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ABSTRACT Time-variation of meshing stiffness is the main internal excitation for the vibration and noise
of the gear transmission system. Elastic deformation in the rolling contact process is an important factor for
the meshing stiffness variation of the toroidal drive. However, most of the previous meshing modeling of
the toroidal drive is based on the rigidity hypothesis. In order to investigate the actual contact situation
and improve the stability of the toroidal drive, this paper focuses on the mathematical modelling and
characteristics analysis for the toroidal drive with elastic deformation in the conjugating process between
the planet-worm gear and sun-worm as well as between the planet-worm gear and internal toroidal gear. The
elastic deformation integrated coordinate system of the toroidal drive is introduced. The elastic deformation
velocity induced by contact force is adopted for the first time in the relative velocity of the Wills law for the
toroidal drive. Then, based on Hertz contact theory, the relationship between elastic deformation velocity
and normal force is studied. In addition, the influences of the elastic deformation on the meshing contact
curve, helix-lead angle and induced normal curvature are further discussed.

INDEX TERMS Toroidal drive, elastic deformation, mathematical modeling, conjugating process.

I. INTRODUCTION
The toroidal drive was proposed by Kuehnle in 1966 [1].
As shown in Fig. 1, the drive is composed of a central
input sun-worm, a stationary internal toroidal gear, a central
output planet carrier and planet worm-gears with a number
of meshing rollers. Compact structure, high carrying capacity
and smooth transmission are the advantages of toroidal drive.
A lot of researches have been done on toroidal drive, includ-
ing meshing theory [2], [3], load distributions [4], friction
coefficient [5], wear calculation [6], manufacture [7], [8], and
so on.

However, previous analytical models of the toroidal drive
are based on rigid-body hypothesis and without considering
elastic deformation. Actually, deformations inevitable occur
on the contact surface under the action of load, which will
induce the variation of mesh stiffness. Time variation of the
meshing stiffness is one of the main internal excitations of the
vibration and noise for the toroidal drive. Therefore, the study
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FIGURE 1. Schematic structure of a toroidal drive.

on elastic deformation in the rolling contact process of the
toroidal is essential.

The researches on meshing stiffness and elastic deforma-
tion of other kind gear transmission system have always been
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hot topics. Mo et al. [9] proposed a new calculation model,
where the normal force acted on the teeth is calculated by
the time-varying deformation of the meshing spring. The
deformation was affected by the vibration displacement,
installation error, tooth frequency error and eccentric error of
the gear. Based on the thin slice assumption, Sun et al. [10]
developed a revised time-varying mesh stiffness model of
spur gear pairs with tooth modifications. The spur gear was
divided into many individual slices along tooth width, and
considering the revised fillet-foundation stiffness, the nonlin-
ear contact stiffness, and the tooth profile errors, the stiffness
of each slice gear pair was figured out. Cooley et al. [11]
compared spur gear tooth mesh stiffness calculations by
two approaches. In view of time-varying meshing stiffness,
time-varying friction, load distribution, comprehensive trans-
mission error and backlash, Shi et al. [12] established the
dynamic model of a spur gear pair under multi-state meshing
conditions such as teeth separation, drive- and back-side
tooth mesh. The effects of load, backlash and comprehensive
transmission error on meshing states and vibro-impact prop-
erties of the system were studied by defining three different
Poincaré maps. Ma et al. [13] put forward an improved ana-
lytical method suitable for gear pairs with tip relief to deter-
mine time-varying mesh stiffness. Based on the improved
analytical model, time-varying mesh stiffness under different
torques, lengths, and amounts of profile modification was
compared with that obtained from analytical finite element
approach. Wang et al. [14] established dynamic models con-
sidering time-varying stiffness, gear clearance, and friction.
The stiffness and elastic deformation of gear teeth were cal-
culated using the finite element method with actual geometry
and gear positions. Lin and Cai [15] proposed a model for
predicting the tooth elastic deformation of curve-face gear
based on Buckingham’s assumption and the concept of equiv-
alent gear. Chen and Shao [16] coupled the ring deformation
into the gear mesh stiffness model of the internal gear pair
based on the uniformly distributed Timoshenko beam theory.
Ajmi and Velex [17] presented a general approach to the
simulation of deflections and load distributions on solid spur
and helical gears. The numerical results indicated that gear
body distortions were critical for both static and dynamic sim-
ulations. Chang et al. [18] and Sánchez et al. [19] established
a model for determining the contact forces and deformations
in spur gear transmissions with finite element method and
local contact analysis of elastic bodies. The deformation
at each contact point was separated into a linear global
term and a nonlinear local contact term. Nakhatakyan [20]
proposed an analytical method for determining the flexural
stress concentration factor in gear teeth considering elastic
deformations, manufacture and assembly errors. Deduced the
universal formulas for the flexural stress concentration factor
in gear teeth. For studying the effects of multi-tooth contact
as well as backlash and side contact of the multi-meshed
geared systems, Eberhard [21] regarded the teeth and body
of a gear as a rigid part, and the connection between them as
an elastic part. Hu et al. [22] came to a conclusion through

FIGURE 2. Coordinate systems of a toroidal drive integrated with elastic
deformation.

research that the gear meshing noise level in the compound
planetary gear set can be decreased significantly by matching
the engagement parameters, such as meshing stiffness, tooth
error, and pitch error.

In order to investigate the effect of elastic deformation on
meshing performance in a toroidal drive, this paper proposes
the meshing coordinate system with elastic deformation, cre-
ates a mathematical model of the toroidal drive with elas-
tic deformation. Finally, based on the mathematical model,
compares and analyses themeshing characteristic curves with
elastic deformation and without elastic deformation.

II. ELASTIC DEFORMATION COORDINATE SYSTEM
OF THE TOROIDAL DRIVE
To expound the position relationship among the main com-
ponents of the toroidal drive, the coordinate system should
be established first. Integrated with elastic deformation,
the coordinate system of a toroidal drive is shown in Fig. 2.
Three sets of coordinate systems, denoted by subscripts 1,
2 and 3 are given to describe the sun-worm, planet-worm gear
and stationary internal toroidal gear, respectively.

