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ABSTRACT The time-frequency analysis (TFA) by wavelet transform is adopted for the laser ultrasonic
signal processing, and the effective features extraction of the material defect is obtained. The TFA is adopted
here to analyze the laser-generated surface acoustic wave (SAW) signal which contains the defect features,
the echo wave features are extracted significantly, especially under the condition of low signal-to-noise
rate (SNR). The simulation model by using finite element method (FEM) is set up in an aluminum plate
with different surface defect depths in detail, and the defect depths prediction with TFA is also considered.
It shows that, without extra denoising process, the echo SAW is extracted significantly in case of defect
depths ranging from 0.1mm to 0.9mm at SNR of−3dB by TFA. The TFA for processing the laser ultrasonic
signal provides a promising way to get the defect information, with the accuracy increased by 7.9dB in this
work, which is extremely meaningful for the ultrasonic signal processing and material evaluation.

INDEX TERMS Time-frequency analysis, laser ultrasonic signal, feature extraction, wavelet transform,
signal-to-noise rate.

I. INTRODUCTION
Due to the repaid development of laser and ultrasonic
technology, laser ultrasonic technique attracts increasing
intention, because it shows multiple advantages of high
spatial resolution, fruitful wave modes and high sensitivity
etc. [1]–[5]. So far, laser ultrasonic has been widely used in
many applications, such as biomedical imaging [6], surface
defect detection [7]–[9] and material evaluation [10], [11].

As a promising method for analyzing time-varying non-
stationary signals, time-frequency analysis (TFA) is playing
vital role in signal processing fields, which can extract the
details of the high frequency parts and the low frequency parts
of a signal effectively. Especially when the signal is in the
condition of low SNRs, the TFA can show excellent ability
in defect features extraction. The TFA can be obtained with
the Short-time Fourier Transform (STFT) [13], Wigner-Ville
distribution [14], wavelet transform (WT) [15] and atomic
decomposition [16] et al. And it has been variously applied in
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the mechanical fault diagnosis [17], [18], signal optimization
of communication system etc. [19], [20].

Usually for the laser ultrasonic signal processing, the non-
stationarity and nonlinearity features cannot be effectively
extracted by conventional time-domain or frequency-domain
analysis. In particular, the different frequency parts of the
surface waves are enhanced or suppressed by the different
depth of the defect, leading to the redistribution of the fre-
quency parts in the corresponding signals [21]. However,
due to combining both time-domain and frequency-domain
information, the TFA can represent the signal features more
clearly. In addition, deep learning-based feature extraction
method is a good method for signal processing [22]–[24].
But the TFA method is commonly faster and more efficient
for feature extraction, especially, in the case of small sam-
ples and insufficient machine performance. It is attracting
intensive interests in laser ultrasonic signal processing. Laser
ultrasonic testing for detecting plastic deformation by TFA
was studied [25]. In 2018, the TFA was used to further effec-
tively enhance the high frequency ultrasonic signal contrast
for determining corrosion layer thickness of hollow metallic
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FIGURE 1. The mechanism of laser-generated ultrasonic with
(a) thermoelastic mechanism and (b) ablative mechanism.

components [26]. In 2019, the detection and reconstruction
of internal defects in a metallic material was performed by
means of the TFA of ultrasonic waves [27]. The technique of
TFA facilitates the measurement of thickness, Young’s mod-
ulus, and Poisson’s ratio from just one noncontact measure-
ment [28], [29]. However, the noise, which is inevitable in the
laser-generated ultrasonic practical system, will hindered the
signal processing which result in the defect features cannot
be extracted effectively and thus weaken the performance of
the defect detecting system. Therefore, it is very necessary to
investigate the noises effect on the laser-generated ultrasonic
signal processing and extract the defect features effectively
for the surface defect detection at practical application.

In this paper, under the condition of low signal-to-noise
rate (SNR), TFA method are introduced to analyze the laser
ultrasonic signal. As a traditional and mature method for
extracting signal features, the TFA is utilized to extract the
echo wave of ultrasonic directly without extra denoising
process and algorithm improvement, which results in the
obvious accuracy enhancement of the surface defect features
extraction and paving a way for the defect prediction. The
reminder of this paper is organized as follows. In Section II,
the principle of laser ultrasonic is given and its finite element
method (FEM) model is set up in an aluminum plate, then the
surface defects detection and its feature extraction by surface
acoustic wave (SAW) with FEM is discussed. In Section III,
the TFA by wavelet transform is analyzed, and the applica-
tion of TFA on laser ultrasonic signal processing for defect
features extraction in different cases is investigated in detail,
then the defect depths prediction by TFA is also considered.
The conclusions are given in Section IV.

