
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING
OF DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received August 10, 2019, accepted August 26, 2019, date of publication September 3, 2019, date of current version October 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939162

Detecting Difference Between Process Models
Using Edge Network
JIAXING WANG 1, (Member, IEEE), BIN CAO 1, (Member, IEEE),
XI ZHENG 2, (Member, IEEE), DAPENG TAN 3, (Member, IEEE),
AND JING FAN1, (Member, IEEE)
1College of Computer Science and Software Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
3Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China

Corresponding author: Jing Fan (fanjing@zjut.edu.cn)

This research was partially supported by National Key Research & Development Program of China under Grant 2018YFB1402802.

ABSTRACT Process difference detection has played an important role in business process management for
enterprise applications. However, the business processes are becoming more and more complex, involving
a wide spectrum of tasks and different types of execution orders among these tasks, such as sequential,
parallel, loop and conditional order. Thus, there is a need to detect difference between two process models
efficiently. To meet this requirement, we use a difference detection framework for process models based
on edge computing, where the edges can perform the task of difference detection between two process
models, and the difference detection results can be aggregated to the cloud center. Most existing approaches
detect process difference based on one feature of a process model, while a process model actually contains
multiple features such as structure, behavior, and performance. In this paper, we propose an approach that
can detect both structural and behavioral differences between two process models, which provides two
aspects of difference information to process analysts and these kinds of insights are helpful to improve the
original process model with low-cost and high-efficiency. First, we transform the process models into their
corresponding task-based process structure trees (TPSTs) and assign each TPST node a feature vector based
on the one-hot encoding. Then, the common key structure of two process models is extracted by comparing
the feature vectors of nodes. Finally, the structural and behavioral differences are displayed in terms of this
common key structure. Both the case study and efficiency study are provided to show the practicality of the
proposed approach.

INDEX TERMS Process model, process difference, edge computing, one-hot encoding, key structure.

I. INTRODUCTION
Detecting difference between two business process mod-
els is one of the important services in business process
management. It can be used in the following scenarios:
(1) A business process has more than one versions, and
these different versions may be modeled by diverse sub-
systems and various process designers at the same time.
Finally, these different versions of process models need
to be compared and merged into a new one, which
contains all the changes proposed by all designers [1].
(2) Changes to the process model may introduce data

The associate editor coordinating the review of this article and approving
it for publication was Honghao Gao.

inconsistencies, which needs to be detected, handled and
tracked according to the results of process difference
detection [2], [3].

Most existing methods focus on only one feature of a
process model, such as structure and behavior. The structure-
based methods [4]–[6] represent the structural differences as
a set of edit operations that can transform one process model
into another. However, the problem of computing the graph
edit distance between two process models is at least as hard
as subgraph isomorphism, which is NP-hard. The behavior-
based methods detect the execution trace differences between
two process models [7]–[9], while the state space explo-
sion will happen once process models contain many parallel
patterns.

142916 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7672-6911
https://orcid.org/0000-0003-1062-6309
https://orcid.org/0000-0002-2572-2355
https://orcid.org/0000-0002-6018-9648

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

FIGURE 1. Process difference detection framework based on edge
network.

Since the process models have become more complex
over time, including a wide spectrum of tasks and differ-
ent types of execution orders among these tasks, there is
a need to efficiently detect difference between two process
models. In this way, the process designer can quickly improve
the existing process model according to the difference to
meet the frequent changes of custom and market demands.
However, the mentioned existing techniques cannot meet this
new requirement, it is because these methods involve long
computations of graph edit distance or execution trace which
is extremely extensive. To address this problem, we use a
process difference detection framework based on edge net-
work to improve the computational efficiency. Nowadays,
edge computing are widely applied, where services are pro-
vided in a decentralized architecture, and processed by a local
computer or server [10].

Figure 1 shows the two-way computing streams in edge
computing, where the things are both producers and con-
sumers. At the edge, the things can not only request service
from the cloud, but also perform the computing tasks from the
cloud. The edges can perform data storage, difference detec-
tion between process models, distribute request and delivery
service from cloud to users [11]. Thus, the process differ-
ence results generated from edge nodes can be aggregated
to the cloud center in real time. In this way, the center has
global monitoring for all process models, and the process
designers can reallocate the process resources and improve
the execution efficiency according to the process difference
results.

In this paper, we propose an approach to detect differ-
ences between two process models using edge network. Both
structure and behavior are considered, it is because a pro-
cess model has multiple features, such as structure, behavior,
cost [12], and QoS [13]–[18], and considering more features
of a process model will provide more aspects of difference
information to process designers. In this way, more useful
insights about where and how two process models differ
can be uncovered, and these kinds of insights are helpful
to improve the original process model and obtain a cost-
reduction and high-efficiency process model.

Since the structure is the most important feature of a pro-
cess model, we use the key structure to abstract the structure
of a process model. A key structure describes what kinds of

control flow patterns the process model contains and these
patterns are in which execution orders. The common key
structure of two process models abstracts their common parts,
while the different parts are still unknown. To detect the struc-
tural as well as behavioral differences between two process
models, we introduce one-hot encoding [19] that is popular
in machine learning to encode each task node. For the control
flow patterns, we design several strategies to encode them
based on the one-hot codes. In this way, each node or control
flow pattern is represented by a feature vector, and we can get
the differences by comparing the feature vectors, which can
be displayed beyond their common key structure.

Next, we highlight our contributions as follows:

• A process difference detection framework based on edge
network is used to improve the computational efficiency.

• One-hot encoding is used for encoding the task nodes,
and three strategies are designed to encode the control
flow patterns in a process model.

• Both case study and efficiency study are conducted to
show the practicality of the presented approach.