The coordinate systems S1(O1, i1, j1, k1), S2(O2, i2, j2, k2)
and S3(O3, i3, j3, k3) are the reference frames initially fixed
at the centre of the sun-worm, planet-worm gear and internal
toroidal gear, respectively. The body-fixed coordinate system
S1′ (O1′ , i1′ , j1′ , k1′ ) is embedded in the sum-worm gear and
rotates with the sun-worm about axis k1′ with angular velocity
ω1 by angle ϕ1. Moving coordinate system S2′ (O2′ , i2′ , j2′ ,
k2′ ) is rigidly connected to the planet-worm gear and rotates
about axis k2′ by angle ϕ2 with angular velocity ω2.

∑
(1),∑

(2),
∑

(3) respectively represent the tooth surface of sun-
worm, planet-worm gear and stationary internal toroidal gear.
The origins O1′ and O2′ are respectively on the terminals of
the vector ξ .

As shown in Fig. 3, the coordinate system S0(O0, i0, j0, k0)
is the reference frame of the roller and S0′ (O0′ , i0′ , j0′ , k0′ ) is
themovable coordinate system rigidly connected to the centre
of a roller.
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FIGURE 3. Elastic deformation coordinate system between the meshing
roller and planet-worm gear.

III. ELASTIC MESHING EQUATIONS
OF THE TOROIDAL DRIVE
In order to reveal the actual working situation of a toroidal
drive, this work includes the elastic deformation caused by
contact force in the meshing equation. After analyzing the
contact relationship between the sun-worm tooth surface and
rollers, the normal force at contact point is analyzed. Then,
the formulas of elastic deformation as well as relative velocity
at contact point of the toroidal drive are deduced according to
Wills law and differential geometry theory.

A. CONJUGATE ELASTIC MESHING EQUATIONS
AssumingP is the elasticmeshing contact point on the surface
of the meshing roller, as shown in Fig. 2. The equation of
point P in S2′ can be denoted as:

r2′ = [x2′ , y2′ , z2′ ]
T
= M2′0 · r0 =

 ρ cos v+ r2ρ cos u sin v
ρ sin u sin v

 (1)

where r2′ is the vector of meshing roller in S2′ . M2′0 is the
coordinate transformation matrix from S0 to S2′ . r0 is the
vector of meshing roller in S0, ρ is the radius of meshing
roller. r2 is the radius of the planet-worm gear. u and v are
spherical parameters of meshing roller.

As shown in fig. 2, assume that when the sun-worm and
planet-worm gear respectively rotate ϕ1 and ϕ2, the ini-
tial position of the sun-worm tooth surface

∑
(1) and the

planet-worm gear tooth surface
∑

(2) will arrive at point P
simultaneously from point M1 and point M2. r1, r2 respec-
tively represent the radius vectors O1M1 and O2M2. r1′, r2′
respectively represent the radius vectors O1′P and O2′P.
Based on Wills law [23], the elastic meshing equation and

elastic meshing function in S2′ of two conjugate surfaces,∑
(1) and

∑
(2), can be represented as:

n2′ · v(2
′1′)
= 0 (2)

8 = n2′ · v(2
′1′) (3)

where vector n2′ is the unit normal vector of contact point
P in S2′ system. Vector v(2

′1′) is the relative velocity between
the planet-worm gear and sun-worm at contact point P. In this
paper, we assume that the elastic deformation at the contact
point does not change the direction of the common normal,
and the flexural deformation is too small to affect the com-
mon normal line. Therefore, the correction of vector n2′ is
unnecessary. Vector n2′ in S2′ can be represented as:

n2′ =
N2′

|N2′ |
=


cos v

cos u sin v
sin u sin v

1

 (4)

where,

N2′ =
∂r2′
∂u
×
∂r2′
∂v

=


0 −

∂z2′

∂u
∂y2′

∂u
0

∂z2′

∂u
0 −

∂x2′

∂u
0

−
∂y2′

∂u
∂x2′

∂u
0 0

0 0 0 1





∂x2′

∂v
∂y2′

∂v
∂z2′

∂v
1

 (5)

Assume that the direction and magnitude of ω1 and that
of ω2 are determined, as the transmission ratio formula
between a planet-worm gear and the sun-worm is |i21| = |
ω2/ ω1| = |ϕ2/ϕ1|, setting | ω1| = 1 will yield | ω2| = |

i21|. Based on Wills law, the relative velocity vector v(2
′1′) at

point P can be represented as follows:

v(2
′1′)
= ω(2′1′)

× r2′ − ω1 × ξ +
dξ
dt
+
dδ(2

′1′)

dt
+
dδ(2

′1′)
ξ

dt
(6)

where ω(2′1′) is the relative angular velocity between the
planet-worm gear and sun-worm. ξ is the central-distance in
S1 and can be described as:

ξ =
−−−→o1′o2′ = a0i1 (7)

The following equations exist in S2′ :

ω2 = ω2 k2′ = i21k2′
ω1 = k1′ = sinϕ2i2′ + cosϕ2j2′
ω(2′1′)

= ω2 − ω1 = − sinϕ2i2′ − cosϕ2j2′ + i21k2′
ω(2′1′)

× r2′

=


0 −i21 − cosϕ2 0
i21 0 sinϕ2 0

cosϕ2 − sinϕ2 0 0
0 0 0 1



x2′

y2′

z2′

1


(8)

As shown in Fig. 2, ξ can be transformed to S2′ via coordi-
nate transformation matrix M2′1 and it can be represented in
S2′ as follows:

ξ =


a0 cosϕ2
−a0 sinϕ2

0
1

 (9)
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There is no relative movement between the rotation centre
of the sun-worm O1′ and the rotation centre of the planet
worm-gear O2′ , then it can be obtained: dξ/dt = 0.

