
Received August 17, 2019, accepted August 26, 2019, date of publication September 3, 2019, date of current version
September 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939161

An Approximate Quadratic Programming for
Efficient Bellman Equation Solution
JIANMEI SU , (Student Member, IEEE), HONG CHENG, (Senior Member, IEEE),
HONGLIANG GUO, RUI HUANG, (Member, IEEE), AND ZHINAN PENG
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Hong Cheng (hcheng@uestc.edu.cn)

This work was supported by the National Key Research and Development Program of China for ‘‘New Energy Automobile’’, the Key
Technology Research and Demonstration Operation of Electric Autonomous Vehicle Project under Grant 2017YFB0102603.

ABSTRACT This paper proposes an efficient algorithm which relies on quadratic programming for approx-
imately solving the Bellman equation in reinforcement learning problem and guarantees to return optimal
decision parameters. Through further applying universal approximation and fixed cardinality minimization
techniques, the proposed algorithm in one hand expands the representation ability of basic linear value
functions, on the other hand, it guarantees the convergence of the Bellman error. Experimental results on
two canonical reinforcement learning scenarios demonstrate that the proposed algorithm achieves similar
or better performance than the state-of-the-art algorithms, while reduces the computation time significantly
and improves the robustness of the algorithm against state uncertainty.

INDEX TERMS Markov decision processes, approximate quadratic programming, Bellman equation
solutions, universal approximation, fixed cardinality.

I. INTRODUCTION
Reinforcement learning(RL) has been a hot topic with the
wide spread of the autonomous intelligent in the real world
such as autonomous driving [1], play the game of go [2]
and so on. The study of RL is how an agent interacts with
its environment to learn optimal strategies for sequential
decision problems by maximizing the expected cumulative
rewards [3]. In most RL environments, the scenario can be
modeled as the Markov Decision Processes (MDPs) frame-
work. Solving large MDPs has attracted growing interests
from researchers and enterprises, which is a very useful,
but with computationally challenging problem. Fortunately,
many advanced approximating approaches are proposed in
the past few years, for example, the parameter identifica-
tion of nonlinear equations with fully unknown parameters
for generalized synchronization are well studied [4]–[6].
Additionally, With the widespread of the dynamic neural
networks [7], topology identification and dynamic properties
with time delay in neural networks [8] are widely inves-
tigated. Module-phase synchronization [9], projective syn-
chronization [10] are derived in analysis which can be applied
in the communication and many other fields. Furthermore,

The associate editor coordinating the review of this article and approving
it for publication was Yongming Li.

the optimality is also needed to be ensured in the control
system [11]. Based on the Bellman optimality principle,
adaptive dynamic programming for optimal control of non-
linear system is proposed by using a function approxima-
tion structure [12]. For most large MDPs, it can not obtain
the optimal solution exactly. Therefore, a large number of
researchers approximate the MDPs solution with a variety
of mathematical programming approaches and mainly rely
on Linear Programming(LP). Value function approximation
with numbers of the linear basic function is a common
approach for accessing approximate optimal solutions. For
most LP methods for value function approximation of the
Bellman equation solutions, the objective is the minimization
of the value function.

Motivated by the above discussions, in this paper, we dis-
cuss an Approximate Quadratic Programming(AQP) algo-
rithm, which is able to return the optimal decision parameters.
We first transform the canonical Bellman equation into a set
of linear constraints and then set up a Quadratic Program-
ming (QP) problem to find the initial decision parameters.
With the fixed cardinality minimization technique, we refor-
mulate the previous QP problem into an LP problem, with
this operator, the Bellman error is guaranteed to converge.

The algorithm transforms the Bellman equation solu-
tion process into standard mathematical programming

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 126077

https://orcid.org/0000-0002-7901-6835

J. Su et al.: AQP for Efficient Bellman Equation Solution

frameworks, i.e. QP and LP.While the actual solution process
of QP and LP may still rely on iterated computation such
as interior point method [13], we argue that representing
the Bellman equation solution into compact mathematical
programming problems, which improves the superiority of
the solution process a lot, as there are many effective tools
for improving the efficiency of the LP/QP solution [14].

Our contribution can be concluded as follows: (1) TheAQP
algorithm is proposed to solve the Bellman equation via an
approximate manner, in which the Bellman equation solution
process is modeled as classical mathematical programming
forms and guarantees to return the optimal decision parame-
ters; (2) Bellman error is directly treated in the objective of
the formulation which makes the AQP algorithm converge to
the minimal Bellman error, and we enhance the robustness
property of AQP solution for state uncertainties; (3) relying
on the Universal Approximation (UA) theory, the representa-
tion ability of the linear functions for optimal value function
approximation is well expended, so as to reduce Bellman
error, the fixed cardinalityminimization technique guarantees
the convergence of Bellman error. Extensive experimental
results demonstrate the advantages of AQP over the state of
the arts.

The remainder of this paper is organized as follows.
In Section II, we introduce the literature review, Approximate
Linear Programming (ALP) for solving MDPs, the introduc-
tion of UA and cardinality minimization algorithms. In
Section III, we give the background ofMDPs. Section IV pre-
sents the overview of the proposed algorithm. In Section V,
we describe the practical implementation of the proposed
algorithm, furthermore, we provide the computational com-
plexity and ended with the core deployment. Section VI
elaborates the potential improvement and generalizes the pro-
posed algorithm to other applications. Experimental results
and corresponding analysis are presented in Section VII. The
conclusions and future work are given in VIII.