The rest of this paper is organized as follows. Section II
sets the stage for the concepts used in this paper. The
implementation and experimental evaluation are presented in
Section III and IV, respectively. Section V reviews the related
work, and Section VI concludes this paper.

II. PRELIMINARIES
This section presents a set of preliminaries that are important
to set the stage for understanding this paper and its vision.
In particular, we first present the process modeling and the
task-based process structure tree, which are the basis of our
work. Then we introduce the one-hot encoding.

A. PROCESS MODELING
A process consists of a set of tasks and their relations to reach
a goal. The structure of a process can bemodeled as a directed
graph that can be denoted as a tuple P= (T,G, E, S,O), where
T,G, E, S andO are task node set, gateway node set, edge set,
start node and end node, respectively, and G = {And-split,
Xor-split, loop-split, And-join, Xor-join, loop-join}.
Taking Process2 in Figure 2 as an example, its task node

set is {A, B, C, D, E, F}, the gateway node set is {And-split,
Xor-split, And-join, Xor-join} that consists of parallel and
conditional patterns. Its start and end nodes are start and end,
and it contains 13 edges, such as start→A and E→F.

There are four common control flow patterns in a pro-
cess model: sequential, parallel, conditional and loop pat-
terns [20], which are labeled as Sequence, And, Xor, and
Loop, respectively. The characteristics of these four common
control flow patterns are:

• Sequential pattern. Each task node in the sequential
pattern has exactly one incoming arc and one outgoing
arc.

• Conditional pattern. A conditional pattern that starts
from an Xor-split node and ends at an Xor-join node

VOLUME 7, 2019 142917

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

FIGURE 2. Two process models with conditional and parallel patterns.

FIGURE 3. Two task-based process structures (TPSTs).

has multiple branches, and only one of the branches is
allowed to be selected for execution.

• Parallel pattern. A parallel pattern starts from an And-
split and ends at an And-join, and all the task nodes in it
are executed simultaneously or in any order.

• Loop pattern. A loop pattern has a single entry and exit
point [21], which starts from a Loop-split node and ends
at a Loop-join node, and the nodes in it are repeatedly
executed.

As shown in Figure 2, there are two process models that
contain three kinds of control flow patterns, i.e., sequen-
tial, conditional and parallel patterns. Taking Process2 as
an example, the highest abstraction level of Process2 is a
sequential pattern, which starts from the start node and ends
at the end node. Process2 consists of task A, the parallel
pattern And, task E and F, which are sequentially executed.
The And pattern contains a Xor pattern and task B, where the
task C and D form the Xor pattern.

B. TASK-BASED PROCESS STRUCTURE TREE
Aprocess model can be transformed into a task-based process
structure tree (TPST) [5], which is a variant of a process
structure tree [22]. The features of a TPST are listed in the
following: (1) There are four types of gateway nodes in a
TPST: Sequence, Loop, Xor and And, which correspond to
the sequential, loop, conditional and parallel pattern, respec-
tively. (2) The leaf nodes and non-leaf nodes of a TPST sep-
arately represent the task nodes and the control flow patterns
of its corresponding process model.

Taking the two TPSTs TPST1 and TPST2 in Figure 3 as
an example, they are transformed from two process models
in Figure 2. The leaf nodes of TPST1 are the task nodes of

Process1, i.e., {A, B, C, D, E}, and its non-leaf nodes are
{Sequence, And, Xor}. The root node of TPST1 is Sequence,
which shows that the highest abstraction level of Process1 is
a sequential pattern.

C. ONE-HOT ENCODING
Given n different states, the one-hot encoding of the k-th state
is a vector of length nwith a single high bit 1 at the k-th place,
and all the other bits are low 0. The definition of one-hot [19]
is listed as follows:
Theorem 1: One-Hot. Let set A = {0, 1}, N ∈ Z+, N >

1 and n ∈ Z+, such that 1 ≤ n ≤ N. The n-th one-hot vector
of N bits is defined as vector ohn ∈ AN , where ohnn = 1 and
ohni = 0, ∀ i 6= n, 1 ≤ i ≤ N.
For example, there is a property ‘‘name’’ with three values,
i,e., {‘‘Jason’’, ‘‘Lucy’’, ‘‘Emmy’’}. With one-hot encoding,
each value becomes a one-hot vector with size of 3, where
only one element in each vector is non-zero and the non-
zero elements of all vectors are in different positions. Thus,
‘‘Jason’’, ‘‘Lucy’’ and ‘‘Emmy’’ are encoded as ‘‘[1,0,0]’’,
‘‘[0,1,0]’’ and ‘‘[0,0,1]’’, respectively.

III. IMPLEMENTION
In this section, we introduce the implementation of the pre-
sented approach. Given two process models, the main idea
is to extract their common key structure based on one-hot
encoding, and both structural and behavioral differences can
be displayed beyond this common key structure. There are
three consecutive phases, namely, one-hot encoding, common
key structure extraction, and difference detection. These three
phases are described in details in the rest of this section. For
illustration, we use two process models shown in Figure 4
throughout this whole section.

A. PHASE 1: ONE-HOT ENCODING
The inputs of this phase are two process models, the outputs
are their corresponding encoded TPSTs.
Main Idea: Given two TPSTs transformed from two pro-

cess models, we use a one-hot code, which is also regarded
as a feature vector, to represent a TPST leaf node, and the
feature vector of a TPST non-leaf node is obtained based on
its child nodes’ feature vectors. Whether two TPST nodes can
be mapped or not is determined by comparing their feature
vectors. In this way, the common key structure of two process
models is created based on the totallymapped nodes, and both
structural and behavioral differences can be easily detected
based on the unmapped nodes and partially mapped nodes.
Algorithm: Algorithm 1 gives the pseudo-code for the first

phase. First, we transform two process models into their
corresponding TPSTs (Line 1). In this way, the task nodes
and the control flow patterns of a process model can be
explicitly presented by leaf nodes and non-leaf nodes in a
TPST. Next, this phase mainly performs two tasks: one-hot
encoding for TPST leaf nodes and encoding for non-leaf
nodes. With regard to task nodes, we first get the union of

142918 VOLUME 7, 2019

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

FIGURE 4. The framework of process difference detection.

task nodes from two TPSTs, and allocate a one-hot code to
each node in this task union (Line 2 - 4).