II. THERORY AND MODEL
A. PRINCIPLE AND THEORY OF LASER ULTRASONIC
The mechanism of laser-generated ultrasound is shown in
Fig. 1. The local, pulsed laser beam impinges on the material,
temperature rises due to part of the laser energy is absorbed
by the surface layer of the material. And with the transmis-
sion of absorbed energy to the surrounding area, a transient
non-uniform temperature field is then formed, which leads
to the thermal expansion and then results in local vibra-
tion and ultrasonic wave generation. The whole process is
accompanied by the energy conversion from light to thermal
and then to acoustic. There are two mechanisms of laser-
generated ultrasonic, which are thermoelastic mechanism
(as seen in Fig. 1 [a]) and ablative mechanism (in Fig. 1 [b]),
respectively [30].

FIGURE 2. The FEM model of laser-generated ultrasonic in aluminum
plate.

The optical intensity variation with depth inside an absorb-
ing medium, which is illuminated by a light beam at normal
incidence, is given by an exponential decay relation [30]:

I (x, y, z, t) = I0(x, y, t) exp(−γ z) (1)

where I (x, y, t) is the incident intensity distribution at the
surface, γ is an absorption coefficient characteristic of the
material for the given wavelength.

The optical energy absorbed by the material leads to a dis-
tributed heat source in the material, which can be expressed
as [30]:

q(x, y, z, t) = q0(x, y, t)γ exp(−γ z) (2)

where q0 is proportional to I0 and has the same spatial and
temporal properties as the incident laser source.

Generally, the thermoelastic mechanism is mainly used for
the practical non-destructive testing. For simplicity, a fully
decoupled linear analysis for homogeneous and isotropic
materials is considered. And the heat conduction equation in
the material can be deduced by establishing the differential
equation according to the heat balance condition. Combined
with the displacement equation it can be written as [5], [30]:

k

c2th

∂2T
∂t2
+ ρC

∂T
∂t
= k∇2T + q (3)

µ∇2U + (λ+ µ)∇ (∇ · U) = ρÜ + β∇T (4)

where k , cth, ρ and C are the thermal conductive coefficient,
thermal wave velocity, material density and the specific heat
capacity, respectively. T and U are transient temperature,
vectoral displacement field, respectively. λ and µ are lame
coefficient of the material, β is the thermoelastic coupling
coefficient defined as:

β = (3λ+ 2µ) αT (5)

where αT is the thermal expansion coefficient.

B. ESTABLISHMENT OF THE FEM MODEL
The laser ultrasonic technique is mainly applied to detection
the metal material defects, of which the aluminum is one
of the typical metal. Thus, an aluminum plate is adopted for
the model establishment and simulation in our work. Fig. 2 is
an aluminum plate model with the size of 0.1 m × 0.015 m,
in which the absorption boundary on the bottom surface and
the left side can reduce the intensity of the reflected wave
dramatically.
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TABLE 1. The properties of aluminum used in FEM.

FIGURE 3. (a) Spatial and (b) temporal distribution of simulated gaussian
laser pulse.

The parameters of the aluminum plate used in the
simulation are explored in Table 1. The Gaussian pulsed laser
is located 40 mm to the left side. The heat flux energy formed
by laser irradiation on the material surface can be described
as [5]:

q = E0Af (x) g (t) (6)

where E0 is laser intensity at the incident center, A is the
absorption rate of material surface, q is total energy absorbed
by the material surface. f (x) and g (t) are the spatial and
temporal distribution of the laser pulse, respectively, which
can be written as:

f (x) =
2

RG
√
2π

exp(−
(x − xG)2

R2G
) (7)

g (t) =
8t3

t40
exp(−

2t2

t20
) (8)

where t0 is the rise time, RG is the half width of the laser in the
direction x, and xG is the coordinates of the laser center. Here,
the parameters used are: t0 = 1× 10−8 s, RG = 1× 10−3 m,
and xG = 4× 10−2 m. Hence, as shown in Fig. 3, the spatial
and temporal distribution of the laser pulse is obtained.

The velocity of each waveform by the FEM can be derived
as follows [31]:

CL =

√
E
ρ

√
1− σ

(1+ σ )(1− 2σ )
(9)

CS =

√
E
ρ

√
1

2(1+ σ )
(10)

CR =
0.87+ 1.13σ

1+ σ
CS (11)

FIGURE 4. The propagation and distribution of laser-generated ultrasonic
with time of (a) t = 1.5 µs, (b) t = 5 µs, (c) t = 11 µs and (d) t = 13 µs.

where CL , CS , and CR are the velocity of longitudinal
waves, shear wave and surface wave, respectively. E and
σ are Young’s modulus, Poisson’s ratio of the material,
respectively.

