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ABSTRACT Vapor-compression refrigeration systems (VCRS) are applied extensively in domestic, com-
mercial and industrial refrigeration and are responsible for a high percentage of worldwide energy con-
sumption. To achieve high energy efficiency, the application of advanced control methods in VCRS has
increasingly attracted the attention of academia and industry. The model-free adaptive control (MFAC)
strategy, as an important branch of advanced control research, encounters the problem of parameter tuning
when applied to VCRS with strong nonlinearities. In this work, a parameter self-tuning methodology based
on the self-learning and self-adapting properties of back propagation neural networks with the System Error
set and/or Gradient Vector set as inputs is proposed to adjust the parameters utilized in SISO Partial-Form
Model-Free Adaptive Control (SISO-PFMFAC). To test the performance of this novel methodology named
SISO-PFMFAC-NNSEGV, qualitative and quantitative comparisons are carried out between the proposed
method and the decentralized single PIDs given in the simulation platform provided by the benchmark
PID 2018. The integral absolute error (IAE), the integral time-weighted absolute error (ITAE), the integral
absolute variation of control signal (IAVU) and a combined index Jc are used to evaluate the performance.
As a result, the proposed method shows the best performance with a higher tracking accuracy and less
variation of the control signal with a combined index Jc = 0.7088, which represents a 29.1% improvement
over the benchmark PID controller and a 9.6% improvement over the SISO-PFMFAC controller, making it
a promising control method for vapor-compression refrigeration systems.

INDEX TERMS Partial-form model-free adaptive control, parameter self-tuning, back propagation neural
networks, vapor-compression refrigeration system.

I. INTRODUCTION
Vapor-compression refrigeration systems (VCRS), which
are widely used for domestic, commercial and industrial
applications, are the leading technology worldwide in cool-
ing generation, including air conditioning, refrigeration
and freezing [1]. Heating, ventilating, and air conditioning
(HVAC) processes account for approximately 30%of the total
energy consumption worldwide, making the energy demand
related to refrigeration systems an essential element of the
overall energy mix [2], [3]. Therefore, considering the impor-
tance of the economy and the environment, it is necessary
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to control refrigeration systems in a precise and efficient
manner. Reference [4] focuses on the reduction of operating
cost of HVAC systems, and reference [5] suggests that the
evaporative-cooled condenser is one of the immediate solu-
tions to the quest for efficient use of millions of residential
air-conditioners around the world.

Refrigeration systems are closed cycles in which the refrig-
erant works in an inverse Rankine cycle through an evapo-
rator, compressor, condenser and expansion valve. Though
the expansion valve and the compressor, heat is transferred
by the refrigerant from the evaporator secondary fluid to the
condenser secondary fluid. To satisfy the expected cooling
demand and maximize the energy efficiency, a controller
is designed to track the references of the temperature of
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the evaporator secondary fluid Te,sec,out and the refrigerant
superheating degree TSH at the evaporator outlet as efficiently
as possible by manipulating the compressor speed N and the
expansion valve opening Av in the presence of disturbances.

In recent years, many researchers have paid attention to
the modeling and control of VCRS [6], [7]. Many model-
based control (MBC) methods can be found in the litera-
ture, such as adaptive control [8], decoupling multivariable
control [9], linear-quadratic-Gaussian (LQG) control [10],
optimal control [11] and model predictive control [12]–[14].
These models can be developed based on the principles of
thermodynamics [15], [16] or through system identification.
However, due to the strong nonlinearities and strong cou-
pling between variables of the VCRS, most researchers adopt
model reduction or controller reduction, which introduces
unmodeled dynamicswhile resulting in unsatisfactory control
performance.

This motivates research on model-free control or data-
driven control, which does not require any model information
of the controlled system. Since the input and output mea-
surement data of the system can precisely reflect valuable
state information of the process operations and equipment,
it becomesmeaningful to design a controller by directly using
the I/O data when an accurate model of the controlled plant
is unavailable. PID [17] control, one of the traditional data-
driven control methods, has been applied in the VCRS [18].
Meanwhile, some improved PID control methods such as
nonlinear PID controller [19] and optimal controller identi-
fication based PID controller [20], also have an application
in the VCRS. However, PID controller and its variants still
remain the problems unsettled when controlling the VCRS
with strong nonlinearities, which leads to unsatisfactory con-
trol performance.