II. LITERATURE REVIEW
In this section, we will review canonical LP methods for
Bellman equation solutions, introduce the universal approxi-
mation theory and cardinality minimization technique. As we
are essentially proposing to use two canonical mathematical
programming approaches (QP and LP) to solve the Bellman
equation, we also give a brief review on LP approaches for
MDP solutions in one of the subsections.

A. APPROXIMATE LINEAR PROGRAMMING
APPROACHES FOR MDP SOLUTIONS
Date back to the research of Schweitzer and Seidmann [15],
optimal value function can be obtained by considering linear
approximations that combines a series of basic functions.
Therefore, choosing basic functions for good approximation
is one key factor for solving large MDPs. Following that,
the original problem becomes to find the coefficients of
these basic functions for giving a good approximation which
is sufficient and efficiently without considering the large

number of sates. Therefore, ALP approaches is well studied.
By solving an LP with large number of linear constrains,
the optimal solutions usually lie in the subspace spanned by
the basic functions. Utilizing a linear combination of basic
function architectures and combining with a mechanism to
sample a small subset among the constraints, the parameters
of the optimal solution are within a constant factor of the
best approximation [16]–[18]. But, the approximate solution
of ALP is limited by the large number of the constraints,
therefore, the approximation of the constraints becomes a hot
interests for many researchers [19], [20]. In fact, the con-
straints number is strong related with the state space, it is
necessary to investigate the algorithm which can be done in
time independent of the states [21]. When the state space is
large enough, the best strategy with low excess loss can be
found in a small family of the policies [22].

Selecting a tractable subset of the constraints while keep-
ing the solution approximation well, as well as keeping
computation tractable are worth to well investigate. In the
LP formulation, linear objective is optimized by a point on
the boundary of the feasible region, thus there are many
constraints which is equal with the number of optimization
variable. It is important to find a superset of the these linear
constraints that can well approximate but without increasing
much computation time. Guestrin et al. [23] designed fac-
torized MDPs for constraints generation to generate violated
constraints efficiently. de Farias and Van Roy [17], [18] give
a more general approach by choosing states, and obtain a
subset of the constraints for solving the LP problem. Further
more, they impose an extra constraint on the optimization
variables by obtaining the bound that scales with the worst
approximation error. Desai et al. [24] and Bhat et al. [25]
make some extensions with other algorithms. However, they
are all based on LP with the values optimization, and do not
aim at the Bellman errors convergence and the robustness of
the coefficients.

In this paper, the proposed approach aims atminimizing the
Bellman error directly in the objective function. Furthermore,
by incorporating the minimization of the solution parameters,
the robustness of the strategy for the agent in its scenarios is
well improved. With these properties, the proposed approach
shows good performance on efficiency and practicability in
real world.

B. UNIVERSAL APPROXIMATION THEORY
Based on conventional neural network theories, universal
approximation theorem states that a single-hidden-layer feed
forward networks with numbers of hidden nodes [26], [27]
which holds strong approximation ability that can approxi-
mate any continuous functions with numbers of neurons in
the hidden layer under mild assumptions on the activation
function [28], [29].

The incremental constructive method can randomly choose
hidden nodes and then only need to adjust the output weights
linking the hidden layer and the output layer [30]. The num-
ber of hidden nodes and the approximation error can be

126078 VOLUME 7, 2019

J. Su et al.: AQP for Efficient Bellman Equation Solution

examined [27] which ensures the modelling performance
without over-fitting. In principle, the desired level of accu-
racy can be reached by increasing the number of hid-
den nodes [31], [32]. As deep learning is derived, deep
stochastic configuration networks is widely used with the
extension of traditional universal approximation with super
representation [33]–[35].

C. CARDINALITY MINIMIZATION TECHNIQUE
The cardinality is represented by the number of elements
which are not 0 in the matrix, such as the cardinality of Ey is 1,
when the vector is Ey = [y1, y2, y3, y4] = [0, 0, 0, 2]. Solving
the minimization problem for a cardinality mechanism can
be regarded as a series of optimization issues [36]. These
problems talked before are usually deployed in graph-related
problems with randomized approaches, as random separa-
tion [37], [38], which considers the solutions with exactly
a fixed number k of elements that optimizes the solution
values. Matrix rank minimization problem can be viewed as
a special cardinality minimization problem and can be solved
through iterated reweighed `1 algorithm [39]. Classical com-
pressed sensing problem is to find sparsest solution to an
under-determined system of linear equations. A good convex
approximation is tominimize the `1 norm subject to the affine
constraints [40].

III. BACKGROUND
We consider Markov decision processes (MDPs) model
defined formally as a tuple: 〈S,A,Ps

′

sa,R(s, a), γ 〉, where S
is the set of the states s, A is the set of the actions a, P is the
transition from the current state s to the next state s′, R(s, a) ∈
R is the reward function and γ ∈ (0, 1) is the discount factor
[3]. The problem in the MDPs is that an agent reaches a given
destination with an optimal policy which can be found by
maximizing discounted future rewards E(

∑
∞

k=0 γ
kRk).

In order to obtain the optimal policy for the agent, the max
value of each state can be calculated by approximately solv-
ing the Bellman equation under the optimal action chosen in
the state i.e., V ∗(s) = max

a

(
γ
∑

s′ P
s′
saV
∗(s′)+ R(s, a)

)
.