In this paper, the surface defect is set up by FEM, where
its width is fixed to 0.5mm and depth varies from 0.1 mm to
0.9 mm. The defect is located 30 mm to the right side of the
laser point source. For detecting the vertical displacement of
the surface, a receiving point is set at 15mm to the left side
of the defect, as can be seen from Fig. 2. Furthermore, the
generated SAW signal propagates from the excitation center
to the other regions, and it can be received by the receiving
point for the first time. After meeting the surface defect,
the SAW propagates continuedly and be reflected partly, then
the echo wave signal is received.

C. THE LASER ULTRASONIC SIMULATION WITH FEM
Based on the previous analysis, the FEM of laser ultrasonic in
aluminum plate is established. The propagation and distribu-
tion of various ultrasonic waves modes is illustrated in Fig. 4.
It should be mentioned that the SAW is sensitive to surface
defects during its propagation on the material surface. When
the SAWencounters a defect, part ultrasonic wave is reflected
(defined as rR wave) with wave mode be converted, and the
others (defined as tR wave) continue to propagate through the
defect, as shown in Fig. 4 (c) and (d). The existence of defect
influences the propagation of ultrasonic wave greatly.
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FIGURE 5. The evolution of normalized displacement of echo wave signal
with time for different defect depths; the zoom-in view of echo wave
amplitude.

The multiple ultrasonic modes are excited by laser,
including the longitudinal wave (P-wave), transverse wave
(S-wave) and Rayleigh wave (R). P-wave have the fastest
speed but lowest energy, S-wave with energy concentra-
tion direction of 60 degrees to the surface of the material.
And the R, that is SAW, with the slowest speed and only
propagated on the surface.

Note that the echo wave signal at the receiving point is a
critical parameter for the defect information analysis. Thus,
we further investigate the normalized vertical displacement of
the echo wave signal in detail, which is described in Fig. 5.
In this case, we obtain the initial SAW at t = 5.2 µs,
and receive the echo wave signal at t = 15.6 µs. Based
on the arrival time of initial SAW, the propagation veloc-
ity of the SAW in the aluminum plate is calculated with
CR1 = 2894.6 m/s, when the relative position between the
excitation point and receiving point is fixed. According to the
(11), we calculate the theoretical value of CR2 = 2913.7 m/s.
The relative error of simulation is only 0.6% compared
to the theory calculation. It also can be seen from Fig. 5,
that the normalized displacement of echo wave increases with
the increase of the defect depths. Especially, the normalized
displacement increases obviously in the case of low depth,
due to the echowave signal is less sensitive to depth variations
when the defect depth increases to the equivalent value with
the SAW wavelength. Thus, the correctness of the model is
demonstrated.

III. LASER ULTRASONIC SIGNAL PROCESSING
WITH WAVELET TRANSFORM
A. WAVELET TRANSFORM
The wavelet transform is a suitable TFA method for laser
ultrasonic signal processing. The wavelet transform is a
time and frequency localized analysis method with fixed
window but changeable shape and scale, which defined in
time-domain is as follows [15]:

W (a, b) =
1
√
a

+∞∫
−∞

f (t)h∗a,b(t)dt (12)

FIGURE 6. The distribution of normalized energy intensity by TFA of the
surface defect with depth of 0.7 mm.

where a is scale factor, b is time shift factor and f (t) is
the signal function, respectively. ha,b(t) is named as mother
wavelet, it can be obtained with different a and b [15]:

ha,b(t) =
1
√
a
h(
t − b
a

) (13)

where h is a square integral function, thus the Ch can be
written as [15]:

Ch =
∫
dy |y|−1

∣∣∣ĥ(y)∣∣∣2 <∞ (14)

and b can also be expressed as the position of the wavelet
in the ha,b(t), while the dilation parameter a governs its
frequency. Conversely, for |a| � 1, the wavelet ha,b(t) is
spread out greatly and gets most low frequencies. Hence,
the wavelets are a useful way in the case of where better
time-resolution at high frequencies than at low frequencies
is desirable [15]. Therefore, the wavelet transform is used for
TFA to analyze the signal of laser ultrasonic.