Model-free adaptive control (MFAC) [21], an important
branch of advanced control research, using only online I/O
measurement data for controller design, has been applied to
many systems, such as variable polarity plasma arc weld-
ing (VPPAW) [22], post-combustion carbon capture (PCC)
processes [23], multi-agent systems consensus tracking [24],
AC/DC microgrids [25], etc., which demonstrates its ability
to control complex systems. The single input and single
output (SISO) MFAC based on the partial-form dynamic
linearization technique (SISO-PFMFAC) is a promising
approach to control a class of SISO nonlinear discrete-time
systems and has better adaptability to complex systems.
However, to achieve accurate and effective control, choosing
appropriate and robust controller parameters is also of great
importance for an actual system. In the literature, there are
fewmethods outlined for the parameter tuning ofMFAC. Ref-
erence [26] uses a virtual reference feedback tuning (VRFT)
approach, which is an offline parameter tuning method that
requires a large number of I/O data pairs of the controlled
plant in an opened or closed loop. dos Santos Coelho and
Coelho [27] optimize MFAC using a chaotic particle swarm
approach, which needs a large number of iterations and is not
suitable in practice.

In this paper, a novel online parameter self-tuning approach
of SISO-PFMFAC based on a back propagation neural net-
workwith a system error set and a gradient vector set as inputs
(SISO-PFMFAC-NNSEGV) is proposed for the control of
a vapor-compression refrigeration system provided by the
benchmark PID 2018 [18]. The proposed controller achieves
better tracking performance and less variation of the control
signal than the fixed parameter controller SISO-PFMFAC and
the benchmark PID controller. Therefore, it can be concluded
that the self-tuning SISO partial-form model-free adaptive
controller has excellent practical application prospects in the
control of vapor-compression refrigeration systems.

The main contributions of this paper are as follows. 1)
The proposed method is a pure data-driven approach, which
is merely based on the I/O data without using any model
information of the vapor-compression refrigeration system,
thus any unmodeled dynamic problems existed in the model-
based control methods are avoided. 2) To achieve high energy
efficiency while satisfying the cooling demand, the important
parameters in the SISO-PFMFAC controller can be self-tuned
online based on the BP neural network, which is also depends
directly on the measured I/O data rather than any model
information of the vapor-compression refrigeration system.
3) The proposed method presents the best performance with
higher tracking accuracy on the temperature of the evapora-
tor secondary fluid and the refrigerant superheating degree,
while requires less variation of the control signals for the
expansion valve opening and the compressor speed.

The rest of this paper is organized as follows. Section II
reviews the benchmark VCRS and then provides the con-
trol objective. Section III contains the problem formulation
including dynamic linearization for VCRS and controller
design for SISO partial-form model-free adaptive control
based on a neural network. The results and discussion are
provided in section IV, and section V concludes this paper.

II. BENCHMARK OVERVIEW
The benchmark PID 2018 [18] provides a platform
for researchers to test their recent developments in the
design of controllers for VCRS. Full documentation on
the system and MATLAB files can be obtained from
http://www.dia.uned.es/∼ fmorilla/benchmarkPID2018/.

The schematic of the refrigeration cycle is shown in Fig.1,
where the main components are the evaporator, condenser,
variable speed compressor, and expansion valve. The objec-
tive of the cycle is to remove heat from the secondary flux at
the evaporator and reject heat at the condenser by transferring
it to the secondary flux. The refrigerant circulates through
the four main components and goes through four processes
in sequence: (a) The refrigerant enters the evaporator at low
temperature and pressure and it evaporates while removing
heat from the evaporator secondary flux; (b) The evaporated
refrigerant is taken into the compressor, with the pressure
and temperature increasing, and then enters the condenser;
(c) The refrigerant condenses and may become a subcooled
liquid while transferring heat to the condenser secondary
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FIGURE 1. Schematic picture of the vapor-compression refrigeration cycle.

flux; (d) Controlled by the expansion valve, the refrigerant
at low pressure and temperature enters the evaporator for the
next cycle.

The main control objective of the refrigeration system is to
meet the cooling demand, which can be expressed as a ref-
erence on the outlet temperature of the evaporator secondary
flux Te,sec,out with the disturbance of the mass flux ṁe,sec and
the inlet temperature Te,sec,in. With respect to the condenser,
the inlet temperature Te,sec,in and the secondary mass flux
ṁc,sec are also considered disturbances. Furthermore, the gen-
eration of the cooling power is also intended to be as efficient
as possible, which can be achieved by controlling the degree
of super heating TSH . Therefore, the controller is designed to
get Te,sec,out and TSH to track their references as efficiently
as possible by manipulating the compressor speed N and the
expansion valve opening Av in the presence of disturbances
that are included in Table 1.