The fifth term of Eq. (6) d δ(2
′1′)

ξ /dt is the elastic deforma-
tion velocity along the direction of O1′O2′ . Because coordi-
nate systems S1′ and S2′ are fixed at the centre of the rotating
axes of the sun-worm and planet-worm gear, and the distance
of two rotating origins O1′ and O2′ is constant, we can obtain
d δ(2

′1′)
ξ /dt = 0.
Therefore, the relative velocity vector v(2

′1′) can be repre-
sented as:

v(2
′1′)
= ω(2′1′)

× r2′ − ω1 × ξ +
dδ(2

′1′)

dt
(10)

where d δ(2
′1′) /dt is the elastic deformation velocity along

the translocation direction of the contact surface between
the sun-worm and planet-worm gear, and induced by contact
force P1 at meshing contact point P.
v(2
′1′) can be obtained by calculation:

v(2
′1′)
=


−(i21y2′ + cosϕ2z2′ )+1vx2′
i21x2′ + sinϕ2z2′ +1vy2′

cosϕ2x2′ − sinϕ2y2′ +1vz2′
1

 (11)

where,

dδ(2
′1′)

dt
=
[
1vx2′ ,1vy2′ ,1vz2′

]T (12)

x2′ , y2′ and z2′ are coordinate components of a roller motion
profile in S2′ . 1vx2′, 1vy2′ and 1vz2′ are variations of the
relative velocities at meshing contact point P of the conju-
gate surface between the meshing roller and sun-worm tooth
profile.

The crucial problem is the analysis of the contact relation-
ships between the sun-worm tooth and meshing roller, as well
as between the stationary internal toroidal gear and meshing
roller. In the following sections, taking the contact relation-
ship between the sun-worm tooth and meshing rollers as an
example, the relative velocity with elastic contact, as well
as the mathematical model of the toroidal drive with elastic
deformation will be discussed.

B. CONTACT RELATIONSHIP BETWEEN THE SUN-WORM
TOOTH AND ROLLERS
The elastic contact between the sun-worm tooth and roller
can be considered to be the contact between two free-form
elastic bodies. The difference is that the principal curvatures
in the principal planes does not equal to each other. The
sun-worm tooth and roller contact with each other at point
P under the action of normal force P1. As shown in Fig. 4
and Fig. 5, there are two principal planes of the sun-worm at
point P. The 1st principal plane is through the normal line
and the section of the sun-worm tooth. The 2nd principal
plane is through the normal line and perpendicular to the
1st principal plane. According to the Hertz contact theory,

FIGURE 4. Principal planes of the sun-worm tooth and meshing roller.

FIGURE 5. Contact relationships between the sun-worm tooth and
meshing roller.

the contact point P becomes a small elliptical area due to the
elastic deformation induced by the normal contact force P1
between the sun-worm tooth and meshing roller, as shown
in Fig. 5.

C. PRINCIPAL CURVATURES OF THE SUN-WORM TOOTH
AND MESHING ROLLER AT POINT P
The two principal planes of the sun-worm at point P are
shown in Fig. 6(a) and (b). In the 1st principal plane, the con-
tact condition of a meshing roller with the sun-worm tooth
is similar to that of a spherical with a concave surface, and
the curvature radius of the sun-worm is negative. In the 2nd
principal plane, the contact condition of a meshing roller with
the sun-worm tooth is similar to that of a spherical with a
convex surface.

The curvature radius of the roller is ρ. Based on the cal-
culation formulas of the principal curvature, the principal
curvature equation of the sun-worm at point P is:

(EG− F2)k2n − (EN − 2FM + GL)kn + (LN −M2) = 0

(13)
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FIGURE 6. (a). First principal plane of the sun-worm tooth at point P.
(b). Second principal plane of the sun-worm tooth at point P.

where,{
E = r21′u,F = r1′u · r1′v,G = r21′v
L = n2′ · r1′uu,M = n2′ · r1′uv,N = n2′ · r1′vv

(14)

r1′ = [l1, l2, l3, 1]T ,


l1 = ρ cos v+ r2 − a0 cosϕ2
l2 = ρ cos u sin v+ a0 sinϕ2
l3 = ρ sin u sin v

(15)

kn can be obtained by calculation,

kn1 =
−B−

√
1

2A
, kn2 =

−B+
√
1

2A
(16)

where,

A = (EG− F2) = ρ4 sin2 v(cos4 u+ 2 sin2 u sin2 v
− cos2 u sin2 u cos2 v)

B = −(EN − 2FM + GL) = ρ3 sin2 v(−3+ cos2 u
+ 2 sin2 u cos2 v+ cos2 u)

C = LN −M2
= ρ2 sin2 v

1 = B2 − 4AC = ρ6 sin4 v(−4 sin4 u sin2 v cos2 v
− 8 cos2 u sin v cos v+ 1)

(17)

According to the geometric relationship of Fig. 5 and
Fig. 6, the curvatures of the sun-worm tooth and meshing
roller at point P are:

ρ11 = ρ12 =
1
ρ

ρ21 =
1
R21
= kn1 =

−B−
√
1

2A

ρ22 =
1
R22
= kn2 =

−B+
√
1

2A

(18)

D. NORMAL FORCE P1 AT THE CONTACT POINT P
The normal force acting on the contact region can be simpli-
fied as P1, which acts at the centre of the contact ellipse. The
action line of P1 is in the normal plane that contains contact
point P. As shown in Fig. 7(a) and (b), rP is the radius vector
of the sun-worm at meshing pointP. In coordinate system S2′ ,
rP is equal to vector r1′ .
Assume that the driving force between the sun-worm and

planet-worm gear is Ft1, the axial force and radial force are
Fa1 and Fr1 respectively, as shown in Fig. 8. They all act
on the pitch circle of the sun-worm. As shown in Fig. 9,

FIGURE 7. (a). Contact geometry model of the sun-worm tooth.
(b). Normal force at point P.

FIGURE 8. Force analysis of the sun-worm and stationary internal
toroidal gear.

the magnitude of the reaction force F
′
t1, F

′
a1 and F

′
r1 are

equal to the force Ft1, Fa1 and Fr1 respectively, but with the
opposite directions.

