNR) and structural similarity
image measurement (SSIM) as objective measures [13].
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FIGURE 4. Highlight removal performance comparison under noise,(a) noise density = 0.01 for salt and pepper noise, noise variance = 0.01 for
speckle noise, and σ = 3 for Gaussian noise, (b) noise density = 0.02 for salt and pepper noise, noise variance = 0.02 for speckle noise, and σ = 6
for Gaussian noise.

FIGURE 5. Highlight removal results for benchmark natural images: (a) Highlight images, (b) Our method, (c) paper [10], (d) paper [12], (e) paper [11],
(f) paper [34],(g) paper [8],(h) paper [45].

Table 2 lists the computed results by the seven meth-
ods. We see that the proposed method has competi-
tive performance for highlight removal and structural
information preservation, compared with the other six
approaches.

To explore the performance of the proposed method in
the presence of noise, we performed our method and the
other six methods on the four natural images with different
types of noise: salt & pepper, speckle, and Gaussian noise,
were added. PSNR was used as an evaluation metric. For our
evaluation, we take the average PSNR of four images before
and after removal of specular reflection. Let salt & pepper

noise have noise density of 0.01, speckle noise have variance
of 0.01, andGaussianwhite noise have a standard deviation of
σ = 3. Fig. 4(a) displays their comparative results. Let salt &
pepper noise have noise density of 0.02, speckle noise have
variance of 0.02, and Gaussian white noise have a standard
deviation of σ = 6. Fig. 4(b) displays their comparative
results. In Figs. 4(a) and 4(b), we see that the proposed
method has an improvement in the PSNR of the processed
images for speckle and Gaussian noise. On the other hand,
the improvement achieved by the proposed method is less
than these achieved by Bernal’s method due to the use of the
median filter during inpainting process.
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FIGURE 6. Highlight removal results for benchmark endoscopic images: (a) Highlight images, (b) Our method, (c) paper [29], (d) paper [12],
(e) paper [11], (f) paper [34].

2) BENCHMARK IMAGE TESTING
We studied four benchmark natural images (Fish, Wood,
Lotus, andWatermelon) that have unknown ground truth [10].
Fig. 5 depicts the highlight removal results obtained by the
seven methods. In terms of visual inspection, our method
produces promising results, which indicates its effectiveness
on the natural scenes. Similar to the other five dichromatic
reflection model-based methods [8], [10]–[12], [45], our
method is comparable in highlight removal, color recov-
ery, and detail preservation. Compared with the inpainting-
based method [34], our method maintains the lightness
and color fidelity of image background, which is shown
in the fish (first row) and the lotus (third row) images in
Fig. 5.

B. MEDICAL IMAGE ASSESSMENT
1) BENCHMARK IMAGE TESTING
We studied two groups of benchmark images with saturated
highlights and complex textures from the TMI dataset [41].
Fig. 6 demonstrates highlight removal results by fivemethods
on five benchmark images. Highlight removal comparisons

are shown in Fig. 6(b)-(f). As shown in Fig. 6(b), our
approach removes specular highlights from all endoscopic
images and preserves the original texture details and colors
on organ surfaces. From local details shown in Fig. 6, it is
seen that the other four methods are capable of removing
specular highlights, but fail to preserve textures and colors.
From Figs. 6(c) and (f), it is seen that Saint-Pierre’s [29] and
Bernal’s methods [34] produce over-smooth images on the
highlight regions. From Fig. 6(d) and (e), it is seen that the
methods of both Yang et al. [11] and Ren et al. [12] cause
heavy degradation and color distortion.

Fig. 7 depicts highlight removal results of other five bench-
mark images. Highlight removal comparisons are shown in
Fig. 7(b)-(e). In Fig. 7(b), our method removes specular high-
lights from all endoscopic images and preserves the original
texture details and color on organ surfaces. Similarly, from
Figs. 7(c) and (f) we see that both Saint-Pierre’s and Bernal’s
methods result in overly smoothed images on the highlight
regions. From Figs. 7 (d) and (e), we see that the methods
of both Yang et al. [11] and Ren et al. [12] cause heavy
degradation and color distortion.
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FIGURE 7. Highlight removal results for benchmark endoscopic images: (a) Highlight images, (b) Our method, (c) paper [29], (d) paper [12],
(e) paper [11],(f) paper [34].