LP is a classical method for obtaining approximate optimal
V ∗(s), the objective is to minimize the sum of the states’
values under the proper constraints,

minimize
∑
s

V ∗(s)

subject to (∀s, a)V ∗(s) ≥ R(s, a)+ γ
∑
s′
Ps
′

saV
∗(s′) (1)

ALP mainly aim at calculating the optimal approximate
value function for large MDP which can be formulated as:

minimize
∑
s∈S

ρ(s)V (s)

subject to V (s) ≥ R(s, a)+ γ
∑
s′∈S

Ps
′

saV (s
′) (2)

where ρ is the distribution for the states, thus we have a set
of state-relevance weight associate with every state in the

optimization criterion. The constraints are for all (s, a) ∈
(S,A) and

∑
s∈S ρ(s) = 1.

In many real world applications, the continuous state space
is too large even infinite. In those cases we approximate
the value function via a linear combination of the feature
functions for each state. The variables in the ALP are the
weights assigned to each basic function and the value of each
state is computed as φ(s)Tω, where φ(s) is the feature vector
for the corresponding state, which is assumed to be constant
for feasibility implementation. ω is the weight vector. The
feature based linear program becomes:

minimize
∑
s

ρ(s)φT (s)ω

subject to (∀s, a)φ(s)Tω ≥ R(s, a)+ γ
∑
s′
Ps
′

saφ(s)
Tω (3)

It reduces the number of variables in the linear program by
using features, but it does not reduce the number of con-
straints. However, the constraints number is larger than the
number of variables, we usually try to reduce the constraints
number to save the computation cost. With a assumptions
over the sampling distribution [18], we utilise regulariza-
tion [41] to sample large number of the constraints. By this
way, the probability and the performance degradation gener-
ated by the non-sampled constraint or the missing constraints
are bounded. Theweights of the state-relevancewill influence
the programming solutions, a trade-off in the quality of the
approximation across different states [17] can be imposed in
the formulation.

IV. OVERVIEW OF OUR METHODOLOGY
In this paper, we propose an AQP algorithm, which returns
the optimal decision parameters for Bellman equation solu-
tions. With a linear approximator for the optimal value func-
tion representation, we first transform the canonical Bellman
equation into a set of linear constraints and then set up a
QP problem to find the initial decision parameters and the
affiliated approximation errors. With the fixed cardinality
minimization technique, we reformulate the previous QP
problem into an LP problem, and Bellman error is guaranteed
to converge.

Furthermore, we enhance our algorithm over miscella-
neous factors, such as robustness against observation uncer-
tainty and runtime goal programming problem. As the linear
value function representation ability is limited, we use uni-
versal approximation strategy to expand the linear func-
tion representation ability. Moreover, the fixed cardinality
minimization technique guarantees the convergence of the
Bellman error. With UA and cardinality minimization,
the expanded linear value function approximation and the
convergence of the Bellman error improve the representation
ability and make the agent perform near optimally.

V. APPROXIMATE QUADRATIC PROGRAMMING
METHODOLOGY
This section introduces the AQP methodology in details.
We first give the traditional QP formulation, then lay out how

VOLUME 7, 2019 126079

J. Su et al.: AQP for Efficient Bellman Equation Solution

we have used a QP problem formulation to approximate the
Bellman equation solution. Then we display the UA theory
for expanding the linear value function representation ability,
followed by the fixed cardinality minimization technique to
guarantee the convergence of Bellman error. After computa-
tion complexity analysis, we end the section with a pseudo
code depicting the flow of the AQP methodology.

A. THE QUADRATIC PROGRAMMING FORMULATION
WITH LINEAR CONSTRAINTS
QP is a special mathematical programming problem in
nonlinear programming which has been widely applied in
portfolio, constrained least squares problem solving, sequen-
tial quadratic programming in nonlinear optimization prob-
lems [42]. The nonlinear objective in the optimization
problem always be approximated by the second-order system
and be solved by mathematical methods. The QP formulation
can be expressed as:

minimize q(x) =
1
2
xTGx + cxT

subject to aTi x ≥ bi i ∈ τ, (4)

where x is the vector with n-dimensional, c ∈ Rn,A =
aTi ∈ R

p×n, b ∈ Rp. τ is finite index set. If the G is positive
definite, this kind of quadratic programming is strictly convex
quadratic programming, then the global minimum is unique.
Quadratic problem with equality constraints aTi x = bi plays
special role in the mathematical programming which can be
solved by effective set method and lagrange method. With
standard solvers in mathematical programming, it can be
solved quickly.

Following, we will introduce the QP formulation for solv-
ing the Bellman equation for MDPs.