As for the TPST non-leaf nodes, we design a function
setOneHot to do the encoding for them. To achieve this goal,
we iterate and encode every non-leaf node in each level from
bottom to top. We start iterating from the last second level,
this is because the non-leaf nodes do not appear in the last
level (Line 7 - 8). Since there are four types of non-leaf nodes,
i.e., Sequence, Loop, Xor and And, we divide them into three
groups to encode the current iterated non-leaf node. The first
group is Xor node, we just put all of its child’s feature vectors
together as its feature vector (Line 12 - 15), and the relation
among these child’s feature vectors is exclusive. The reason
behind is that an Xor node will select one branch to execute
when it contains more than one branches, so any branch in the
corresponding conditional pattern has a certain possibility to
be executed. The second group is Sequence and Loop nodes,
we concatenate their child nodes’ feature vectors as their
feature vectors (Line 16 - 18). The reason for this is that all
nodes in a sequential pattern will be executed in order, and the
concatenation of feature vectors shows this sequential execu-
tion. The third group is And node, we perform logical ‘‘OR’’
operation among all of its child’s feature vectors. Note that we
need to insert 0 in the back of a feature vector if the lengths
of the child’s feature vectors are different (Line 19 - 21). The
reason behind is that all nodes in a parallel pattern can be
executed simultaneously, and the logical ‘‘OR’’ can reserve
all nodes in this pattern.
Example:As shown in Figure 4, TPST1 and TPST2 are two

TPSTs transformed from Process1 and Process2 in Figure 2.
The task node sets of TPST1 and TPST2 are {A,B,C,D,E}
and {A,B,C,D,E,F}, respectively. Their task union is
{A,B,C,D,E,F}, so their one-hot codes, i.e., feature vectors,
are [1,0,0,0,0,0], [0,1,0,0,0,0], [0,0,1,0,0,0], [0,0,0,1,0,0],
[0,0,0,0,1,0] and [0,0,0,0,0,1], respectively. The non-leaf
nodes of TPST1 are Xor, And and Sequence. We first iterate
the third level of TPST1 and process the non-leaf node Xor.

Its feature vector is ‘‘[0,1,0,0,0,0]/[0,0,1,0,0,0]’’ since it con-
tains two exclusively executed child nodes task B and C with
one-hot vectors [0,1,0,0,0,0] and [0,0,1,0,0,0], respectively.
Then, the second level is iterated and we calculate the
feature vector of And, i.e., ‘‘[0,1,0,1,0,0]/[0,0,1,1,0,0]’’.
It is obtained by performing logical ‘‘OR’’ between
[0,1,0,0,0,0] and [0,0,0,1,0,0], [0,0,1,0,0,0] and [0,0,0,1,0,0],
where [0,1,0,0,0,0] and [0,0,1,0,0,0] are the elements
from the feature vector of Xor and [0,0,0,1,0,0] is task
D’s one-hot vector. The feature vector of Sequence in
the first level is ‘‘[1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0] /
[1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0]’’, which is generated by
concatenating the feature vectors of its child nodes, i.e., task
A, non-leaf node Xor and task E.

B. PHASE 2: COMMON KEY STRUCTURE EXTRACTION
The inputs of this phase are two encoded TPSTs, and the
output is their common key structure.
Main Idea: The key structure of a process model abstracts

its main control flow patterns executed in sequential order.
A control flow pattern of a process model is represented by
a non-leaf node in its corresponding TPST. To detect the
common key structure of two process models, we compare
the feature vectors of each possible pair of TPST nodes with
the same type and determine the mapped ones. In this way,
the mapped nodes and the execution relations among them
form the common key structure.
Algorithm:Algorithm 2 shows howwe extract the common

key structure from two process models. First, we extract
the nodes in the second level of a TPST if its root node is
Sequence or Loop, otherwise the nodes in the first level are
regarded as the candidate nodes to create the common key
structure (Line 1 - 3). Then, each pair of nodes with the same
type in these two candidate nodes are compared to decide
whether they can be mapped, which includes two cases. The
first case is TPST leaf node, two leaf nodes can be mapped
if and only if their one-hot codes are identical (Line 6 - 9).

VOLUME 7, 2019 142919

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

Algorithm 1 One-Hot Encoding
Input : Two process models p1 and p2
Output: Two encoded TPSTs: tpst1 and tpst2

1 tpst1, tpst2← transform p1 and p2 to TPSTs;
2 task_union← tpst1.task ∪ tpst2.task;
3 for each task node t in task_union do
4 set t a one-hot code as its feature vector;

5 return setOneHot(tpst1) and setOneHot(tpst2);

6 Function setOneHot (TPST t)
7 for i from t.depth-2 to 1 do
8 level← get the nodes in the i-th level of t;
9 for each node cur in level do
10 cs← get the child nodes of cur ;
11 fv← initialize a feature vector;
12 if cur.type == Xor then
13 for each child c1 in cs do
14 for each element e1 in c1’s feature

vector do
15 add e1 to fv;

16 else if cur.type == Sequence || Loop then
17 for each child node c2 in cs do
18 fv← fv + c2’s feature vector;