TABLE 1. Disturbance variables.

The structure of the decentralized single PID controller
included by default in the benchmark is shown in Fig. 2,
where Te,sec,out and TSH are controlled by means of the
expansion valve Av and the compression speed N , respec-
tively, and the transfer functions used within the default
controller are described in Table 2 with a sampling time
of 1 second. Note that the disturbance information is not used;

TABLE 2. Discrete transfer functions used within the default controller.

FIGURE 2. The structure of the decentralized single PID controller
included by default in the benchmark.

thus, the two SISO controllers operate without feed forward
compensation.

III. PROBLEM FORMULATION
A. DYNAMIC LINEARIZATION TECHNIQUE FOR
REFRIGERATION SYSTEM
Due to the strong nonlinearities and strong coupling between
variables of the vapor-compression refrigeration system,
most of the research on model-based control methods adopt
model reduction or controller reduction, which introduces
unmodeled dynamicswhile resulting in unsatisfactory control
performance.

However, thanks to the development of electronic tech-
niques, it has become possible to extract all valuable state
information from a large amount of I/O data. Taking advan-
tage of the I/O data, a virtual equivalent dynamic linearization
data model is established along the dynamic operation points
of the closed loop system by using a dynamic linearization
technique [21], instead of identifying a nonlinear model of the
vapor-compression refrigeration system, thereby avoiding the
unmodeled dynamics and facilitating the controller design.

Consider the following discrete-time SISO nonlinear
refrigeration process:

ys(k + 1)

= fs(ys(k), · · · , ys(k − nys ), us(k), · · · , us(k − nus )) (1)

where s = 1, 2; y1(k), y2(k) ∈ R are the system outputs
Te,sec,out (k) and TSH (k), respectively; u1(k), u2(k) ∈ R are
the control inputs Av(k) and N (k), respectively; ny1 , ny2 are
the unknown orders of y1(k) and y2(k), respectively; nu1 , nu2
are unknown orders of u1(k) and u2(k), respectively; f1(· · · ) :
Rnu1+ny1+2 7→ R, f2(· · · ) : Rnu2+ny2+2 7→ R are unknown
nonlinear functions; R is the set of all real numbers.

VOLUME 7, 2019 125773



C. Chen, J. Lu: Design of Self-Tuning SISO Partial-Form Model-Free Adaptive Controller for VCRS

Define ULs (k) ∈ RLs as the following vector that contains
all control input in a sliding time window of [k − Ls + 1, k].

ULs (k) = [us(k), · · · , us(k − Ls + 1)]T (2)

where the two positive integers L1, L2 > 1 are linearization
length constants (LLC) for the control inputs of Av and N ,
respectively.

The following assumptions for nonlinear dynamics are
given to facilitate our analysis.
Assumption 1: The partial derivative of the nonlinear func-

tion fs(· · · ) with respect to us(k) is continuous.
Assumption 2: The system (1) is a generalized Lipschitz

function; that is, if 1ULs 6= 0, |1ys(k + 1)| ≤ b
∣∣1ULs (k)

∣∣
holds for any k , where 1 ys(k + 1) = ys(k + 1) − ys(k),
1ULs (k) = ULs (k)−ULs (k − 1) and b is a positive constant.
Remark 1: These assumptions imposed on the refrigera-

tion system are reasonable and acceptable from a practical
viewpoint. Assumption 1 is a general condition for controller
design. Assumption 2 indicates that the change rate of the
refrigeration system output Te,sec,out , TSH corresponding to
the change rate of the control input Av, N is bound. From an
energy point of view, if the change in the control input energy
is finite, the rate of change in the output energy cannot tend
to infinity.
Theorem 1: For the refrigeration system (1) satisfying

Assumption 1 and Assumption 2, there must exist a φs,Ls (k),
called pseudo gradient (PG), such that if

∥∥1ULs (k)
∥∥ 6= 0,

the system (1) can be described as the following partial form
dynamic linearization (PFDL) model:

1ys(k + 1) = φTs,Ls1ULs (k) (3)

where φs,Ls =
[
φ s,1, · · · , φ s,Ls

]T
∈ RLs and it satisfies∣∣φs,Ls ∣∣ ≤ c, where c is a positive constant.