B. THE TFA FOR LASER ULTRASONIC
In the following, the TFA by the wavelet transform is per-
formed on the laser ultrasonic signal processing. The signal
distribution of the energy intensity, frequency and time is
obtained at the receiving point. And because of the time
domain resolution of the TFA is inversely proportional to the
frequency domain resolution, so the appropriate parameters
are selected to ensure that the time domain and frequency
domain resolution of the TFA images are in a good state with
a reasonable processing speed. Fig. 6 describes TFA image
with the defect depth of 0.7 mm. Here, the x-axis represents
time, the y-axis is frequency, and the z-axis is normalized
spectrum energy intensity for each location. As can be seen
from Fig. 6, there appears two clear peaks in the total range
of time, the highest peak (with location of 5.3, 1.25, 0.5726),
indicates the initial SAW, and the lower peak is echo of SAW
(with location of 15.8, 1.42, 0.0924), where the intensity of
echo wave is very lower than that of original SAW. Note that
the echo SAW can determine the defect information signif-
icantly, then we should extract the echo wave information
clearly.

VOLUME 7, 2019 128709



Z. Zhu et al.: Effective Defect Features Extraction for Laser Ultrasonic Signal Processing by Using TFA

FIGURE 7. The main frequency of echo wave (blue curve) and initial wave
(red curve) as the function of defect depth.

FIGURE 8. A scan of SAW with original signal at defect depth of 0.3 mm
(black curve) and of 0.7 mm (green curve) and SAW with SNR of 7 dB at
defect depth of 0.3 mm (red curve) and of 0.7 mm (blue curve), zoom-in
view of echo wave.

Meanwhile, the variation of main frequency for initial
wave and echo wave with different defect depths is illus-
trated in Fig. 7. The defect depth is in the range of 0.1 mm
to 0.9 mm. The main frequency of initial wave maintains
1.25 MHz. However, the main frequency of echo wave varies
from 2.5 MHz to 1.2 MHz. Also, the main frequency of
echo wave reduces rapidly in the case of lower defect depth
from 0.1mm to 0.4mm. This interesting variation of the echo
wave main frequency provides another useful solution for the
feature extraction of the defect.

In practice, the received ultrasonic signal in the real situ-
ation is always accompanied with different types of noises.
Usually in the case of low SNRs, it is difficult to effectively
extract the defect information. Here, the Gaussian white noise
is added to the signal of different defect depths, we thereby
compare the influence of the noises on the SAW. It can be
seen from the Fig. 8, the defect depth is fixed to 0.3 mm and
0.7 mm, the normalized displacement of the SAW with the
original signal and the SNR of 7 dB is illustrated. And the
SNR is defined as follows:

SNR =
Psignal
Pnoise

= (
Asignal
Anoise

)2 (15)

where P and A is the average power and amplitude of the
wave.

FIGURE 9. The SAW distribution by TFA in case of the defect with depth of
(a) 0.3 mm for original signal, (b) 0.3 mm with SNR of 7 dB, (c) 0.7 mm for
original signal and (d) 0.7 mm with SNR of 7 dB, zoom-in view of echo
wave.

The amplitude of the echo signal is changed obviously
when considering the noises influence.When the defect depth
is 0.3 mm, the normalized echo amplitude varies from 0.06 to
0.14. But in the case of defect depth of 0.7mm, the variation is
different with that of 0.3 mm. Thus, the defect features cannot
be extracted by this time-domain analysis (sometimes named
as A scan in field of ultrasonic signal processing) because of
the noises influence.

According to the previous analysis, the time-domain
analysis cannot represent the depth characteristics of surface
defects well, where the defect features cannot be distin-
guished from the noises in this way. Therefore, we present
utilizing the TFA to further analyze the above four cases for
getting better defect information, as shown in Fig. 9.

As shown in Fig. 9 (a) and (c), the signal information by
TFAwith defect depths of 0.3 mm and 0.7 mm are illustrated.
There are obvious peak occurs at t = 5.3µs and t = 15.3µs,
which represent the initial wave and the echo wave signal
of SAW, respectively. As shown in Fig. 9 (b) and (d) on the
right, it clearly shows that even when one-dimensional signal
is influenced by noises, clutter can also appear in TFA. The
echo wave can still be seen from TFA chart compared with
one-dimensional signal. And some simple transformations of
TFA images can render TFA plane image.

Fig. 10 is the top view of Fig. 9, which further indicates
the echo wave information by TFA significantly, as a result,
the TFA inhibits obvious defect features extraction from
another aspect. It can be seen that, the SAW signal occurs
clearly in the range of correct time and frequency. Also, both
the frequency and temporal of echo wave broadens with the
increase of defect depths, this broaden tendency relating to
the defect depth provides another way for defect information
analysis.