19 else if cur.type == And then
20 for each child node c3 in cs do
21 fv← perform the OR operation

among all feature vectors of c3;

22 set fv as cur’s feature vector;

23 return t;

The second case is non-leaf node, two non-leaf nodes can be
mapped once one or more elements in their feature vectors are
identical (Line 10 - 14). Finally, the common key structure is
built up based on these mapped nodes, where the relationship
among these mapped nodes is sequential (Line 14 - 17).
Example: As shown in Figure 4, we extract the nodes in

the second level of TPST1 and TPST2 as the candidate nodes
to construct their common key structure, since both of their
root nodes are Sequence nodes. The key structures of TPST1
and TPST2 are ‘‘A→And→E’’ and ‘‘A→And→E→F’’,
respectively. For task A and E in TPST1, their mapped nodes
in TPST2 are task A and E, respectively. Two And gateway
nodes are also mapped, it is because one element in their one-
hot vectors is identical, i.e., ‘‘[0,1,0,1,0,0]’’. Thus, the com-
mon key structure of TPST1 and TPST2 is ‘‘A→And→E’’.

C. PHASE 3: DIFFERENCE DETECTION
The inputs of phase 3 are two process models’ common
structure and their candidate node sets, and the output is their
structural and behavioral differences.

Algorithm 2 Common Key Structure Extraction
Input : Two encoded TPSTs: t1 and t2
Output: Common key structure: cks

1 cks← initialize a list;
2 n1, n2, mapped_nodes← initialize two lists and one
map;

3 n1← t1.root.type == Sequence or Loop? Get t1’s
nodes in level 1: Get t1’s nodes in level 0;

4 n2← t2.root.type == Sequence or Loop? Get t2’s
nodes in level 1: Get t2’s nodes in level 0;

5 for each node nn1 in n1 do
6 for each node nn2 in n2 do
7 if nn1.type == nn2.type then
8 if both nn1 and nn2 are leaf nodes and nn1’s

one-hot code == nn2’s one-hot code then
9 put < nn1,nn2 > to mapped_nodes;

10 else if both nn1 and nn2 are non-leaf nodes
then

11 for each element o1 in nn1’s feature
vector do

12 for each element o2 in nn2.feature
vector do

13 if o1 == o2 then
14 put < nn1,nn2 > to

mapped_nodes;

15 for each k in n1 do
16 if mapped_nodes contains k then
17 add k to cks;

18 return cks;

Main Idea: Based on the common key structure, both
structural and behavioral differences of two process models
can be detected. For each node in the common key structure,
we can determine the mapped nodes from two TPSTs, and
the nodes that do not belong to the common key structure are
unmapped nodes. These unmapped nodes are the differences
of two process models in terms of topology structure, where
the unmapped nodes show that they just exist in one process
model. A mapped pair of non-leaf nodes may contain the
same structure but different behaviors, that is, some elements
of their feature vectors are identical while the rest elements
are different. These different elements are used to describe
the behavioral difference.
Algorithm: Algorithm 3 calculates both structural and

behavioral differences between two process models by the
following steps. First, since the differences are described
by node labels, we split the candidate nodes’ labels of two
TPSTs by the node labels of common key structure and get
the structural difference, i.e., the unmapped nodes’ labels
(Line 1 - 4). Then, for every mapped pair of non-leaf nodes,

142920 VOLUME 7, 2019

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

Algorithm 3 Difference Detection
Input : Common key structure cks, two TPSTs’

candidate node sets n1 and n2 and their mapped
node set mapped_nodes

Output: The structural differences s_diff and the
behavioral differences b_diff

1 cks_str ← the node label set of cks;
2 n1_str, n2_str← the node labels of n1 and n2;
3 add n1_str.split(‘‘[’’+cks_str+‘‘]’’) to s_diff ;
4 add n2_str.split(‘‘[’’+cks_str+‘‘]’’) to s_diff ;
5 map← key is the position of 1 and value is the
corresponding task node label in all one-hot codes;

6 b_diff ← initialize a map;
7 for each < k,v > in mapped_nodes do
8 b_diff 1, b_diff 2← initialize two lists;
9 if both k and v are non-leaf nodes and k or v contains

more than one elements then
10 o1← get all elements of k’s feature vector;
11 o2← get all elements of v’s feature vector;
12 ones← get the same elements of k and v;
13 if ones.size 6= o1.size then
14 o1← o1 − ones;

15 if ones.size 6= o2.size then
16 o2← o2 − ones;

17 for each oo1 in o1 do
18 for i from 0 to oo1.length do
19 add map.get(i % map.size) to b_diff 1

20 for each oo2 in o2 do
21 for j from 0 to oo2.length do
22 add map.get(j % map.size) to b_diff 2

23 add <k, [b_diff 1, b_diff 2]> to b_diff ;

24 return s_diff and b_diff ;

we get their corresponding feature vectors and extract their
identical and different elements (Line 7 - 12). In this way,
the behavioral differences can be described by these different
elements, which is implemented by amapwhere the key is the
position of 1 in the one-hot vector of the task nodes and value
is the corresponding task node’s label. According to this map,
we can find the task nodes as well as their execution orders,
i.e., different execution paths between two mapped control
flow patterns (Line 13 - 22).
Example: As shown in Figure 4, the common key

structure of two process models is ‘‘A→And→E’’, and
their candidate nodes are ‘‘{A, And, E}’’ and ‘‘{A, And,
E, F}’’, respectively. The mapped nodes are A and A,
And and And, E and E, so task F in Process2 is the
unmapped node, which causes the structural difference.
For And node, the feature vectors of its corresponding
two mapped And nodes are ‘‘[0,1,0,1,0,0]/[0,0,1,1,0,0]’’ and
‘‘[0,1,1,0,0,0]/[0,1,0,1,0,0]’’, respectively. Their different

elements are ‘‘[0,0,1,1,0,0]’’ and ‘‘[0,1,1,0,0,0]’’. Since the
map that records the position of 1 in the one-hot vector and its
corresponding node label is ‘‘{0:A, 1:B, 2:C, 3:D, 4:E, 5:F}’’,
we get the different paths in terms of And are ‘‘C→D’’ and
‘‘B→C’’, respectively.