The torque of the sun-worm is M1. The module and unit
vector of normal force P1 are P1 and n2′ , respectively. The
meshing point number between the sun-worm and planet-
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FIGURE 9. Force analysis of the planet-worm gear.

worm gears is m, and that between the stationary internal
toroidal gear and planet-worm gear is n. k planet-worm gears
are evenly distributed on the planet-carrier.

The following formula is available.

M1 = k · m · (k1′ × rp) · P1 = k · m · (k1′ × rp) · (P1n2′ )

= k · m · P1 · (k1′ × rp) · n2′ (19)

where,

P1 =
M1

k · m · (k1′ × rP) · n2′

n2′ = [nx2′ , ny2′ , nz2′ , 1]T =


cosv

cosusinv
sinusinv

1

 =

l4
l5
l6
1


k1′ = sinϕ2i2′ + cosϕ2j2′
(k1′ × rP) · n2′ = k1′ · (rP × n2′ )

=

∣∣∣∣∣∣∣
sinϕ2 cosϕ2 0
l1 l2 l3
l4 l5 l6

∣∣∣∣∣∣∣ = R

(20)

Then P1 can be obtained.

P1 =
M1

k · m · R
(21)

where,

R = l2 · l6 sinϕ2+l3 · l4 cosϕ2−l3 · l5 sinϕ2 − l1 · l6 cosϕ2
= a0 sin u sin v− r2 cosϕ2 sin u sin v (22)

E. EXPRESION OF du/dϕ2 AND dv/dϕ2
The meshing equation and the meshing function without
elastic deformation can be obtained as:
sin(α + u) =

−l8 cos v√
l29 + l

2
10 sin v

821=n2′ · v(2
′1′)
= l8 cos v+ l9 cos u sin v+ l10 sin u sin v

(23)

where,{
l8 = 0, l9 = i21 · r2, l10 = r2 cosϕ2 + a0
α = tan−1(l9/l10)

(24)

Set 8 = l8 cos v+ Cu · l9 sin v+ Su · l10 sin v = 0.
Cu and Su are regarded as constants. The expression of

dv/dϕ2 can be represented as follows:

dv
dϕ2
=

l8′ cos v+ Cu · l9′ sin v+ Su · l10′ sin v
−l8 sin v+ Cu · l9 cos v+ Su · l10 cos v

=
l11
l12

(25)

where,

l8′ = dl8
/
dϕ2 = 0

l9′ = dl9
/
dϕ2 = 0

l10′ = dl10
/
dϕ2 = −r2 sinϕ

l11 = −Su · r2 sinϕ2 sin v
l12 = −Cu · i21 · r2 cos v − Su · (r2 cosϕ2 + a0) cos v

(26)

Similarly, set 8 = Cvl8 + Sv · l9 cos u+ Sv · l10 sin u = 0.
Cv and Sv are regarded as constants. The expression of

du/dϕ2 can be represented as follows:

du
dϕ2
=
Cv · l8′+Sv · l9′ cos u+Sv · l10′ sin u
−Sv · l9 sin u+ Sv · l10 cos u

=
l13
l14

(27)

where,{
l13 = −Sv · r2 sinϕ2 sin u
l14 = Sv · i21 · r2 sin u − Sv · (r2 cosϕ2 + a0) cos u

(28)

F. ELASTIC DEFORMATION δ(2′1′) BETWEEN THE
SUN-WORM AND PLANET-WORM GEAR AT POINT P
Due to the elastic deformation induced by the action of
normal contact force P1 between the sun-worm tooth and
meshing roller, the meshing contact point P becomes a small
elliptical area, as shown in Fig. 5 and Fig. 10. Assume that
a12 is the value of the major half-axis of the elliptical contact
region along the x axis and b12 is the value of the minor
half-axis of the elliptical contact region along the y axis.
The parameters of the elliptical contact region at the meshing
contact point P are:

a12 = α12 3

√
P1m12

n12

b12 = β12 3

√
P1m12

n12
m12 =

4
ρ11 + ρ12 + ρ21 + ρ22

=
4A · ρ

2A− B · ρ

n12 =
8

3

(
1− µ2

1

E1
+

1− µ2
2

E2

)
(29)

where, α12 and β12 are both interpolation coefficients. m12
and n12 are both geometry parameters of the contact ellipse
of the sun-worm tooth and meshing roller. µ1 and µ2 are
Poisson’s ratio of the materials of the sun-worm and roller,
respectively. E1 and E2 are elastic moduli of the materials
of the sun-worm and roller, respectively. The vector P1 is
the normal force at point P. ρ11, ρ12, ρ21 and ρ22 are the
curvatures of the contact point P.
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τ12 =

√
(ρ11 − ρ12)2 + 2(ρ11 − ρ12)(ρ21 − ρ22) cos 2ψ12 + (ρ21 − ρ22)2

ρ11 + ρ12 + ρ21 + ρ22

=

√
1 · ρ

2A2 − AB · ρ
(30)

As shown in Fig. 10, the angle ψ̄ between the x1 axis
(the direction of 1st principal plane) and x axis, is equal
to 0. 912 is the angle between the two axes x1 and x2 that
separately denotes the directions of the two principal planes
(912 = 90◦). According to the following equation, the value
of τ12 is not affected by the value of 912 (30), as shown at
the top of this page.

According to the result of τ12 above, the interpretation
coefficients α12 and β12 can be obtained. The elliptic integral
parameters J12 and J12/α12 determined by the result of τ12
can be achieved. Thus, the major and minor half-axis of the
contact ellipse a12 and b12 can also be obtained. Therefore,
the elastic deformation at meshing contact point P of the sun-
worm tooth and meshing roller can be represented as:

δ(2
′1′)
=

3P1

2π · a12
(
1− µ2

1

E1
+

1− µ2
2

E2
)J12 (31)

The equation above can also be given as follows:

δ(2
′1′)
=

3P1

2π · a12
(
1− µ2

1

E1
+

1− µ2
2

E2
)J12

= l7 ·
3
√
P2
1 =

[
δ
(2′1′)
x2′ , δ

(2′1′)
y2′ , δ

(2′1′)
z2′

]T
P1 = P1 · n2′ =

 P1 · cos v
P1 · cos u sin v
P1 sin u sin v

 =
P1 · l4P1 · l5
P1 · l6


l7 =

4J12

π · α12 ·
3
√
m12 · n212

(32)

FIGURE 10. The contact coordinate system of the sun-worm tooth and
meshing roller.