C. EXTRACTION OF DEFECT FEATURES
WITH DIFFEENT SNRS BY TFA
Next, based on previous method, we further discuss the
optimization result of TFA for laser ultrasonic defect features
extraction in the case of different SNRs.
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FIGURE 10. The top view of TFA image in case of the defect with depth of
(a) 0.3 mm for the original signal, (b) 0.3 mm for the SNR of 7 dB,
(c) 0.7 mm for the original signal, and (d) 0.7 mm for the SNR of 7 dB.

FIGURE 11. The SAW distribution with defect depth of 0.7 mm when the
SNR of (a) original signal, (b) 7 dB, (c) 2 dB and (d) −3 dB.

Fig. 11 explores the SAW variation under different SNRs,
here, the surface defect depth is fixed to 0.7 mm. We can
see that, the echo wave signal is gradually submerged by
noises with the decrease of SNRs, in addition, the echo wave
cannot be extracted when the SNR is less than 2 dB. This
time-domain analysis method cannot distinguish the defect
information in this condition.

Consequently, the TFA is introduced for further defect
signal processing. The TFA results of the previous four
cases are given in Fig. 12. Compared with the time-domain
results in Fig. 11, this TFA method illustrates both the ini-
tial and the echo wave significantly, with the echo char-
acteristics maintaining unchanged. Despite of the different
noises, we can still find two distinct peaks (i.e. representing
the initial and echo wave) in the range of 1.25 MHz to
2.5 MHz. That is to say, the TFA can effectively extract
the defect properties of materials in practical application,
which offering a good solution for non-stationary signals
processing.

In addition, based on the TFA technique given previously,
we analyze the SAW informationwith different defect depths.
The results are compared between the original signal and

FIGURE 12. The TFA results of Fig. 11.

FIGURE 13. The evolution of A1 (black curve), A2 (blue curve) and
f (red curve) of different defect depths (a) without TFA, and (b) with TFA.

the SNR of −3 dB. Here, we define Ad1 and At1 is the
normalized amplitude of the echo wave for original signal
without and with TFA, respectively. Ad2 and At2 is for the
SNR of −3 dB without and with TFA where the echo wave
cannot be extracted by time-domain analysis. Subsequently,
the values of normalized amplitudes at different defect depths
is obtained by TFA. As shown in Fig. 13, the black solid
curve explores the variation of the original signal, and the
blue solid curve is the one in case of SNR of−3 dB. We then
utilize cubic equation to attain the fitting curve ofAd2 andAt2,
as shown with the red curve in Fig. 13. The fitting equation
can be induced as:

fd = −0.00798x3 + 0.116x2 − 0.3501x − 0.514 (16)

ft = 0.004525x3+0.05603x2−0.02589x − 0.04205 (17)

The root means square error (RMSE), which is an effective
parameter for evaluating deviation, is used to express the
results between the fitted value and the actual value. It can
be written as:

RMSE =

√√√√ 1
m

m∑
i=1

(f (i)− A1(i))2 (18)

It can be calculated that the RMSE with TFA is −24.9dB,
and the RMSE without TFA is −17.0dB, where the RMSE
value is relative lower than that without the TFA. That is to
say, the application of TFA to extract defect features directly
can reduce the error by 7.9dB compared to that of without
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this method. Thus, the TFA is suitable for the processing of
the defect depths prediction and material properties analysis.

IV. CONCLUSION
In summary, by introducing the TFA as suitable signal pro-
cessing method, the defect features extraction in the laser
ultrasonic signal processing is obtained. The results show
that the defects features is extracted effectively by using the
wavelet transform for TFA, especially at low SNRs. In con-
crete, the laser-generated ultrasonic is simulated by FEMwith
establishing the model in aluminum plate, and the propaga-
tion and distribution of SAW is explored. Besides, the main
frequency of initial and echo SAW by wavelet transform is
obtained, as a result, the main frequency of initial wave main-
tains 1.25MHz and the main frequency of echo wave deduces
with the increase of the defect depths. Also, in the case of
different defect depths, the defect features can be extracted by
TFA both for original signal and the SNR of 7 dB, the result
indicate that the different SNRs do not affect the echo wave
frequency and the echo wave broadens with the increase of
the defect depths. Under the condition of further decreasing
the SNRs, the effective defect features extraction is also
achieved by TFA, compared to the time-domain analysis
which cannot extract the defect information at low SNRs. In
addition, the fitting equation for different defect depths is
deduced with TFA and the accuracy increased by 7.9dB.
Hence, the TFAmethod is the alternative and promising tools
for laser ultrasonic signal processing to promote the defect
feature analysis efficiency, which is an excellent candidate
for material evaluation and signal processing at widespread
fields in the future.
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