IV. EXPERIMENTAL EVALUATION
This section provides experimental evaluation of the pro-
posed approach. We first present a case study to analyze the
differences between two process models in the real world,
which comes from the projects conducted in the health care
domain [23]. Then, we investigate the execution time based
on a mixture of real and synthetic data sets. The real part is
from an existing dataset of IBM [24]. We make some mod-
ifications on the real models to obtain 24 synthetic process
models that are divided into 4 groups, where each group
includes one baseline model that is used to be compared
with other models in this group [25]. The baseline model
includes 62 task nodes and 12 patterns. For the rest 20models,
the first three groups separately contain conditional, parallel
and loop patterns, and the pattern numbers are 4, 8, 12,
16, 20 separately in each group. The last group consists of
different patterns, and the numbers of task are 20, 40, 60,
80 and 100, respectively. All experiments were evaluated on a
machine with Intel(R) Core(TM) i7-6650U CPU@ 2.20GHz
2.21GHz, running JDK 1.8 and Windows 10.

A. CASE STUDY
As demonstrated in Figure 5, there are two process mod-
els Process 1 and Process 2 to perform the examination
in a hospital. To perform an examination, the patient first
selects the related examination and then performs it. Finally,
the patient will obtain his medical report. The rectangle nodes
in two process models with the same label can perform the
same task, i.e., they are equivalent.

The differences between Process 1 and Process 2 are
shown in Figure 6. Their common key structure consists of
four parts, i.e., selecting examination (task A), the conditional
pattern that consists of preparing and transporting patient
(task I and N), performing examination (task J) and the par-
allel pattern that includes transporting patient back (task O)
and creating a medical report (task L). That is, the tasks
in these four parts are the common tasks to be executed in
both Process 1 and Process 2. Besides, the execution orders
among them are identical, i.e., the patient will first select an
examination, then he will be prepared or transported, next
is to perform the examination, and finally creating medical
report and transporting him back.

For the structural differences, there is an extra task E in
Process 1, i.e., registering the patient, between task A and
the conditional pattern Xor. That is, the patient needs to
be registered before being prepared or transported. While
in Process 2, task B, i.e., second opinion by other doctor,
exists in the same position as task E. Besides, some additional
tasks are executed in Process 1 after performing the exami-
nation (task J) and before the parallel pattern that consists of

VOLUME 7, 2019 142921

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

FIGURE 5. A case study.

FIGURE 6. The key structure based difference of case study.

task L and O. These additional tasks are after-caring for the
patient and creating a quick report (task K and P) that form a
parallel pattern, and reading quick report (task Q). Process 2
omits these tasks, and directly creates medical report and
transports patient back after performing the examination.

For the behavioral differences, the common execution path
of the last parallel pattern in two process models is L → O (or
O → L), while an extra execution path exists in Process 2,
i.e., L → K (or K → L). That is, creating medical report
and transporting patient back can be concurrently executed
in both process models. While in Process 2, apart from these
two tasks, creating medical report (task L) and after-caring
for patient (task K) can also be concurrently executed. Thus,
Process 2 will randomly select task O or task K to be concur-
rently executed with task L.

B. EFFICIENCY STUDY
In this section, we study the internals of the proposed
approach, i.e., three phases of the proposed approach: one-hot
encoding, common key structure extraction, and difference
detection. Figure 7 shows the ratio of the execution time spent
for each phase.

In Figure 7 (a), (b) and (c), we use the first three groups
of process models in the data set to investigate the execution
time by varying the pattern size from 4 to 20 while fixing

FIGURE 7. Efficiency study.

the pattern type to parallel, conditional and loop, respectively.
We can see that the total execution time for these three
pattern types decreases as the pattern size increases. This is
because the total task number of all process models is fixed
to 62, the complexity of the pattern decreases with the pat-
tern number growing bigger, while our proposed approach is
more sensitive to the pattern complexity than the pattern size.
Besides, Phase 1 spends almost 20 orders of magnitude more

142922 VOLUME 7, 2019

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

than Phase 2 and Phase 3, and the execution time of Phase 1
also decreases with the pattern size increasing. The reason
behind is that there are 62 task nodes and less than 20 con-
trol flow patterns in each process model to be processed in
Phase 1, while only the control flow patterns are processed
in Phase 2 and Phase 3. What’s more, the more simple the
pattern, the less execution time Phase 1 spends in encoding
the TPST non-leaf node.

In Figure 7 (d), we fix the pattern size to 10 and vary the
task number to 20, 40, 60, 80 and 100, respectively. We can
observe that the task number has a relatively apparent impact
on the total execution time, i.e., as the task number increases,
the total execution time grows. This is because the pattern
complexity increases with the task number getting bigger,
each phase will spend more time in processing these patterns.
Besides, Phase 1 spends the most execution time compared
with the other two phases, and the task number has the most
obvious impact on Phase 1. The reason behind this is that
Phase 1 needs to process both task nodes and control flow
patterns, while Phase 2 and 3 are less sensitive to the task
node number compared with Phase 1. Thus, the more task
nodes, the more time Phase 1 spends in processing them.