2) REAL IMAGE TESTING
We studied specular highlight removal from real laparo-
scopic images with saturated highlights and complex textures
acquired from endoscopic surgeries. For our comparison, five
real laparoscopic images are shown in Fig. 8(a). Figs. 8(b)-(f)
display specular highlight removal results by five methods.
It is seen that our method removes specular highlights from
all laparoscopic images and preserves original texture details
and color on organ surfaces shown in Fig. 8(b). In contrast,
the saturated highlight regions are distorted by the methods
of Shen and Zheng [10], Yang et al. [11], Ren et al. [12],
and Bernal et al. [34], shown in Fig. 8(c), (d), (e), and (f)
respectively.

3) FORCED-CHOICE PREFERENCE TESTING
For further quantitative validation, we performed a forced-
choice preference experiment on 20 specular highlight
images acquired from real 2-D laparoscopic surgeries. Each
image was processed by the proposed method and other
four highlight removal methods [10]–[12], [34]. Twenty sets
of testing images were created, where each set included
5 processed images. Our user study was performed under a
protocol approved by the Research Ethics Board of West-
ern University. Twenty clinicians with varying degrees of

laparoscopy experience created the test group. The partic-
ipants included 10 surgeons/fellows with over 5 years of
experience and 10 medical residents with less than 5 years of
experience. For each trial, two processed images randomly
drawn from each image set were shown to the participants,
who were blinded to the processing method, and were asked
for their preferences. To reduce the number of trials, the pre-
viously preferred image remained in the next trial and was
paired with an un-compared image from the image set. This
process was repeated until all 5 images within the image
set were compared and the last remaining preferred image
was recorded. The above procedures were repeated for all
20 image sets, and the percentage of each algorithm with the
most preferred choice was used as the user’s preference score.
According to the feedback from the clinical participants, our
approach produced the highest score, receiving an average
approval rating of 76%, demonstrating significant favor from
the participants, while the other four highlight removal meth-
ods received less than 24% approval rating.

C. APPLICATION TO STEREO RECONSTRUCTION
The proposed method was applied to stereo reconstruction.
We tested our method on 20 benchmark endoscopic images
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FIGURE 8. Highlight removal results for real laparoscopic images: (a) Highlight images, (b) Our method, (c) paper [10], (d) paper [12],
(e) paper [11], (f) paper [34].

FIGURE 9. Disparity comparison results: (a) Input left highlight image,
(b) Disparity map without highlight removal, (c) Disparity map with
highlight removal by our algorithm (d) Disparity map with highlight
removal by paper [34].

from the ‘‘Distance dataset’’ with known ground truth [41].
We performed the cost volume filtering method [40] for
stereo reconstruction, based on the unprocessed dataset,
the processed dataset by the proposed method, and by
the inpainting-based method [34], respectively. The recon-
structions based on the proposed method gave the average
root mean square distance (RMSD) as 0.69 mm. In con-
trast, the reconstruction based on [34] yields an RMSD
of 1.24 mm, and the unprocessed dataset 1.10 mm. Fur-
thermore, Fig. 9 depicts the comparison of disparity results,
where Fig. 9(b) is the disparity map without highlight
removal, Fig. 9(c) depicts the result of following our highlight
removal approach. Fig. 9(d) is the result of the following
inpainting-based method. The red contours of the region of
interest indicate that the proposed method gave a smooth

disparity map, while others have nonsmooth disparity maps
that may lead to inaccurate reconstruction of the 3D surface.
It shows that the proposed highlight removal approach has the
potential to significantly enhance stereoscopic reconstruction
accuracy.