G. RELATIVE VELOCITY v (2′1′) BETWEEN THE SUN-WORM
AND PLANET-WORM GEAR AT POINT P
According to the above analysis, taking the derivative
of δ(2

′1′) (33), as shown at the top of the next page.
The final expression of the variation of the relative veloc-

ities at meshing contact point P of the conjugate surface
between the meshing roller and sun-worm tooth profile can
be represented as follows (34), as shown at the top of the
next page.
where,

dP1
dR
=
−M1

k · m · R2

lRu =
∂R
∂u
= (a0 − r2 cosϕ2) cos u sin v

lRv =
∂R
∂v
= (a0 − r2 cosϕ2) sin u cos v

l4u =
∂l4
∂u
= 0 , l4v =

∂l4
∂v
= − sin v

l5u =
∂l5
∂u
= − sin u sin v , l5v =

∂l5
∂v
= cos u cos v

l6u =
∂l6
∂u
= cos u sin v , l6v =

∂l6
∂v
= sin u cos v

(35)

Then, the relative velocity v(2
′1′) with elastic deformation

can be obtained.

IV. ELASTIC MESHING MODEL OF THE
TOROIDAL DRIVE
According to the relative velocity expression deduced in
part III, Elastic conjugate equations between the sun-worm
and planet-worm gear as well as between the stationary
internal toroidal gear and planet-worm gear can be obtained.
In order to investigate the effect of elastic deformation on
meshing performance, the equations of instantaneous contact
curve, induced normal curvature and helix-lead angle of the
toroidal drive that with elastic deformation are derived.

A. CONJUGATE EQUATION WITH ELASTIC DEFORMATION
BETWEEN THE SUN-WORM AND PLANET-WORM GEAR
The elastic meshing model of conjugate surface

∑
(1) and∑

(2) can be represented as follows:

i21r2 cos u sin v+ (r2 cosϕ2 + a0) sin u sin v+ l21 = 0

(36)

According to Eq. (36), the elastic meshing equation
and elastic meshing function between the sun-worm and
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1vx2′ =
dδ(2

′1′)
x2′

dt
=
∂δ

(2′1′)
x2′

∂P1

dP1
dR

(
∂R
∂u

du
dϕ2

dϕ2
dt
+
∂R
∂v

dv
dϕ2

dϕ2
dt

)+
∂δ

(2′1′)
x2′

∂l4
(
∂l4
∂u

du
dϕ2

dϕ2
dt
+
∂l4
∂v

dv
dϕ2

dϕ2
dt

)

1vy2′ =
dδ(2

′1′)
y2′

dt
=

∂δ
(2′1′)
y2′

∂P1

dP1
dR

(
∂R
∂u

du
dϕ2

dϕ2
dt
+
∂R
∂v

dv
dϕ2

dϕ2
dt

)+
∂δ

(2′1′)
y2′

∂l5
(
∂l5
∂u

du
dϕ2

dϕ2
dt
+
∂l5
∂v

dv
dϕ2

dϕ2
dt

)

1vz2′ =
dδ(2

′1′)
z2′

dt
=
∂δ

(2′1′)
z2′

∂P1

dP1
dR

(
∂R
∂u

du
dϕ2

dϕ2
dt
+
∂R
∂v

dv
dϕ2

dϕ2
dt

)+
∂δ

(2′1′)
z2′

∂l6
(
∂l6
∂u

du
dϕ2

dϕ2
dt
+
∂l6
∂v

dv
dϕ2

dϕ2
dt

)

(33)



1vx2′ =
2i21 · l7

3

− 3

√
M2

1 l
2
4

k2m2R5

(
lRul13
l14
+
lRvl11
l12

)
+

3

√
M2

1

k2m2R2l4

(
l4ul13
l14
+
l4vl11
l12

)
1vy2′ =

2i21 · l7
3

− 3

√
M2

1 l
2
5

k2m2R5

(
lRul13
l14
+
lRvl11
l12

)
+

3

√
M2

1

k2m2R2l5

(
l5ul13
l14
+
l5vl11
l12

)
1vz2′ =

2i21 · l7
3

− 3

√
M2

1 l
2
6

k2m2R5

(
lRul13
l14
+
lRvl11
l12

)
+

3

√
M2

1

k2m2R2l6

(
l6ul13
l14
+
l6vl11
l12

)
(34)

planet-worm gear in S2′ can be represented as:
sin(α + u) =

−l8 cos v− l21√
l29 + l

2
10 sin v

821 = n2′ · v(2
′1′)
= l8 cos v+ l9 cos u sin v

+ l10 sin u sin v+ l21

(37)

where,

l21 = n2′ ·
dδ(2

′1′)

dt
= l4 ·1vx2′ + l5 ·1vy2′ + l6 ·1vz2′

=
2i21 · l4l7

3

− 3

√
M2

1 l
2
4

k2m2R5

(
lRul13
l14
+
lRvl11
l12

)

+
3

√
M2

1

k2m2R2l4

(
l4ul13
l14
+
l4vl11
l12

)
+

2i21 · l5l7
3

− 3

√
M2

1 l
2
5

k2m2R5

(
lRul13
l14
+
lRvl11
l12

)

+
3

√
M2

1

k2m2R2l5

(
l5ul13
l14
+
l5vl11
l12

)
+

2i21 · l6l7
3

− 3

√
M2

1 l
2
6

k2m2R5

(
lRul13
l14
+
lRvl11
l12

)

+
3

√
M2

1

k2m2R2l6

(
l6ul13
l14
+
l6vl11
l12

) (38)

B. CONJUGATE EQUATION WITH ELASTIC DEFORMATION
BETWEEN THE STATIONARY INTERNAL TOROIDAL GEAR
AND PLANET-WORM GEAR
The meshing condition between a planet-worm gear and
stationary internal toroidal gear is the same as that between

a planet-worm gear and sun-worm. Taking the same steps,
the elastic meshing equation and elastic meshing func-
tion of conjugate surfaces