V. RELATED WORK
Detecting difference between two process models has been
wildly studied in recent years, which can be classified into
three categories: (1) Edit script based process difference
detection, where one process model can be transformed into
another by this edit script, (2) behavior based process differ-
ence detection, and (3) process similarity calculation.

A. EDIT SCRIPT BASED PROCESS DIFFERENCE DETECTION
Fan et al. [5] detected the difference between two process
models by parsing them into task-based process structure
trees (TPSTs), and the edit scripts in terms of fragments
and nodes are generated. Cao et al. [4] also transformed
the process models to their corresponding process struc-
ture trees, and the subtree deletion and subtree insertion
operations were generated based on their largest common
sub-tree. Küster et al. [26] detected and resolved the dif-
ferences between two process models based on the decom-
position of process models in the absence of a change log.
Li et al. [27] used digital logic to evaluate the similarity
and difference between two process models based on high-
level change operations. In our previous work [28], the differ-
ences between two process models were detected by splitting
the process models into fragments and the fragments were
represented by feature vectors, whether two fragments were
identical or not was decided by comparing their correspond-
ing feature vectors. However, only focusing on the structural
feature cannot reveal different behaviors since the identi-
cal structure of two process models may contain different
behaviors.

B. BEHAVIOR BASED PROCESS DIFFERENCE DETECTION
Ballambettu et al. [29] identified the reasons for the key dif-
ferences in terms of control-flow and performance among the

process variants. Bolt et al. [30] detected the behavioral dif-
ferences between process variants in terms of process metric,
e.g., performance, based on annotated transition systems.
Armas-Cervantes et al. [7], [8] detected and diagnosed behav-
ioral differences between business process models based on
a translation from the process model into asymmetric event
structure. Yan et al. [31] detected behavioral differences
between two process models by comparing dependency and
trace sets of features in process models. Cao et al. [32]
detected the difference between two process models based on
their basis paths. Jovanovikj et al. [33] proposed an approach
for detecting, visualizing, and resolving dataflow differences
of business process models. However, the same behavior of
two process models does not mean their structures are also
identical.

Actually, structure and behavior are two important features
of a process model, However, all the mentioned methods just
focus on one feature, i.e., structure or behavior, which leads to
the loss of information on other process features. To provide
more information about process difference, our method takes
both structural and behavioral features into consideration.

C. PROCESS SIMILARITY CALCULATION
Huang et al. [34] proposed an improved two-stage exact
query approach based on graph structure similarity.
Assy et al. [35] measured the process similarity based on
the contextual similarity, where the similarity of the context
surrounding activities was considered. The global contextual
similarity between process activities was computed by sim-
ilarity resonance. Liu et al. [36] proposed an approach to
measure the business process behavior similarity based on
the so-called Extended Transition Relation set, which was
an extended transition relation set containing direct causal
transition relations, minimum concurrent transition relations
and transitive causal transition relations. Zhou et al. [37]
measured the business process similarity by considering both
process models and process logs, where the process models
were pre-defined descriptions of business processes, and the
process logs was regarded as an objective observation of the
actual process execution behavior. However, the similarity
score of two processmodels can onlymeasure their difference
degree, while cannot reflect the composition of the difference.

VI. CONCLUSION
In this paper, a process difference detection framework based
on edge network is used to improve the computational effi-
ciency, where the edges can detect differences between two
process models. To detect the differences between two pro-
cess models, we propose a one-hot encoding based approach
to calculate the differences between two process models. The
common key structure of two process models is first deter-
mined, and then both the structural and behavioral differences
can be displayed beyond this common key structure. The
case study and the efficiency study show that the proposed
approach can be applied in real life.

The limitation of our approach is that one-hot encoding
is discrete and sparse, and the one-hot vector of a node

VOLUME 7, 2019 142923

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

becomes large when there exists a large number of nodes
in a process model, which leads to curse of dimensionality.
Besides, the computational complexity is quickly increas-
ing with the increment of one-hot vector, which results in
spending a lot of time in encoding the nodes. In the future,
we are going to solve this limitation. Besides, we are going
to take more features of a process into consideration to detect
the difference between two process models, such as resource
and resource constraints. What’s more, we will conduct more
extensive experiments against the state of the art.

REFERENCES
[1] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer,

‘‘An introduction to model versioning,’’ in Formal Methods for Model-
Driven Engineering. Bertinoro, Italy: Springer-Verlag, 2012, pp. 336–398.

[2] N. Macedo, T. Jorge, and A. Cunha, ‘‘A feature-based classification
of model repair approaches,’’ IEEE Trans. Softw. Eng., vol. 43, no. 7,
pp. 615–640, Jul. 2016.

[3] H. Gao, Y. Duan, H. Miao, and Y. Yin, ‘‘An approach to data consistency
checking for the dynamic replacement of service process,’’ IEEE Access,
vol. 5, pp. 11700–11711, 2017.

[4] J. Cao, Y. Yao, and Y. Wang, ‘‘Mining change operations for workflow
platform as a service,’’ in World Wide Web, vol. 18, no. 4, pp. 1071–1092,
Jul. 2015.

[5] J. Fan, J. Wang, W. An, B. Cao, and T. Dong, ‘‘Detecting difference
between process models based on the refined process structure tree,’’
Mobile Inf. Syst., vol. 2017, Mar. 2017, Art. no. 6389567.

[6] J.-R. Rehse, P. Fettke, and P. Loos, ‘‘A graph-theoretic method for the
inductive development of reference process models,’’ Softw. Syst. Model.,
vol. 16, no. 3, pp. 833–873, 2017.

[7] A. Armas-Cervantes, P. Baldan, M. Dumas, and L. García-Bañuelos,
‘‘Behavioral comparison of process models based on canonically reduced
event structures,’’ in Business Process Management. Haifa, Israel:
Springer, 2014, pp. 267–282.