B. QP FOR BELLMAN EQUATION SOLUTION
The formulation of Bellman equation is a basic process in
most of the existing works of RL problems which can be
expressed as:

V ∗(s) = max
a

(
γ
∑

s′P
s′
saV
∗(s′)+ R(s, a)

)
, (5)

and it can be seen that this is a nonlinear equation and be
solved just approximately. Furthermore, we omit the max
operator and approximate the value functionwith the Bellman
error as an linear equation:

V (s)=γ
∑

s′P
s′
saV (s

′)+R(s, a)+ε(s, a), ε(s, a) ≥ 0 , (6)

where γ ∈ (0, 1) is the discount factor. Choosing an action
a ∈ A in the current state from the state space s ∈ S, the agent
will reach the next state s′. V (s) is the value function in state
s. R(s, a) is the expected reward back from the correspond-
ing action a in state s. Eq. (6) includes all the elements of
(s, a, s′, r).
In the proposed approach of the paper, we use a linear

approximator with the weight vector θ for the value function
approximation. For each state s, the related feature vector can

be represented as φ(s) = (φ1(s), φ2(s), . . . , φn(s))> with the
same number of components as in θ . Therefore, the value
function can be parameterized as: Vθ (s) = θ>φ(s). Eq. (6)
can be explicitly expressed as:

θ>φ(s)=γ
∑
s′
Ps
′

saθ
>φ(s′)+R(s, a)+ε(s, a), ε(s, a) ≥ 0 .

(7)

For each state, there will be different constraints for dif-
ferent actions. In AQP approach, the state-action pairs are
sampled with linear value function approximation as the con-
straints in QP. From the machine learning theory on the
sensitive property of the parameters [43], it shows that, in the
objective of LP or QP problems, the robustness of the solu-
tion is highly related with the sensitivity of the parameter
variables. Inspired by the discussion above, we design the
objective of the QP with minimizing parameters as the form
of (θ> θ) under linear constraints. By this way, the optimal
solution of the value function holds little sensitivity against
the state changing features. The detailed problem formulation
is as follows:

minimize
1
2
θ>θ

subject to θ>φ(s) ≥ γ
∑
s′
Ps
′

saθ
>φ(s′)+ R(s, a) , (8)

where the meanings of the parameters are same as in Eq. (6).
It is worth noting that, in order to obtain meaningful solu-
tions of the QP problem, which means that, the parameters
should be effective and not all zeros. Under this require-
ment, the rewards for the agent designed in the MDPs need
to be guaranteed variety (it means that the reward value
should include positive and negative). In the Eq. (8) problem,
the number of the constraints is highly related with the dimen-
sion of the state space and action space. Therefore, the QP
problem includes large number of inequality constraints. For
large scale MDPs, the number of the constraints need keep in
a solvable condition by sampling.

However, in the proposed QP formulation, the limited
representation of the linear basic functions for approximating
the value function reduces the quality of the optimal solution.
Furthermore, the Bellman equation should be regarded as
explicit objective to improve the quality of the policy. In the
following two subsections, we will introduce UA and the
fixed cardinality minimization technique to overcome these
limitations.

C. UA FOR EXPANDING REPRESENTATION ABILITY
In AQP, we use a linear approximator for the value func-
tion approximation whose representation ability is limited.
To overcome the limitation, we use the universal approx-
imation strategy to expand the linear value function rep-
resentation ability. The expanded features through UA are
determined as hs = σ (φ(s), r), where hs is the extended
feature vector of state s, σ (·) is the activation function with
parameter r . The activation function is usually a nonconstant,

126080 VOLUME 7, 2019

J. Su et al.: AQP for Efficient Bellman Equation Solution

bounded, and monotonically-increasing continuous function,
e.g. sigmoid function. Then the value function with the
expanded features can be rewritten as Vθ (h) = θ>h, where
the feature vector h is the representation of hidden node hi
which is defined as: h = (h1, h2, . . . , hm), where hi covers
the extension information of the state in the scene, and real
vectors θ ∈ Rm.
Then we obtain the linear value function approximation

with universal approximation of the expanded features as:

θ>hs=γ
∑
s′
Ps
′

saθ
>h′s+R(s, a)+ε(s, a), ε(s, a)≥0 , (9)

where the constraint with hs is the expanded features of s
replacing the constraint in Eq. (8).

D. FIXED CARDINALITY MINIMIZATION
To keep the convergence of the Bellman error, we use fixed
cardinality minimization technique to minimize Bellman
error which can be expressed as:

e =
∣∣V (s)− V ∗(s)∣∣ . (10)

For example, the number of inequality constraints are calcu-
lated by the product of the number of the state samples and
the number of the actions. Such as in grid world scenario,
a classical RL example, in each state, there are four actions
available. In the proposed formulation, each linear constraint
is obtained by the action acting at the corresponding state.
If the state sample number is ns, the action number on each
state is na, thus the constraints number will be ns · na. In the
MDPs, the optimal policy is obtained in these optimal actions
chosen by the agent in the sates, and the error from the
solution is the smallest one. Therefore, minimizing the sum
of the Bellman errors in the objective will well improve the
accuracy of the solution.We reformulate the original problem
(as defined in Eq. (8)) as a fixed cardinality minimization
problem, which is to minimize the summation of Bellman
errors:

minimize
M∑
i=1

ωiεi

subject to θ>hs=γ
∑
s′
Ps
′

saθ
>h′s+R(s, a)+ε(s, a)

ε(s, a) ≥ 0 , (11)

where M is equal to the total number of the equality con-
straints in the problem, ωi is the coefficient of the Bellman
errors and the value is the element from {0, 1}. The initial
Bellman error is calculated by solving Eq. (8). For each given
state, there are corresponding optimal action and approximate
Bellman error. What means that, the optimal action a ∈ A
is corresponding to the smallest error on the state, and the
accompanying coefficient is ωi = 1. Except the smallest one,
other errors corresponding to the same state, the coefficients
will be regarded as 0. Through this fixed cardinality mini-
mization algorithm, for any given state s in the state samples,
there is only one ωi = 1. Therefore, in the AQP problem,

the number of the ωi = 1 is large enough to obtain a relative
optimal solution.