∑
(2) and

∑
(3) can be derived

in S2′ as:
sin(α′ + u) =

−l18 cos v− l22√
l219 + l

2
20 sin v

823 = n2′ · v
(2′3′)
0 = l18 cos v+ l19 cos u sin v

+ l20 sin u sin v+ l22

(39)

where,

l22 = n2′ ·
dδ(2

′3′)

dt

=
2i23 · l4l7′

3

− 3

√
M2

3 l
2
4

k2n2R′5

(
lR′ul13′

l14′
+
lR′vl11′

l12′

)

+
3

√
M2

3

k2n2R′2l4

(
l4ul13′

l14′
+
l4vl11′

l12′

)
+

2i23 · l5l7′

3

− 3

√
M2

3 l
2
5

k2n2R′5

(
lR′ul13′

l14′
+
lR′vl11′

l12′

)

+
3

√
M2

3

k2n2R′2l5

(
l5ul13′

l14′
+
l5vl11′

l12′

)
+

2i23 · l6l7′

3

− 3

√
M2

3 l
2
6

k2n2R′5

(
lR′ul13′

l14′
+
lR′vl11′

l12′

)

+
3

√
M2

3

k2n2R′2l6

(
l6ul13′

l14′
+
l6vl11′

l12′

) (40)

M3 is the torque of the stationary internal gear.
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C. INSTANTANEOUS CONTACT EQUATION WITH
ELASTIC DEFORMATION
The instantaneous contact curve equation on the planet
worm-gear tooth between the planet-worm gear and sun-
worm is:



x2′ = ρ cos v+ r2
y2′ = ρ cos u sin v
z2′ = ρ sin u sin v

sin(α + u) =
−l8 cos v− l21√
l29 + l

2
10 sin v

(41)

Similarly, the instantaneous contact curve equation on the
planet worm-gear tooth between the planet-worm gear and
stationary internal toroidal gear is:



x2′ = ρ cos v+ r2
y2′ = ρ cos u sin v
z2′ = ρ sin u sin v

sin(α′ + u) =
−l18 cos v− l22√
l219 + l

2
20 sin v

(42)

D. INDUCED NORMAL CURVATURE EQUATION WITH
ELASTIC DEFORMATION
1) FIRST BOUNDARY CURVE FUNCTION
Based on the gear meshing theory, the first boundary curve
function for meshing between a planet-worm gear and
sun-worm can be expressed:

921 =
1

D2
2

∣∣∣∣∣∣
E2 F2 r2′(u) · v(2

′1′)

F2 G2 r2′ (v) · v(2
′1′)

821(u) 821(v) 821(t)

∣∣∣∣∣∣ (43)

where v(2
′1′) is the same as Eq. (11), r2′(u), r2′(v), 821(u),

821(v) and 821(t) can be derived by taking the derivative
of Eq. (1) and Eq. (37) with respect to meshing parameters
u, v and time t .
The other elements in Eq. (43) are represented as follows:


E2 = (r2′(u))2 = ρ2 sin2 v
F2 = (r2′(u) · r2′(v)) = 0
G2 = (r2′(v))2 = ρ2

D2
2 = E2G2 − F2 = ρ4 sin2 v

(44)

Through calculation, the following equations can be
obtained (45), as shown at the top of the next page.

Then, the first boundary curve function for
meshing between a planet-worm gear and sun-worm can be

represented:

x1′ = cosϕ1 cosϕ2x2′ − cosϕ1 sinϕ2y2′

− sinϕ1z2′ + a0 cosϕ1
y1′ = − sinϕ1 cosϕ2x2′ + sinϕ1 sinϕ2y2′

− cosϕ1z2′ − a0 sinϕ1
z1′ = sinϕ2x2′ + cosϕ2y2′

sin(α + u) = −(l8 cos v+ l21)
/√

l29 + l
2
10 sin v

921 = 0

(46)

Taking the same steps, the first boundary curve equation for
meshing between a planet-worm gear and stationary internal
toroidal gear is represented as follows:

x3′ = cosϕ3 cosϕ2x2′ − cosϕ3 sinϕ2y2′

− sinϕ3z2′ + a0 cosϕ3
y3′ = − sinϕ3 cosϕ2x2′ + sinϕ3 sinϕ2y2′

− cosϕ3z2′ − a0 sinϕ3
z3′ = sinϕ2x2′ + cosϕ2y2′

sin(α′ + u) = −(l18 cos v+ l22)
/√

l219 + l
2
20 sin v

923 = 0

(47)

2) SECOND BOUNDARY CURVE FUNCTION
When the toroidal drive works, not all of the points on the
conjugate surfaces participate in the meshing process. In one
instant, just one section of the tooth surface participates in the
meshing process. The second boundary curve is the divid-
ing line between the meshing zone and non-meshing zone.
Based on the gear theory, function and equation of the second
boundary curve between a planet-worm gear and sun-worm
are as follows: 

r2′ = r2′ (u, v)
821(u, v, t) = 0
821 (t)(u, v, t) = 0

(48)

That is:

x2′ = ρ cos v+ r2
y2′ = ρ cos u sin v
z2′ = ρ sin u sin v

sin(α + u) = −(l8 cos v+ l21)
/√

l29 + l
2
10 sin v

−ω2r2 sinϕ2 sin u sin v+ l21(t) = 0

(49)

The second boundary curve function between a planet-
worm gear and stationary internal toroidal gear can be
expressed as follows:

x2′ = ρ cos v+ r2
y2′ = ρ cos u sin v
z2′ = ρ sin u sin v

sin(α′ + u) = −(l18 cos v+ l22)
/√

l219 + l
2
20 sin v

−ω2r2 sinϕ2 sin u sin v+ l22(t) = 0

(50)
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r2′(u) · v(2

′1′)
= ρ2 sin v(cosϕ2 cos u cos v− sinϕ2 sin v− i21 sin u cos v)
+ ρ sin v[r2 cosϕ2 cos u− i21 · r2 sin u+1vy2′ sin u+ (a0 +1vz2′ ) cos u]

r2′(v) · v(2
′1′)
= ρ2(cosϕ2 sin u+ i21 cos u)+ ρ[i21 · r2 cos u cos v+ r2 cosϕ2 sin u cos v
−1vx2′ sin v+1vy2′ cos u cos v+ (a0 +1vy2′ ) sin u cos v]

(45)

FIGURE 11. (a). Contact curve influenced by elastic deformation between∑
(2) and

∑
(1). (b). Contact curve influenced by elastic deformation

between
∑

(2) and
∑

(3).