VI. DISCUSSION AND CONCLUSION
This paper proposes a global optimization method for spec-
ular highlight removal from a single image, based on the
dichromatic reflection model that is widely used in natu-
ral images. For effectiveness on medical images, we take
advantage of the fact that such images have very small color
variation due to the lack of blue and green components,
which leads to smooth varying hue in HSV space. We also
observe that the saturation layer is smoothly varying, and
which doesn’t contain any intensity edges in RGB space.
Because of these properties, we obtain more accurate hue and
saturation estimates using an adaptive inpainting technique.
Theoretical analysis shows that estimated diffuse chromatic-
ity can approximate true diffuse chromaticity so that the
diffuse refection estimation error can be minimized. Using
the estimated diffuse color and modified illumination color,
we reformulate the specular highlight removal problem as
a convex optimization problem with double regularization.
In contrast, current non-convex optimization modeling-based
methods for specular highlight removal may suffer from
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local minimum problem. Since two regularization terms can
describe diffuse and specular component features, the pro-
posed highlight removal method is able to not only remove
highlights, but also preserve texture details. The quantitative
experimental results demonstrate that the proposed method
is effective on benchmark and real endoscopic images as
well as natural images, in terms of both image quality and
detail preservation, compared with several competing meth-
ods.Moreover, forced-choice preference experimental results
confirm that the proposed method is accepted by medical
experts. Furthermore, having effectively removed highlights
from endoscopic images, the proposed method significantly
enhances stereo-reconstruction surface accuracy and thus can
provide surgeons more accurate depth information for auto-
mated surgical guidance.

Because the proposedmethod combines the detection tech-
nique and optimization technique, it has relatively high com-
putational cost. At present, the computational time of our
method on our machine is 35 secs for a 600 × 700 bench-
mark endoscopic image, while the times for the approaches
of Ren et al. is 9 secs; Saint-Pierre et al. is 120secs;
Bernal et al. is 20 secs, and Yang et al. is 20 secs. Accel-
erating the proposed method is needed for real-time pro-
cessing. While the proposed method running in MATLAB
is clearly too slow for real-time operation, the procedure
is highly parallelizable and amenable to GPU processing.
Improvements to optimization procedures could also improve
computational efficiency. In addition, temporal information
may be helpful for color correction and diffuse chromatic-
ity estimation. Thus, incorporating temporal information can
further enhance computational speed and accuracy of the
proposed algorithm, andwill be the subject of future research.

APPENDIX
PROOF OF PROPOSITION 1
Proof: Substituting 0ε(x) into (1), we have

I (x) = md (x)3(x)+ ms(x)0ε(x). (26)

Then Ig(x) = md (x)3g(x) + ms(x), Ib(x) = md (x)3b(x) +
ms(x), and Ir (x) = md (x)3r (x) + ms(x)(1 − ε).
If I (x) = [1, 1, 1]T for any x ∈ X0, then

1− ms(x)(1− ε) = md (x)3r (x)
1− ms(x) = md (x)3g(x)
1− ms(x) = md (x)3b(x)

Thus md (x)max{3r (x),3g(x),3b(x)} = max{1 − ms(x),
1 − ms(x)(1 − ε)} = 1 − ms(x)(1 − ε). Because 3V (x) =
max{3r (x),3g(x),3b(x)}, we have md (x)3V (x) = 1 −
ms(x)(1 − ε). From 3V (x) = 1 it follows that md (x) = 1 −
ms(x)(1− ε) > 0 since ms(x)(1− ε) < 1. If I (x) = [1, η, θ ]T

for any x ∈ X0 where 0 ≤ η < 1 and 0 ≤ θ < 1, then
following above analysis we also have for any x ∈ X0

md (x) = 1− ms(x)(1− ε) > 0, ∀ε ∈ (0, 1)

since 1− ms(x)(1− ε) ≥ max{η − ms(x), θ − ms(x)}. �

PROOF OF PROPOSITION 2
Proof:According to the standardized colorimetric transfor-

mation [35], we have three Hexcone formulas which convert
RGB color space to HSV color space: V = max{R,G,B},
S = (V − min{R,G,B)/V , and

H=



0, if V = min{R,G,B}

(60◦×
G− B

V−min{R,G,B}
+360◦

mod360◦, if V = R

(60◦×
G− B

V−min{R,G,B}
+360◦), if V = G

(60◦×
G− B

V−min{R,G,B}
+240◦), if V = B

(27)

It is seen that kV = max{kR, kG, kB} and (kV −
min{kR, kG, kB})/(kV ) = k(V − min{R,G,B})/(kV ) = S.
Again from (27) we have

(kG− kB)
kV − min{kR, kG, kB}

=
(G− B)

(V − min{R,G,B})
.