E. COMPUTATION COST ANALYSIS
The number of the computation times for floating point is
usually utilized to express the computation cost complexity
for an algorithm. The operation for the floating point are four
arithmetic operation [13]. When evaluate the computation
complexity of an algorithm, we just need to count the total
number of operations and express it as a function (usually
a polynomial) of the dimension of the matrices and vectors
involved, and simplify the expression by ignoring all the
terms except for the leading one.

The classical algorithm for solving LP under numbers of
the linear constraints is usually utilizing the Simplex method
[44], [45] and similarly, and for solving QP, active set method
is used [46]. In this paper, the proposed AQP algorithm is
solved by QP and LP for the optimal final solution to find
an optimal policy. Based on the theory of the floating point
computation, the complexity of the computation cost will
be performed by O(mn2) with matrix Q ∈ Rm×n [13]. m
is corresponding to the number of the nonlinear or linear
constraints in the QP and LP in our algorithm, which is the
product of the state sample number and the number of the
actions. n is the number of the decision variables (in our
algorithm, it is the number of θ).

F. CORE DEPLOYMENT
Consider the linear value function approximation for solving
the Bellman equation, we give the core part of the proposed
approach and show it in Alg. 1. Following, we first give the
input and output vectors. Lines 1− 8 give the process of QP,
and the initial parameters are obtained. Then, Lines 9 − 16
show the process of LP which guarantees the convergence
of Bellman error. In particular, the errors received in the QP
provide the information for the fixed cardinalityminimization
in the following LP. Especially, in QP, the linear constraints
are a set of inequality equations which are used to obtain the
initial Bellman error. Then, LP minimizes the initial Bellman
error to achieve optimal solution.

VI. FURTHER ENHANCEMENT
The main methodology has been introduced in the previous
sections. In this section, we will introduce how to enhance
the core AQP methodology for two use important cases, one
is to find the optimal values considering the state observation
uncertainty, and the other is generalized goal during execution
when the agent is given the start state and the goal state.

A. ROBUSTNESS AGAINST STATE UNCERTAINTY
In practical cases, the state of an agent from the scenario
circumstance is obtained with various noise, even worse, they
are not fixed value during the implement processing when the
agent goes on. Therefore, it is not surprising that the actual
performance of the optimal strategy degrades significantly
from the model’s prediction due to the state inaccuracy-the

VOLUME 7, 2019 126081

J. Su et al.: AQP for Efficient Bellman Equation Solution

Algorithm 1 AQP Methodology Flow Process
Input:
h, θ , γ .
Output: Optimal V ∗(s) for each state s

1 Set the objective of QP: minimize 1
2θ

>θ
2 for each state s do
3 Obtain the expanded features with UA
4 if state 6= goal then
5 for each action a ∈ A do
6 Get next state s′ and calculate the return of

state s,
7 Construct inequality constraints.

8 Solve QP and calculate Bellman error ε from QP
9 Set the objective of LP: minimize

∑
ωiεi.

10 for each state s do
11 Obtain the expand features with UA
12 if state 6= goal then
13 for each action a ∈ A do
14 Get next state s′ and calculate the return of

state s,
15 Construct equality constraints.

16 Solve LP and return optimal decision parameters (θ).
17 Calculate the reward on each state.
18 Final

deviation of the model values from the true ones. If the state
observation holds some uncertainty, it is difficult to obtain the
optimal solutions from the designed mechanism. Moreover,
the inaccurate approximation of the value functionwill lead to
failed decision for the task. In classical ML algorithms, there
always is a penalty term in the optimization objective to alle-
viate the sensitivity and improve the robustness of the solu-
tions. In the proposed approach, we need the parametrized
value function representation of our algorithm to be robust
against the state uncertainty, thus, besides Bellman error min-
imization, we also need to make the parameters (θ) as small
as possible. This is a canonical QP problem which can be
solved directly, and we can reformulate the fixed cardinality
minimization problem into a QP problem expressed as:

minimize
ε

N∑
i=1

ωiεi +
1
2
Cθ>θ

subject to θ>hs=γ
∑
s′
Ps
′

saθ
>h′s+R(s, a)+ε(s, a)

ε(s, a) ≥ 0 , (12)

where C is a balancing parameter which will adjust the
relationship of the accuracy and robustness, what means that,
the higher value of the balancing parameter and the more
robustness of the solution. In this operation, the solution of
the proposed formulation shows better performance on these
properties.

B. GENERALIZED GOAL DURING EXECUTION
In a realistic scenario, the goal may not be static during
execution. For example, when a cat is pursuing a mouse who
is running all the time, it is impossible to predefine a fixed
static goal for reinforcement learning algorithms to execute.
Therefore, it is important to design a mechanism which can
solve the dynamic changing goal problem.