3) INDUCED NORMAL CURVATURE
Based on the gear meshing theory, the induced normal
curvatures between a planet-worm gear and sun-worm and
that between a planet-worm gear and stationary internal
toroidal gear are represented in Eq. (51) and Eq. (52)
respectively.

K (2′1′)
σ =

1

D2
2921

(E282
21(u) − 2F2821(u)821(v) + G28

2
21(v))

(51)

K (2′3′)
σ =

1

D2
2923

(E282
23(u) − 2F2823(u)823(v) + G28

2
23(v))

(52)

E. HELIX-LEAD ANGLE EQUATION OF THE SUN-WORM
AND STATIONARY INTERNAL TOROIDAL GEAR
1) HELIX-LEAD ANGLE EQUATION OF THE SUN-WORM
According to the solving process of helix-lead angle [2],
this paper only gives the final helix-lead angle expression
involving the influence of elastic deformation.

λ1 = arccos

√
A21 + B

2
1√

A21 + B
2
1 + C

2
1

(53)

where,

A1 = (ny1′nbz1′ − nz1′nby1′ )
B1 = (nz1′nbx1′ − nx1′nbz1′ )
C1 = (nx1′nby1′ − ny1′nbx1′ )

nbx1′ = x1′ [1− a0
/√

x21′ + y
2
1′ ]

nby1′ = y1′ [1− a0
/√

x21′ + y
2
1′ ]

nbz1′ = z1′

nx1′ = cosϕ1 cosϕ2nx2′ − cosϕ1 sinϕ2ny2′ − sinϕ1nz2′

ny1′ = − sinϕ1 cosϕ2nx2′ + sinϕ1 sinϕ2ny2′ − cosϕ1nz2′

nz1′ = sinϕ2nx2′ + cosϕ2ny2′

(54)

2) HELIX-LEAD ANGLE EQUATION OF THE STATIONARY
INTERNAL TOROIDAL GEAR
Similarly, helix-lead angle of the stationary internal toroidal
gear can be expressed as follows:

λ3 = arccos

√
A23 + B

2
3√

A23 + B
2
3 + C

2
3

(55)

where,

A3 = (ny3′nbz3′ − nz3′nby3′ )
B3 = (nz3′nbx3′ − nx3′nbz3′ )
C3 = (nx3′nby3′ − ny3′nbx3′ )

nbx3′ = x3′ [1− a0
/√

x23′ + y
2
3′ ]

nby3′ = y3′ [1− a0
/√

x23′ + y
2
3′ ]

nbz3′ = z3′

nx3′ = cosϕ3 cosϕ2nx2′ − cosϕ3 sinϕ2ny2′ − sinϕ3nz2′

ny3′ = − sinϕ3 cosϕ2nx2′ + sinϕ3 sinϕ2ny2′ − cosϕ3nz2′

nz3′ = sinϕ2nx2′ + cosϕ2ny2′

(56)
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FIGURE 12. (a). Induced normal curvature between a planet worm-gear
and sun-worm influenced by elastic deformation. (b). Induced normal
curvature between a planet worm-gear and stationary internal toroidal
gear influenced by elastic deformation.

V. ELASTIC DEFORMATION INFLUENCE ON THE
MESHING CHARACTERISTIC OF THE TOROIDAL DRIVE
According to equations deduced above, the meshing con-
tact curve as well as induced normal curvature curve and
helix-lead angle curve with elastic deformation can be
obtained. The influence of elastic deformation on meshing
performance can be investigated by comparing the curves
with and without elastic deformation.

A. ELASTIC DEFORMATION INFLUENCE ON
THE MESHING CONTACT CURVE
The contact curve on the planet-worm gear tooth surface
between the planet-worm gear and sun-worm is given by
Eq. (41), and that between the planet-worm gear and internal
toroidal gear is determined by Eq. (42). The elastic defor-
mation influence on the contact curve between conjugate
surfaces

∑
(1) and

∑
(2), as well as between

∑
(2) and∑

(3), are shown in Fig. 11 (a) and (b). The meshing contact
curve without elastic deformation is given in the figure as

FIGURE 13. (a). The helix-lead angle of the sun-worm influenced by
elastic deformation. (b). The helix-lead angle of the stationary internal
gear influenced by elastic deformation.

a reference. It can be found in the figures that the elastic defor-
mation has a little effect on contact curve which induce the
contact curve rotates a very small angle about a certain axis.

B. ELASTIC DEFORMATION INFLUENCE ON
THE INDUCED NORMAL CURVATURE
The induced normal curvature of the meshing between
the planet-worm gear and sun-worm, and that between the
planet-worm gear and stationary internal toroidal gear are
represented in Eq. (51) and Eq. (52). Fig. 12(a) and (b) show
the effect of elastic deformation on the induced normal cur-
vatures. It can be observed that the induced normal curvature
K 2′1′
σ and K

σ 2
′3′ are hardly affected by elastic deformation.

C. ELASTIC DEFORMATION INFLUENCE ON
THE HELIX-LEAD ANGLE
The helix-lead angle of the sun-worm and stationary internal
toroidal gear are important in the manufacturing and assem-
bly process of the toroidal drive. The helix-lead angle is not
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constant but varies with the changing of the planet-worm gear
rotation angle ϕ2.
The helix-lead angle of the sun-worm and internal toroidal

gear are determined by Eq. (53) and Eq. (55), respectively.
The elastic deformation influence on the helix-lead angle λ1
and λ3 are shown in Fig. 13(a) and (b), respectively. It is
obviously that the helix-lead angle λ1 and λ3 are hardly
affected by elastic deformation.