[8] A. Armas-Cervantes, P. Baldan, M. Dumas, and L. García-Bañuelos,
‘‘Diagnosing behavioral differences between business process models,’’
Inf. Syst., vol. 56, pp. 304–325, Mar. 2016.

[9] A. Bolt, M. de Leoni, and W. M. P. van der Aalst, ‘‘Process variant
comparison: Using event logs to detect differences in behavior and business
rules,’’ Inf. Syst., vol. 74, pp. 53–66, May 2018.

[10] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, ‘‘QoS prediction
for service recommendation with deep feature learning in edge computing
environment,’’ Mobile Netw. Appl., pp. 1–11, 2019.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[12] H. Gao, W. Huang, Y. Duan, X. Yang, and Q. Zou, ‘‘Research on cost-
driven services composition in an uncertain environment,’’ J. Internet
Technol., vol. 20, no. 3, pp. 755–769, 2019.

[13] Y. Yin, W. Xu, Y. Xu, H. Li, and L. Yu, ‘‘Collaborative QoS prediction for
mobile service with data filtering and SlopeOne model,’’Mobile Inf. Syst.,
vol. 2017, Jun. 2017, Art. no. 7356213.

[14] J. Xu, C. Liu, X. Zhao, S. Yongchareon, and Z. Ding, ‘‘Resource man-
agement for business process scheduling in the presence of availability
constraints,’’ ACM Trans. Manage. Inf. Syst., vol. 7, no. 3, Oct. 2016,
Art. no. 9.

[15] M. Fu, C. M. Wong, H. Zhu, Y. Huang, Y. Li, X. Zheng, J. Wu,
J. Yang, andC.-M.Vong, ‘‘Dalim:Machine learning based intelligent lucky
money determination for large-scale e-commerce businesses,’’ in Service-
Oriented Computing. Hangzhou, China: Springer, 2018, pp. 740–755.

[16] H. Gao, K. Zhang, J. Yang, F.Wu, and H. Liu, ‘‘Applying improved particle
swarm optimization for dynamic service composition focusing on quality
of service evaluations under hybrid networks,’’ Int. J. Distrib. Sensor Netw.,
vol. 14, no. 2, Feb. 2018, Art. no. 1550147718761583.

[17] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, and X. Xu, ‘‘A QoS-aware virtual
machine scheduling method for energy conservation in cloud-based cyber-
physical systems,’’ in World Wide Web. Taipei, Taiwan, 2019, pp. 1–23.

[18] Y. Yin, S. Aihua, G. Min, X. Yueshen, and W. Shuoping, ‘‘QoS prediction
for Web service recommendation with network location-aware neighbor
selection,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 4, pp. 611–632,
2016.

[19] M. E. Acevedo-Mosqueda, C. Yáñez-Márquez, and I. López-Yáñez,
‘‘Alpha-beta bidirectional associative memories based translator,’’ Com-
put. Sci. Netw. Secur., vol. 6, no. 5A, pp. 190–194, 2006.

[20] H. Zheng, J. Yang, and W. Zhao, ‘‘Probabilistic QoS aggregations for
service composition,’’ ACM Trans. Web, vol. 10, no. 2, 2016, Art. no. 12.

[21] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, ‘‘Workflow patterns,’’ Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[22] J. Vanhatalo, H. Völzer, and J. Koehler, ‘‘The refined process structure
tree,’’ Data Knowl. Eng., vol. 68, no. 9, pp. 793–818, Sep. 2009.

[23] C. Li,M. Reichert, andA.Wombacher, ‘‘Theminadept clustering approach
for discovering reference process models out of process variants,’’ Coop-
erat. Inf. Syst., vol. 19, nos. 3–4, pp. 159–203, 2010.

[24] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Völzer,
and K. Wolf, ‘‘Instantaneous soundness checking of industrial busi-
ness process models,’’ in BPM: Business Process Management. Berlin,
Germany: Springer, 2009, pp. 278–293.

[25] J. Wang, B. Cao, W. An, J. Fan, and J. Yin, ‘‘A benchmark dataset for
evaluating process similarity search methods,’’ in Proc. ICWS, Jun. 2017,
pp. 914–917.

[26] J. M. Küster, C. Gerth, A. Förster, and G. Engels, ‘‘Detecting and resolving
process model differences in the absence of a change log,’’ in BPM:
Business Process Management. Milan, Italy: Springer, 2008, pp. 244–260.

[27] C. Li, M. Reichert, and A. Wombacher, ‘‘On measuring process model
similarity based on high-level change operations,’’ in Proc. Int. Conf.
Conceptual Modeling. Barcelona, Spain: Springer, 2008, pp. 248–264.

[28] J. Wang, B. Cao, J. Fan, and T. Dong, ‘‘FB-diff: A feature based differ-
ence detection algorithm for process models,’’ in Proc. ICWS, Jun. 2017,
pp. 604–611.

[29] N. P. Ballambettu, M. A. Suresh, and R. J. C. Bose, ‘‘Analyzing pro-
cess variants to understand differences in key performance indices,’’ in
Advanced Information Systems Engineering. Essen, Germany: Springer,
2017, pp. 298–313.

[30] A. Bolt, M. de Leoni, and W. M. van der Aalst, ‘‘A visual approach to
spot statistically-significant differences in event logs based on process met-
rics,’’ in Advanced Information Systems Engineering. Ljubljana, Slovenia:
Springer, 2016, pp. 151–166.