In our algorithm, we form the new features of state as
φ(s, g). The feature vector (s, g) is the representation of
state s and the goal g which is defined as: (s, g) = (s1,
s2, . . . , sk , g1, g2, . . . , gm), where si covers the information
of the state and gi is the feature information of the goal.
Therefore, the expanded feature of the value function approx-
imation with UA can be written as hs,g = σ (φ(s, g), r),
where hs, g is the extension feature of the state and the goal,
σ (�) is the activation function usually chosen as the sigmoid
function. The formulation with generalised goal is shown as:

minimize
ε

N∑
i=1

ωiεi +
1
2
Cθ>θ

subject to θ>hs,g=γ
∑
s′
Ps
′

saθ
>h′s,g+R(s, a)+ε(s, a)

ε(s, a) ≥ 0 . (13)

Eq. (13) is similar to Eq. (12), however, the feature vector
hs,g = σ (φ(s, g), r) contains both the state and goal infor-
mation, hence, it can be applied to the runtime goal use case.
Other parameters are the same as in Eq. (9).

VII. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, in order to evaluate the performance of the pro-
posed approach, we conduct numbers of experiments under
the same computer devices with the system of ubuntu14.04,
and the algorithms are implemented in MATLAB 2015a with
standard QP and LP solvers.

To show the quantized quality and efficiency of the pro-
posed algorithm, we compare the AQP algorithm with these
two canonical algorithms: (1) ILP [47] algorithm computes
the cumulative discounted future reward in 100 time steps;
(2) INN [3] algorithm computes the cumulative discounted
reward. These two algorithms are well representative, more-
over, they have compared with the state-of-the-art algorithms.

We validate the proposed approach with two reinforce-
ment learning benchmark problems including grid world,
and cart pole [3]. The experimental results indicate that the
AQP effectively outperform other state-of-the-art algorithms.
We demonstrate the quality and efficiency, the property of
universal approximation and fixed cardinality minimization.
Furthermore, the proposed approach is enhanced to deal with
MDPs with uncertainty state noise and the generalized goal
during execution.

a. grid world In our experiments, we utilise the simple
finite MDP scenario square grid world. Each cell of the
grid corresponds to one state in the agent environments.
The agent in each state holds four equal probability actions
possible: north, south, east, and west, with which the agent

126082 VOLUME 7, 2019

J. Su et al.: AQP for Efficient Bellman Equation Solution

FIGURE 1. Comparative results of AQP with ILP and INN for grid world and cart pole.

deterministically moves from the start state in the respective
direction to the goal state without obstacles except the walls
around the grid. TheMDPs tuple is set: (1) State s(s1, s2), s1 is
the horizontal coordinate, and s2 is the vertical coordinate; (2)
Action a ∈ {north, east, south,west}; (3) Reward R = 1/d , d
refers to the distance between the current state and the goal,
and R = −1 is the penalty reward when the agent meets
a wall which will hinder it to the right destination. In our
experiments, the number of the cells in horizontal is equal
to the vertical of the grid world scenario, and the dimension
ranges from 10 ∼ 100. In the proposed algorithm, we set the
hidden node number as 50 for universal approximation and
set γ = 0.9,P = 0.95 by experience.

b. cart pole The goal in this scenario is forcing a cart,
with two directions (left and right), to move along a track and
the pole hinged to the cart should keep balance. In realistic,
a failure occurs when the pole falls past a given angle from
vertical, and then the pole will be reset again. The track length
of the cart in our experiments ranges from 2.4 ∼ 4.4. The
tuple of this case is set as: (1) State s(x, ẋ, θ, θ̇) refers to
the position of the cart, the speed of the cart, the position
of the pendulum and the speed of the pendulum; (2) Action
a = {Left,Right}; (3) Reward R = x/xmax , where x is the
current position of the cart and xmax is the range of themotion;
if the pendulum falls, R = −1. We set γ = 0.99, P = 0.95.

A. THE PERFORMANCE OF AQP AGAINST ILP AND INN
1) THE REWARD
the cumulative discounted reward obtained by running the
agents based on the greedy policy acquired from the approx-
imated action values is plotted in Fig. 1(a) and Fig. 1(c)1

(The figures are better shown in color). It can be seen
that AQP algorithm always achieves the highest cumulative
reward, showing that AQP algorithm performs the best in both
grid world and cart pole scenarios. ILP obtains the lowest
reward. Here, we show the ILP with 50 iterations and 100
iterations respectively. As the representation ability of the lin-
ear basic functions of ILP is limited, even for 100 iterations,
the reward is still lower than our algorithm. INN based algo-
rithm obtain almost the same cumulative discounted reward

1For grid world, cumulative discounted reward decreases when we
increase dimension, as it becomes more difficult to reach destination. For
cart pole, cumulative discounted reward is achieved as long as pendulum
does not fall, thus the number keeps stable.

FIGURE 2. Comparative results of AQP for cart pole.

as our algorithm does, which owes to its strong representation
ability for value function approximation.

2) COMPUTING TIME
normally, the computation time in each iteration of ILP and
INN is associated with the number of state samples. In our
experiments, we use all the sampled states to approximate
the value function. Thus, we evaluate the computation time
of our algorithm and the average computation time of the
ILP and INN algorithm with respect to different sizes of
the scenarios, as plotted in Fig. 1(b) and Fig. 1(d).2 Due
to the large gap between the AQP algorithm with ILP and
INN, we plot the log of the computation time in the figures.
We also evaluate the ILP with 50 and 100 iterations, even for
the case of 50 iterations, the needed computation time is still
higher than our algorithm. The low computation time is the
result of the core mathematical programming feature of the
proposed algorithm, as stated in the ‘Introduction Section’,
representing the solution process in the form of compact
mathematical programming benefits the computing software
to find efficient off-the-shell solvers.