VI. CONCLUSION
Elastic deformation in the rolling contact process is one of
the main reasons for the time-varying mesh stiffness of the
toroidal drive. In this paper, an elastic deformation mathe-
matical model based onWills law and Hertz contact theory is
proposed, which can be used as a theoretical basis for toroidal
drive regarding the vibration and noise analysis. The main
works accomplished are as follows:

1. Elastic deformation integrated coordinate systems are
built to describe the position relationship among the
main components of the toroidal drive.

2. According to Hertz contact theory, the relationship
between elastic deformation velocity and normal force
at contact point is studied. The elastic deformation
velocity induced by contact force is adopted for the
first time in the relative velocity of the Wills law for
the toroidal drive.

3. Elastic conjugate equations between the sun-worm
and planet-worm gear as well as between the station-
ary internal toroidal gear and planet-worm gear are
induced. The influences of elastic deformation on the
meshing contact curves, helix-lead angle and induced
normal curvature of toroidal drive are discussed. The
results indicate that: (1) Elastic deformation has a little
effect on contact curve, which is rotated by a very
small angle about a certain axis. (2) Induced normal
curvature and helix-lead angle are hardly affected by
elastic deformation.

NOMENCLATURE

S0(O0, i0, j0, k0) reference coordinate system of the
meshing roller

S0′ (O0′ , i0′ , j0′ , k0′ ) movable coordinate system of the
meshing roller

S1(O1, i1, j1, k1) reference coordinate system of the
sun-worm

S1′ (O1′ , i1′ , j1′ , k1′ ) movable coordinate system of the
sun-worm

S2(O2, i2, j2, k2) reference coordinate system of the
planet-worm gear

S2′ (O2′ , i2′ , j2′ , k2′ ) movable coordinate system of the
planet-worm gear

S3(O3, i3, j3, k3) reference coordinate system of the
internal toroidal gear

ω1 angular velocity of the sun-worm

ω2 angular velocity of the planet-
worm gear

ϕ1 rotation angle of the sun-worm
about k1′

ϕ2 rotation angle of the planet-worm
gear about k2′

6(1) tooth surface of the sun-worm
6(2) tooth surface of the planet-worm

gear
6(3) tooth surface of the stationary inter-

nal toroidal gear
ξ

−−−→
O1′O2′

P meshing contact point between the
meshing roller and sun-worm

r2′ vector of the meshing roller in S2′
r0 vector of the meshing roller in S0
ρ radius of the meshing roller
r2 radius of the planet-worm gear
u spherical parameter of meshing

roller
v spherical parameter of meshing

roller
M2′0 coordinate transformation matrix

from S0 to S2′
n2′ unit normal vector of contact point

P in S2′
v(2
′1′) relative velocity between the

planet-worm gear and sun-worm
i21 transmission ratio between the

planet-worm gear and sun-worm
ω(2′1′) relative angular velocity between

the planet-worm gear and sun-
worm

a0 central distance of the toroidal
drive

δ(2
′1′) elastic deformation between the

sun-worm and planet-worm gear

dδ(2
′1′)

ξ /dt elastic deformation velocity along
the direction of O1′O2′

dδ(2
′1′)/dt elastic deformation velocity along

the translocation direction of the
contact surface between the sun-
worm and planet-worm gear

(x2′ , y2′ , z2′ ) coordinate components of the roller
profile in S2′

(1vx2′ ,1vy2′ ,1vz2′ ) variations of the relative velocities
P1 normal force at point P
P1 module of normal force P1
rP radius vector of the sun-worm at

contact point P
Ft1 driving force between the sun-

worm and planet-worm gear
Fa1 axial force between the sun-worm

and planet-worm gear
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Fr1 radial force between the sun-worm
and planet-worm gear

F′t1 reaction force of Ft1
F′a1 reaction force of Fa1
F′r1 reaction force of Fr1
Ft3 driving force between the internal

toroidal gear and planet-worm gear
Fa3 axial force between the internal

toroidal gear and planet-worm gear
Fr3 radial force between the internal

toroidal gear and planet-worm gear
F′t3 reaction force of Ft3
F′a3 reaction force of Fa3
F′r3 reaction force of Fr3
M1 torque of the sun-worm
m meshing point number between the

sun-worm and planet-worm gears
n meshing point number between the

internal toroidal gear and planet-
worm gears

k number of planet-worm gears
a12 value ofmajor half-axis of the ellip-

tical contact region
b12 value of the minor half-axis of the

elliptical contact region
α12 interpolation coefficient
β12 interpolation coefficient
m12 geometry parameters of the contact

ellipse
n12 geometry parameters of the contact

ellipse
µ1 Poisson’s ratio of thematerial of the

sun-worm
µ2 Poisson’s ratio of thematerial of the

meshing roller
ρ11 curvatures of the sun-worm tooth

and meshing roller
ρ12 curvatures of the sun-worm tooth

and meshing roller
ρ21 curvatures of the sun-worm tooth

and meshing roller
ρ22 curvatures of the sun-worm tooth

and meshing roller
J12 elliptic integral parameter
J12/α12 elliptic integral parameter
r2′(u) derivative of r2′ with respect to u
r2′(v) derivative of r2′ with respect to v
821 meshing function between the sun-

worm and planet-worm gear
821(u) derivative of 821 with respect to u
821(v) derivative of 821 with respect to v
821(t) derivative of 821 with respect to t
823 meshing function between the

internal toroidal gear and planet-
worm gear

823(u) derivative of 823 with respect to u

823(v) derivative of 823 with respect to v
823(t) derivative of 823 with respect to t
921 first boundary curve function between a

planet-worm gear and sun-worm
923 first boundary curve function between a

planet-worm gear and internal toroidal gear

K (2′1′)
σ induced normal curvature between a planet-

worm gear and sun-worm

K (2′3′)
σ induced normal curvature between a planet-

worm gear and internal toroidal gear
λ1 helix-lead angle of the sun-worm
λ3 helix-lead angle of the internal toroidal gear
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