B. SISO-PFMFAC CONTROLLER DESIGN
In a vapor-compressor refrigeration system, rapid changes in
the control inputs Av and N would harm the system while
decreasing the energy efficiency. Therefore, the weighted
one-step-ahead control input criterion function is considered:

J (us(k))=
∣∣y∗s (k + 1)− ys(k+1)

∣∣2+λs |us(k)− us(k − 1)|2

(4)

where λ1, λ2 > 0 are weighting factors that are introduced
to constrain the control inputs of Av and N from changing
too quickly, respectively, and y∗1(k), y

∗

2(k) are the expected
outputs values of Te,sec,out , TSH , respectively.

By setting the derivative of (4) with respect to us(k) equal
to zero, an iterative function is obtained:

us(k) = us(k − 1)+
ρs,1φs,1(k)(y∗s (k + 1)− ys(k))

λs +
∣∣φs,1(k)∣∣2

−

φs,1(k)
Ls∑
p=2

ρs,pφs,p(k)1us(k − p+ 1)

λs +
∣∣φs,1(k)∣∣2 (5)

where ρs,p ∈ (0, 1] , (p = 1, 2, · · · ,Ls) is introduced as a
penalty factor for a more general and flexible controlling rule.
In addition, we noticed that λ s is not only a penalty factor on
1 us(k) but also a part of the denominator in (5); thus ρs,p and
λ s are important parameters for the SISO-PFMFAC scheme.

Obviously, it is difficult to derive a specific expression for
the solution of the time-varying parameter φs,Ls , so a certain
approximation algorithm is essential for the description of
the refrigeration system. Similar to (4), a weighted one-step-
ahead cost function of PG is considered:

J (φs,Ls (k)) =
∣∣∣ys(k)− ys(k − 1)− φTs,Ls (k)1ULs (k − 1)

∣∣∣2
+µs

∥∥∥φs,Ls (k)− φ̂s,Ls (k − 1)
∥∥∥2 (6)

By setting the derivative of (6) with respect to φs,Ls equal
to zero, an iterative function is obtained:

φ̂s,Ls (k) = φ̂s,Ls (k − 1)

+
ηs1ULs (k−1)(ys(k)−ys(k−1)−φ̂

T
s,Ls (k−1)1ULs (k−1))

µs+
∥∥1ULs (k−1)

∥∥2
(7)

where ηs ∈ (0, 2] is introduced as a step size constant for a
more general and flexible approximation algorithm. φ̂s,Ls (k)
is the approximation of φs,Ls , andµs is a weighting factor that
is introduced to punish sudden changes in φs,Ls .
Moreover, to ensure that the adaptive law has strong track-

ing capability on time-varying parameters, a reset algorithm
is considered in the following structure:

φ̂s,Ls (k) = φ̂s,Ls (1),

if
∥∥∥φ̂s,Ls (k)∥∥∥ ≤ ε or ∥∥1ULs (k − 1)

∥∥
≤ ε or sign(φ̂ s,1(k)) 6= sign(φ̂ s,1(1)) (8)

where ε is a sufficiently small positive constant and φ̂s,Ls (1)
is the initial estimation value of φ̂s,Ls (k).

C. THE PROPOSED SISO-PFMFAC-NNSEGV CONTROL
METHODOLOGY
The vapor-compression refrigeration system is complex,
and its dynamics are difficult to identify and subject to
environmental uncertainties. Therefore, a fixed-parameter
SISO-PFMFAC may not be well adapted to the changes in
operating conditions, since the refrigeration process is non-
linear, time-variant and coupled. However, the fine tuning
of SISO-PFMFAC is still a laborious, time-consuming and
cost-consuming task that requires experts with knowledge
in both control theory and process information. Although
there are already some methods for offline parameter tuning
in the literature as mentioned in section I, it is difficult to
apply these methods to an actual system due to their limita-
tions. Therefore, online self-tuning method SISO-PFMFAC-
NNSEGV based on a BP neural network, a more accurate and
more efficient control methodology, is proposed for VCRS
with the advantage of simplicity, robustness and ease of
implementation.
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1) BPNN OVERVIEW
In the literature, there have been many reports on the appli-
cation of BPNN and its variants in control systems, such as
soft soil [28], inverters [29], hot-rolling steel [30], etc., which
demonstrates the self-learning and self-adapting capabilities
of BPNN. As one of the feedforward networks, BPNN is
commonly used by the gradient descent optimization algo-
rithm to adjust the weight of neurons by calculating the
gradient of the loss function. In general, the inputs of BPNN
for parameter adjustment always rely on the system error

es(k) = y∗s (k) − ys(k) or the combination of es(k),
k∑
t=0

es(t)

and es(k)−es(k−1), which contain all the information of the
output. However, the dynamics of the control inputs should
also be taken into consideration for BPNN because they
reflect the sensitivity of the system to varying parameters,
which are important information for the control of an actual
system. In this paper, the BPNN with the system error set
and gradient vector set of control input as learning signals
is applied to obtain a more accurate trajectory and achieve
high energy efficiency by auto-adjusting the parameters used
in SISO-PFMFAC, with a simulation on the benchmark PID
2018.