Thus (27) still holds for any (kR, kG, kB) and kV .
It follows (20). �

PROOF OF PROPOSITION 3
Proof:According to Proposition 2 we see for any free color

pixel µ > 0

ϕ(µR, µG, µB) = (H , S, µV ) (28)

Then µ(R,G,B) = ϕ−1(H , S, µV ) and thus

(R,G,B) = {ϕ−1(H , S, µV )}/µ (29)

Let µ = 1/V . Then

(R,G,B) = Vϕ−1(H , S, 1) (30)

On the other side, we have

(R,G,B) = ϕ−1(H , S,V ) (31)

From both (30) and (31) it follows (21). �

PROOF OF THEOREM 1
Proof: Let the diffuse reflection vector be

ID(x) = (IDr , IDg, IDb) = md (x)3(x). (32)

Using HSV transformation we have

ϕ(IDr , IDg, IDb) = (IDH , IDS , IDV ) (33)

By Proposition 3 we know that ϕ−1(IDH , IDS , 1) =

{ϕ−1(IDH , IDS , IDV )}/IDV . Then

ϕ−1(I∗H , I
∗
S , 1) ≈ {ϕ

−1(IDH , IDS , IDV )}/IDV .

Note that ϕ−1(IDH , IDS , IDV ) = ϕ−1(ϕ(IDr , IDg, IDb)) =
(IDr , IDg, IDb). Then

ϕ−1(I∗H , I
∗
S , 1) ≈ (IDr , IDg, IDb)/IDV .
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By using 3∗(x) = ϕ−1(I∗H , I
∗
S , 1) and (32), we obtain that

IDV3∗(x) ≈ (IDr , IDg, IDb) = md (x)3(x).

On the other side, because ID(x) and IS (x) are nonnegative,
0 ≤ I (x) ≤ 1 implies that 0 ≤ ID(x) ≤ 1. That is,
0 ≤ IDr , IDg, IDb ≤ 1. Note that IDV = max{IDr , IDg, IDb}.
Then 0 ≤ IDV ≤ 1. �

PROOF OF THEOREM 2
Proof: Note that yT y/2 = maxq{qT y − qTq/2} and
||y||1 = max||p||∞≤1{p

T y} for any vector y ∈ R2 where
||p||∞ = max{|p1|, |p2|}. (18) is thus rewritten as:

E2(md (x),ms(x))

= max
p,q

β1(qT∇md (x)− ||q||22/2)+ β2p
T
∇ms(x) (34)

where q,p ∈ R2 and ||p‖∞ ≤ 1. Let

E(md (x),ms(x),p,q)

= E1(md (x),ms(x))+ β1qT∇md (x)− β1||q||22/2

+β2pT∇ms(x) (35)

where �1, �2, and �3 are defined in (23). Then solving (19)
is equivalent to solving:

min
md ,ms

max
p,q

E(md (x),ms(x),p(x),q(x))

s.t. (md (x),ms(x)) ∈ �1 ×�2

(p(x),q(x)) ∈ �3 × R2. (36)

According to the saddle point theorem [38], (m∗d ,m
∗
s ,p
∗,q∗)

is a global minimum point of (36) if and only if for any
(md ,ms,p,q) ∈ �1 ×�2 ×�3 × R2

E(m∗d ,m
∗
s ,p,q) ≤ E(m

∗
d ,m

∗
s ,p
∗,q∗) ≤ E(md ,ms,p∗,q∗).

(37)

From the right inequality of (37), (m∗d ,m
∗
s ) is a minimum

point of E(md ,ms,p∗,q∗). From [39] it follows that (m∗d ,m
∗
s )

satisfies:

(md − m∗d )
∂E
∂md
≥ 0, ∀md ∈ �1. (38)

and

(ms − m∗s )
∂E
∂ms
≥ 0, ∀ms ∈ �2. (39)

Similarly, from the left inequality of (38), we see that (p∗,q∗)
is a minimum point of E(m∗d ,m

∗
s ,p,q). It follows that

(p− p∗)T
∂E
∂p
≥ 0, ∀p ∈ �3 (40)

and

(q− q∗)T
∂E
∂q
≥ 0, ∀q ∈ R2. (41)

According to the projection Theorem [39], (38) equals
md (x) = P�1 [md (x) −

∂E
∂md

], (39) equals ms(x) =
P�2 [ms(x) −

∂E
∂ms

], (40) equals p(x) = P�3 [p(x) −
∂E
∂p ],

and (41) equals ∂E
∂q = 0. �
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