[31] Z. Yan, Y. Wang, L. Wen, and J. Wang, ‘‘Efficient behavioral-difference
detection between business process models,’’ in Proc. OTM Confederated
Int. Conf. ‘MoveMeaningful Internet Syst.’Amantea, Italy: Springer, 2014,
pp. 220–236.

[32] B. Cao, F. Hong, J. Wang, J. Fan, and M. Lv, ‘‘Workflow differ-
ence detection based on basis paths,’’ Eng. Appl. Artif. Intell., vol. 81,
pp. 420–427, May 2019.

[33] I. Jovanovikj, E. Yigitbas, C. Gerth, S. Sauer, and G. Engels, ‘‘Detection
and resolution of data-flow differences in business process models,’’ in
Proc. Int. Conf. Adv. Inf. Syst. Eng. Springer, 2019, pp. 145–157.

[34] H.Huang, R. Peng, and Z. Feng, ‘‘Efficient and exact query of large process
model repositories in cloud workflow systems,’’ IEEE Trans. Services
Comput., vol. 11, no. 5, pp. 821–832, Sep./Oct. 2015.

[35] N. Assy, B. F. van Dongen, andW.M. van der Aalst, ‘‘Similarity resonance
for improving process model matching accuracy,’’ in Proc. 33rd Annu.
ACM Symp. Appl. Comput., 2018, pp. 86–93.

[36] C. Liu, Q. Zeng, H. Duan, S. Gao, and C. Zhou, ‘‘Towards comprehensive
support for business process behavior similaritymeasure,’’ Trans. Inf. Syst.,
vol. 102, no. 3, pp. 588–597, 2018.

[37] C. Zhou, C. Liu, Q. Zeng, Z. Lin, and H. Duan, ‘‘A comprehensive
process similaritymeasure based onmodels and logs,’’ IEEEAccess, vol. 7,
pp. 69257–69273, 2019.

JIAXING WANG was born in Jiaxing, China,
in 1990. She received the B.E. degree in soft-
ware engineering and the Ph.D. degree in con-
trol science and engineering from the Zhejiang
University of Technology, Hangzhou, China,
in 2013 and 2019, respectively, where she is
currently a Postdoctoral with the College of
Computer Science and Technology. Her research
interest includes business process management.

142924 VOLUME 7, 2019

J. Wang et al.: Detecting Difference Between Process Models Using Edge Network

BIN CAO received the Ph.D. degree in computer
science from Zhejiang University, China, in 2013.
He then worked as a Research Associate with
The Hong Kong University of Science and Tech-
nology, and Noah’s Ark Lab, Huawei. He joined
the Zhejiang University of Technology, Hangzhou,
China, in 2014, and is currently an Associate Pro-
fessor with the College of Computer Science. His
research interests include business process man-
agement and data mining.

XI ZHENG received the bachelor’s degree in
computer information system from FuDan, the
master’s degree in computer and information sci-
ence from UNSW, and the Ph.D. degree in soft-
ware engineering from UT Austin. He served as a
Chief Solution Architect for Menulog, Australia;
currently an Assistant Professor/Lecturer in soft-
ware engineeringwithMacquarie University. He is
also specialized in service computing, the IoT
security, and reliability analysis. He published

more than 40 high-quality publications in top journals and conferences, such
as PerCOM, ICSE, ICCPS, the IEEE SYSTEMS JOURNAL, and the ACM Trans-
actions on Embedded Computing Systems. He was awarded Deakin Research
Outstanding Award, in 2016. He was awarded the best paper in Australian
distributed computing and doctoral conference, in 2017. He was a Reviewer
for top journals and conferences, such as the IEEE SYSTEMS JOURNAL,
ACM Transactions on Design Automation of Electronic Systems, Pervasive
and Mobile Computing, the IEEE TRANSACTION ON CLOUD COMPUTING, and
PerCOM.

DAPENG TAN received the Ph.D. degree from the
College of Mechanical and Energy Engineering,
Zhejiang University, China, in 2008. Since 2008,
he has been with the Key Laboratory of E&M,
Ministry of Education and Zhejiang Province,
Zhejiang University of Technology, as a Lec-
turer, and became an Associate Professor, in 2010.
He is currently a Professor with the College
of Mechanical and Energy Engineering. He per-
formed research in the areas of embedded system

technology, advanced manufacturing technology, and metallurgy process
automatic control. His research interests include real-time intelligent net-
works and industrial process monitoring and diagnosis.

JING FAN received the B.S., M.S., and Ph.D.
degrees in computer science from Zhejiang Uni-
versity, China, in 1990, 1993, and 2003, respec-
tively. She is currently a Professor with the School
of Computer Science and Technology, and the
Director of the Institute of Computer Software,
Zhejiang University of Technology, China. Her
current research interests include service com-
puting and software middleware. She is also the
Director of China Computer Federation (CCF),

and a member of CCF Technical Committee on Service Computing.

VOLUME 7, 2019 142925

	INTRODUCTION
	PRELIMINARIES
	PROCESS MODELING
	TASK-BASED PROCESS STRUCTURE TREE
	ONE-HOT ENCODING

	IMPLEMENTION
	PHASE 1: ONE-HOT ENCODING
	PHASE 2: COMMON KEY STRUCTURE EXTRACTION
	PHASE 3: DIFFERENCE DETECTION

	EXPERIMENTAL EVALUATION
	CASE STUDY
	EFFICIENCY STUDY

	RELATED WORK
	EDIT SCRIPT BASED PROCESS DIFFERENCE DETECTION
	BEHAVIOR BASED PROCESS DIFFERENCE DETECTION
	PROCESS SIMILARITY CALCULATION

	CONCLUSION
	REFERENCES
	Biographies
	JIAXING WANG
	BIN CAO
	XI ZHENG
	DAPENG TAN
	JING FAN