2) LEARNING ALGORITHM FOR BPNN
It is known that, without limiting the number of hidden
nodes, a BP neural network with three layers can achieve any
nonlinear mapping. In this work, a BPNN with the system
error set and gradient vector set as inputs is shown in Fig.3.

FIGURE 3. Structure of BPNN for self-tuning of parameters in
SISO-PFMFAC.

The input layer has Ls + 4 nodes, corresponding to three
combined system errors and Ls + 1 gradient vectors. The
output layer has Ls + 1 nodes, corresponding to λ s and ρs,p
used in SISO-PFMFAC. The nodes of the hidden layer are

calculated by the following formula:

h =
√
m+ n+ α (9)

where h, m and n denote the nodes of the hidden, input and
output layers, respectively and α is a constant between 0 and
10.
• The input variables are xsj(j = 1, · · · ,Ls + 4)

xsj=

[
es(k),

k∑
t=0

es(t),es(k)−es(k−1),
∂us
λs
,
∂us
ρs,1

, · · · ,
∂us
ρs,Ls

]
(10)

• The input and output of the hidden layer

hnetsi(k) =
Ls+4∑
j=1

ωsijxsj(k) (11)

hidesi(k) = f (hnetsi(k)), i = 1, 2, . . . ,Ms (12)

where ωsij are the connection weight parameters between the
input layer and hidden layer and Ms is the hidden neurons.
The activation function of the hidden layer is as follows:

f (x) =
ex − e−x

ex + e−x
(13)

• The input and output of the output layer are

onetsl(k) =
Ms∑
i=1

ωslihidesi(k)

outsl(k) = g(onetsl(k)) l = 1, · · · ,Ls + 1

λs = outs1(k)

ρs,p = outs(p+1)(k) p = 1, · · · ,Ls (14)

where ωsli are the connection weight parameters between the
hidden layer and output layer. The activation function of the
output layer is as follows:

g(x) =
ex

ex + e−x
(15)

• The dynamic learning performance index Js for single
SISO-PFMFACs is described as follows:

Js =
1
2
[y∗s (k + 1)− ys(k + 1)]2 =

1
2
e2s (k + 1) (16)

The partial derivative of Js with respect to the weighting
coefficients ωsli and ωsij can be obtained by applying the
chain rule:

1ωsli(k + 1) = −βs
∂Js
∂ωsli

+ αs1ωsli(k)

∂Js
∂ωsli

=
∂Js

∂ys(k + 1)
∂ys(k + 1)
∂us(k)

∂us(k)
∂outsl(k)

∂outsl(k)
∂onetsl(k)

×
∂onetsl(k)
∂ωsli

1ωsij(k + 1) = −βs
∂Js
∂ωsij

+ αs1ωsij(k)
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FIGURE 4. Block diagram of a refrigeration benchmark process controlled by the SISO-PFMFAC-NNSEGV scheme.

∂Js
∂ωsij

=
∂Js

∂ys(k + 1)
∂ys(k + 1)
∂us(k)

∂us(k)
∂outsl(k)

∂outsl(k)
∂onetsl(k)

×
∂onetsl(k)
∂hidesi(k)

∂hidesi(k)
∂ωsij

(17)

where αs and βs are the inertia coefficient and learning rate,
respectively. The partial derivatives of us with respect to λ s
and ρs,p are as follows:

∂us(k)
∂λs

= −
ρs,1φs,1(k)(y∗s (k + 1)− ys(k))

(λs +
∣∣φs,1(k)∣∣2)2

−

φs,1(k)
Ls∑
p=2

ρs,pφs,p(k)1us(k − p+ 1)

(λs +
∣∣φs,1(k)∣∣2)2 (18)

∂us(k)
∂ρs,1

=
φs,1(k)(y∗s (k + 1)− ys(k))

λs +
∣∣φs,1(k)∣∣2 (19)

∂us(k)
∂ρs,p

= −
φs,1(k)φs,p(k)1us(k − p+ 1)

λs +
∣∣φs,1(k)∣∣2 2 ≤ p ≤ Ls

(20)