B. THE PERFORMANCE OF AQP AGAINST APPROXIMATE
LINEAR PROGRAMMING APPROACHES.
Fig. 2 shows the computation cost for a task in cart pole. The
computation time is defined by the convergency efficiency
and stop when the changes of the value function under a
small constant δ. Mean Square Bellman Error(MSBE) of the
four approaches for cart pole scenario under the scenario

2For grid world, we use all the state-action pairs to approximate the value
function, thus the computation time increases with the dimension. For cart
pole, we use a constant 100 samples, and the computation time keeps stable.

VOLUME 7, 2019 126083

J. Su et al.: AQP for Efficient Bellman Equation Solution

FIGURE 3. Universal approximation for different scenarios.

setting above. It can be seen that, the proposed AQP approach
cost the least computation time than the other algorithms.
From Fig. 2(b) we can see that the AQP holds the lowest
MSBE. LRALP uses a smaller constraints system instead of
standard constraints, and gives a performance loss bound for
the strategy. The better results mainly rely on the choice of
the constraints satisfying the theorem proposed in the paper.
With little constraints, the computation cost is small which
almost similar with the proposed AQP algorithm. By remov-
ing the worst approximation errors, it rank the second of
the MSBE [19]. ABP generalizes the approximate policy
iteration by employing global optimization to provide a priori
knowledge which guarantees both robustness and expected
policy loss [48], the advantage of ABP is the robustness
for the scenario, it rank the highest MSBE and costs more
time due to the unavoidable complexity of the Bellman resid-
ual minimization. PALP formulate the states into the con-
straints by using penalty functions which is constructed as
a point-wise maximum with a family of low-order polynomi-
als. It increases the computational burden and costs the most
time and rank the third MSBE [49].

C. EVALUATION ON UNIVERSAL APPROXIMATION
We test the Bellman errors against the number of hidden
nodes from UA for grid world and cart pole. Since the feature
space of states is limited and less than 5 for both scenarios,
we test the performance of UA for the number of hidden
nodes ranging from 5 ∼ 50 and the experimental results
are shown in Fig. 3. It can be seen that when we increase
the number of hidden nodes, the errors decrease. When the
number of hidden nodes is more than 30, the performance
keeps stable. For grid world, we test three cases of the grid
size, 10×10, 20×20, 30×30 respectively. Since the number
of constraints in the LP increases with dimensions, the errors
decrease as is shown in Fig. 3(a). Moreover, we test the
performance in the cart pole. The position of the cart ranges
from 2.4 ∼ 4.4. In each range, we take 100 samples for AQP.
The error for each motion range decreases when we increase
the number of hidden nodes up to 30 and will keep stable
thereafter as shown in Fig. 3(b).

D. BELLMAN ERROR FOR FIXED CARDINALITY
MINIMIZATION
Fig. 4 shows the evolution traces of Bellman error clearly.
As shown in the figure, Bellman error is decreasing and

FIGURE 4. Fixed cardinality minimization effects.

FIGURE 5. Robustness against the noise factor.

converging as iteration goes on. Note that in the AQPmethod-
ology, we only use one time of LP to obtain the Bellman error,
which is iteration number 2 in the figure, for most cases, it is
enough to get the minimal error. In real use cases, if we want
the Bellman error to be minimal, we can increase the iteration
number to 3 or 4.

E. ROBUSTNESS AGAINST STATE UNCERTAINTY
We also test the robustness of AQP against state uncertainty.
Eq. (12) gives the objective function in the proposed algo-
rithm. In order to enhance the algorithm’s robustness prop-
erty, we can increase the balancing robustness parameter C .
In our experiment, the observed state holds a noise factor
from one percent to seven percent, which means that the
state feature vector φ(s) has a one percent to seven percent
deviation with respect to its real observation. We can define
the ratio as p = |Vr−Vs|

|Vs|
to characterize the deviation between

calculated value function (Vr) and true value function (Vs).
Fig. 5 shows that, the deviation value will increases with the
increasing degree of the observation noise factor but also lie
in a quite small region (between five over one thousand and
forty-five parts per thousand). Furthermore, when the bal-
ancing parameter increases, the ratio of deviation decreases
for the same noise factor as shown in the figure, and the
robustness of the solution increases.

F. GENERALIZED GOAL DURING EXECUTION
We test the performance of AQP for the generalized goal
scenario. For example, when given a pursuit problem (i.e.,
a cat catching a mouse), the target position is not static and
previously unknown to the RL agent. In this case, we assume
that at runtime, the position of the target is known, and we
put the goal (current position of the target) and the current

126084 VOLUME 7, 2019

J. Su et al.: AQP for Efficient Bellman Equation Solution

TABLE 1. Cumulative discounted reward for grid world with generalised
goals (The first row gives the three generalised goals; the first column
gives the random start point. The numerical value is the cumulative
discounted reward.).

position of the RL agent into the state feature encoding.
Then we apply the AQP method, and the results are shown
in Table 1. In Table 1, the expected reward is dependent on
both the goal and the starting point, which is as expected. It is
worth noting that, in the current AQP version, we assume that
the runtime goal is known to the agent. If the goal is unknown,
the problem becomes a searching problem, which needs a
new problem formulation for the solution.