• The adjustment of the weight coefficients ωsli and ωsij is
expressed as

1wsli(k + 1) = βsoδslhidesi(k)+ αs1wsli(k)

oδsl = es(k + 1)sign
(
∂ys(k + 1)
∂us(k)

)
×
∂us(k)
∂outsl

g′ (onetsl(k))

1wsij(k + 1) = βshδsixsj(k)+ αs1wsij(k)

hδsi = f ′ (hnetsi(k))
Ls+1∑
l=1

oδslwsli(k) (21)

3) STRUCTURE OF THE PROPOSED CONTROLLER FOR A
REFRIGERATION SYSTEM
The proposed controller based on BPNN, which is designed
by combining the SISO-PFMFAC strategy with a neural net-
work, has created a new concept and a new tool for the control
of VCRS. The block diagram of the proposed controller
called SISO-PFMFAC-NNSEGV used in the refrigeration
benchmark process can be set up as depicted in Fig. 4. Both
closed loops use the same control scheme of single SISO-
PFMFACs, and the parameters used in the controllers can be
self-tuned online separately. In addition, the initial conditions
of the two control schemes can be chosen for a particular
problem depending on the difference in the characteristics of
the two closed loops.

4) FLOW CHART AND SOFTWARE
To briefly describe the proposedmethod, a relevant flow chart
is presented in Fig. 5, showing the novel control scheme used
in the refrigeration system step by step. The linearization
length constants L1 and L2, varying from 1 to nys+nus , usually
depend on the complexity of the system, and in this work,
L1 = L2 = 2 are chosen for the refrigeration process. In addi-
tion, considering that the gradient vector set for the BPNN
input is the previous information at time k−1, the derivatives
of Av(k), N (k) with respect to ρs,p, λs are stored for the next
time in each iteration, as indicated by the dashed line. All
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FIGURE 5. Flow chart describing the SISO-PFMFAC-NNSEGV control
method.

the algorithms in this work were implemented in MATLAB
2017b (Mathworks Inc., USA).

IV. RESULTS AND DISCUSSION
In this section, the performance of SISO-PFMFAC-NNSEGV
has been tested on vapor-compression refrigeration systems,
keeping the default settings unchanged as described in sub-
section 1). In subsection 2), the simulation results will be
compared qualitatively and quantitatively with the given
decentralized single PIDs. In addition, in order to validate that
the BP neural network with the system error set and gradient
vector set as learning signals has stronger robustness and
adaptiveness, BPNNswith different inputs are also compared.
As a result, the proposedmodel presents the best performance
with higher tracking accuracy and less variation of the control
signal, outperforming the benchmark controller.

A. INITIAL OPERATING CONDITIONS OF REFRIGERATION
SYSTEM
The vapor-compression refrigeration system provided by the
benchmark PID challenge is a two-input two-output system in
the presence of seven disturbances, as described in section II.
The initial operating points and the ranges of the manipulated
variables, controlled variables and disturbances are described

TABLE 3. Initial operating points and input variable ranges.

in Table 3. Particularly, it is worth mentioning that the manip-
ulated variables Av and N are subjected to their limits, and
are saturated within the system if the value is out of the
range as indicated in Table 3, with consideration of the actual
operating condition of the expansion valve and compressor
speed. In addition, the influence of the inlet pressures of
the secondary fluxes has not been studied, since their values
affect only the calculation of the thermodynamic properties
and it is expected that they will not change appreciably in a
real application.

Furthermore, the desired references for the controlled vari-
ables and the major disturbances are the inlet temperature of
the evaporator secondary flux Te,sec,in and the inlet tempera-
ture of the condenser secondary flux Tc,sec,in which need to
be compensated in the control objective, shown in Fig. 6 (a)
and Fig. 6 (b), respectively.

B. COMPARISON RESULTS WITH DIFFERENT
CONTROLLERS
In this subsection, qualitative and quantitative comparisons
are carried out between the SISO-PFMFAC-NNSEGV con-
troller and the default decentralized single PIDs provided by
the benchmark PID 2018. In addition, to validate that the
SISO-PFMFAC control scheme using a BP neural network
with the system error set and gradient vector set as learning
signals has stronger robustness and tracking ability, a set of
comparisons are given in this subsection, including SISO-
PFMFAC, an auto-tuned controller using BPNNonlywith the
system error set as the learning signal, abbreviated as SISO-
PFMFAC-NNSE, and an auto-tuned controller using BPNN
only with the gradient vector set as the learning signal, abbre-
viated as SISO-PFMFAC-NNGV. The simulations always
start from the initial operating points shown in Table 3, with
a sampling time Ts = 1 s and simulation time Tsim = 1200 s.

To speed up the convergence of BPNN, pre-processing of
data is considered first. Furthermore, the initial conditions of
the SISO-PFMFAC-NNSEGV controller are: L1 = L2 = 2,
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FIGURE 6. (a) The standard simulation generates changes in the
reference on Te,sec,out and TSH . (b) Two major disturbance variables
Te,sec,in and Tc,sec,in.

η1 = η2 = 1, µ1 = µ2 = 1, φ̂1,L1 (1) = φ̂2,L2 (1) = [1, 0]T,
ε = 10−5. The structure of both BPNNs is 6-8-3, the inertia
coefficient α1 = α2 = 0.1, the learning rate β1 = β2 =

0.3, and the initial connection weights ω1ij, ω1li, ω2ij, ω2li are
random between [−0.5, 0.5].
Fig. 7 shows the manipulated variables Av and N , and that

of the corresponding tracking performance of the controlled
variables Te,sec,out and TSH are given as shown in Fig. 8.
It can be seen in Fig. 7(b), although the control response is
saturated with respect to the compressor speed, it is impor-
tant to observe that the proposed methods avoid saturation
when applying the last disturbance of the inlet temperature
of the evaporator secondary fluid Te,sec,in and the inlet tem-
perature of the condenser secondary fluid Tc,sec,in at t =
16 min, which requires less variation of the control signal
while obtaining a tight control on TSH . Moreover, as shown
in Fig. 8 that the proposed controllers react quickly to sud-
den changes in references when disturbances are applied
and show a significantly small overshoot compared with the

FIGURE 7. Controlled inputs of (a) Av and (b) N for different controllers.

benchmark PID controller. Overall, the proposed controllers
achieve better control performance than the decentralized sin-
gle PIDs, with fast tracking performance and strong robust-
ness.

Furthermore, to clearly compare the effects of differ-
ent inputs for BPNN on the proposed self-tuning methods,
the detailed tracking performance of Te,sec,out and TSH are
shown in Fig. 9-10, respectively. Fig. 9 (a) and (b) show the
detailed tracking performance of Te,sec,out over the 2-2.1 min
and 9-9.1 min intervals, and Fig. 10 (a) and (b) show the
detailed tracking performance of TSH over the 2-2.1 min and
9-9.1 min intervals.

As a result, the proposed controllers achieve better control
performance especially than the default PID controller, with
fast tracking performance and strong robustness. Besides, the
parameter self-tuning approach proposed in this work using
BP neural network with the system error set and gradient
vector set as inputs performs better than that only with the
system error set and that only with the gradient vector set as
input. Thus, it can be concluded that the dynamic information
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FIGURE 8. Tracking performance of (a) Te,sec,out and (b) TSH for different
controllers.

of the control input in BPNN is of great importance to the
parameter tuning, which improves the adaptability of the
controller by obtaining sufficient VCRS information.

The methodology proposed in this work increases the
flexibility of λ s and ρs,p used in (5) and adapts well to
the refrigeration system in the face of any disturbance. The
self-tuning parameters of both SISO-PFMFAC-NNSEGV
controllers are shown in Fig. 11-12, which are adjusted
online according to the current system error. The parameters
react quickly to sudden changes in the reference, showing a
stronger self-adaptability than the fixed parameters used in
SISO-PFMFAC.

To further analyse the performance of SISO-PFMFAC-
NNSEGV, eight individual performance indices and one com-
bined index Jc are used for quantitative comparison. The first
two indices are the Ratio of Integral Absolute Error (RIAE),
considering that the two controlled variables Te,sec,out and
TSH should track their references. The third index is the
Ratio of Integral Time-weighted Absolute Error (RITAE) for
Te,sec,out , considering that the standard simulation includes

FIGURE 9. Detailed tracking performance of Te,sec,out over the 2-2.1 min
(a) and 9-9.1 min (b) intervals for different controllers.

one sudden change in its reference. The fourth, fifth and
sixth indices are the Ratios of Integral Time-weighted Abso-
lute Error (RITAE) for TSH , considering that the standard
simulation includes three sudden changes in its reference.
The seventh and eighth indices are the Ratios of Integral
Absolute Variation of Control signal (RIAVU) for the two
manipulated variables. The combined index Jc is a weighted
average of the above seven indices. Note that tc denotes the
corresponding initial step time and ts denotes the supposed
worst-case settling time. All the indices mentioned above are
described in (22)-(28).

IAE =
∫ t

0
|ei(t)| dt (22)

ITAE =
∫ tc+ts

tc
(t − tc) |ei(t)| dt (23)

IAVUi =
∫ t

0

∣∣∣∣dui(t)dt

∣∣∣∣ dt (24)

RIAEi(C2,C1) =
IAEi(C2)
IAEi(C1)

(25)
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FIGURE 10. Detailed tracking performance of TSH over the 2-2.1 min
(a) and 9-9.1 min (b) intervals for different controllers.

RITAEi(C2,C1, tc, ts) =
ITAEi(C2, tc, ts)
ITAEi(C1, tc, ts)

(26)

RIAVUi(C2,C1) =
IAVUi(C2)
IAVUi(C1)

(27)

J (C2,C1)

=

w1RIAE1(C2,C1)+ w2RIAE2(C2,C1)
+w3RITAE1(C2,C1, tc1, ts1)+w4RITAE2(C2,C1, tc2,ts2)
+w5RITAE2(C2,C1, tc3, ts3)+w6RITAE2(C2,C1, tc4,ts4)
+w7RIAVU1(C2,C1)+ w8RIAVU2(C2,C1)∑8

1 wi
(28)

Table 4 provides quantitative comparison indices that
show the overall performance of the controllers. Analysing
Table 4, it can be seen that all three self-tuning schemes
have better tracking performance than the fixed-parameter
controller SISO-PFMFAC, reflected in almost all relative
indices and the combined index Jc, which demonstrate that
the parameter self-tuning of SISO-PFMFAC is necessary

TABLE 4. Comparison of relative indices and combined index for
different controllers.

FIGURE 11. Parameter self-tuning results of (a) λ1 and (b) ρ1,p for
expansion valve opening (Av).

and meaningful in the field of control theory. By compar-
ing the last three columns, we can see that SISO-PFMFAC-
NNSEGV performs better than SISO-PFMFAC-NNSE and
SISO-PFMFAC-NNGV because it contains sufficient infor-
mation of the system outputs and the dynamics of the control
inputs, thus making the parameters self-tune more efficiently.
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FIGURE 12. Parameter self-tuning results of (a) λ2 and (b) ρ2,p for
compressor speed (N).

Comparing the first column and the last column, almost all
indices in the last column are smaller than those of the first
column, which indicates that the SISO-PFMFAC-NNSEGV
controller has a better tracking performance and less variation
of the control signal than SISO-PFMFAC and outperforms in
all three parameter self-tuning methods.

In conclusion, from the combined index Jc, the pro-
posed SISO-PFMFAC-NNSEGVcontroller achieves a 29.1%
improvement over the benchmark PID controller, a 9.6%
improvement over the SISO-PFMFAC controller, an 8.7%
improvement over the SISO-PFMFAC-NNSE controller, and
an 8.5% improvement over the SISO-PFMFAC-NNGV con-
troller, making it a promising control method for vapor-
compression refrigeration systems.

V. CONCLUSION
In this paper, a self-tuning methodology SISO-PFMFAC-
NNSEGV is proposed for the control of vapor-compression
refrigeration systems. The proposed controller mainly

focuses on the online self-tuning method using a BP neural
network with the system error set and gradient vector set as
learning signals, the effectiveness of which has been verified
by comparison with the benchmark PID controller. In addi-
tion, in order to prove that the dynamic information of the
control input is of great significance for the BPNN learning
algorithm, a set of comparisons are also given in this work,
and the proposed method performs better in both qualitative
and quantitative comparisons.

In this work, the performance of the controllers is evalu-
ated though the indices provided in the benchmark, where
the combined index Jc plays an important role in the com-
prehensive performance assessment. The proposed control
scheme shows the best performance with Jc = 0.7088,
which achieves a 29.1% improvement over the benchmark
PID controller, a 9.6% improvement over the SISO-PFMFAC
controller, an 8.7% improvement over the SISO-PFMFAC-
NNSE controller, and an 8.5% improvement over the SISO-
PFMFAC-NNGV controller. Furthermore, it shows more
accurate trajectories and less variation of the control signals
while requiring a simple structure and minimal calculations.
More importantly, less variation of the control signals can
extend the life of the expansion valve and compressor. There-
fore, it can be concluded that the SISO-PFMFAC-NNSEGV
controller is an effective method for the parameter self-
tuning of SISO-PFMFAC and is also a promising method
for the control of vapor-compression refrigeration systems.
Our future work will focus on the control of MIMO vapor-
compression refrigeration systems.
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