VIII. CONCLUSION AND FUTURE WORKS
This paper demonstrates the effective AQP approach for
solving the Bellman equation to obtain optimal solutions
with higher accuracy and robustness. From the experimental
results, we can see that, the proposed algorithm converges
much faster than other classical approaches and receives
similar or better cumulative discounted reward. Addition-
ally, we expand the linear value function representation abil-
ity through universal approximation, and reduce Bellman
error with fixed cardinality minimization technique. We also
enhance the performance of the AQP algorithm with respect
to its robustness against state uncertainty and generalized goal
during execution.

In the future, we would like to incorporate the pro-
posed AQP algorithm with classical RL algorithms such as
Q-learning. The AQP algorithm can quickly return a ‘near-
optimal’ value function approximation, while Q-learning
interacts with the environment and easily adapts its Q-values
with the real time input. We can let AQP provide good initial
Q-values for the Q-learning algorithm, and continue to use
Q-learning to explore the unknown environment. Currently,
we useUA to expand the value function representation ability,
in the future, we will explore the deep learning representation
theory, and try to automatically generate features for linear
value function representation.

Due to the importance of the nonlinear complex sys-
tems in the natural world, we further would like incorpo-
rate the proposed AQP algorithm in the fuzzy neural net-
work structure with additional uncertainties for prediction
problems [50]. Based on machine learning for the linear
region identification, the proposed AQP will help to obtain
accurate largest Lyapunov exponent to reduce the errors by
human [51].

ACKNOWLEDGMENT
The authors would like to thank their laboratory team mem-
bers’ assistance.

REFERENCES
[1] H. Xu, Y. Gao, F. Yu, and T. Darrell, ‘‘End-to-end learning of driv-

ing models from large-scale video datasets,’’ in Proc. CVPR, Jul. 2017,
pp. 2174–2182.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep
reinforcement learning,’’ 2013, arXiv:1312.5602. [Online]. Available:
https://arxiv.org/abs/1312.5602

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[4] C. Luo and X. Wang, ‘‘Hybrid modified function projective syn-
chronization of two different dimensional complex nonlinear systems
with parameters identification,’’ J. Franklin Inst., vol. 350, no. 9,
pp. 2646–2663, 2013.

[5] H. Wang, C. Luo, and X. Wang, ‘‘Synchronization and identification of
nonlinear systems by using a novel self-evolving interval type-2 fuzzy
LSTM-neural network,’’ Eng. Appl. Artif. Intell., vol. 81, pp. 79–93,
May 2019.

[6] S. Wang, X. Wang, and B. Han, ‘‘Complex generalized synchronization
and parameter identification of nonidentical nonlinear complex systems,’’
PLoS One, vol. 11, no. 3, 2016, Art. no. e0152099.

[7] W. Li, D. Wang, and T. Chai, ‘‘Multisource data ensemble modeling for
clinker free lime content estimate in rotary kiln sintering processes,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 45, no. 2, pp. 303–314, Feb. 2015.

[8] Y.-J. Liu, C. L. P. Chen, G.-X. Wen, and S. Tong, ‘‘Adaptive neu-
ral output feedback tracking control for a class of uncertain discrete-
time nonlinear systems,’’ IEEE Trans. Neural Netw., vol. 22, no. 7,
pp. 1162–1167, Jul. 2011.

[9] H. Zhang, X.-Y. Wang, and X.-H. Lin, ‘‘Topology identification and
module–phase synchronization of neural network with time delay,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 6, pp. 885–892, Jun. 2017.

[10] H. Zhang and X.-Y. Wang, ‘‘Complex projective synchronization of
complex-valued neural network with structure identification,’’ J. Franklin
Inst., vol. 354, no. 12, pp. 5011–5025, 2017.

[11] H.-G. Zhang, X. Zhang, Y.-H. Luo, and J. Yang, ‘‘An overview of research
on adaptive dynamic programming,’’ Acta Automatica Sinica, vol. 39,
no. 4, pp. 303–311, 2013.

[12] D. Liu, X. Yang, D. Wang, and Q. Wei, ‘‘Reinforcement-learning-based
robust controller design for continuous-time uncertain nonlinear sys-
tems subject to input constraints,’’ IEEE Trans. Cybern., vol. 45, no. 7,
pp. 1372–1385, Jul. 2015.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[14] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. Philadelphia, PA, USA: SIAM,
1990.

[15] P. J. Schweitzer and A. Seidmann, ‘‘Generalized polynomial approxima-
tions in Markovian decision processes,’’ J. Math. Anal. Appl., vol. 110,
no. 2, pp. 568–582, 1985.

[16] V. V. Desai, V. F. Farias, and C. C. Moallemi, ‘‘Approximate dynamic
programming via a smoothed linear program,’’ Oper. Res., vol. 60, no. 3,
pp. 655–674, 2012.

[17] D. P. de Farias and B. Van Roy, ‘‘The linear programming approach
to approximate dynamic programming: Theory and application,’’
Ph.D. dissertation, Dept. Manage. Sci. Eng., Stanford Univ., Stanford,
CA, USA, 2002.

[18] D. P. De Farias and B. Van Roy, ‘‘On constraint sampling in the linear
programming approach to approximate dynamic programming,’’ Math.
Oper. Res., vol. 29, no. 3, pp. 462–478, 2004.

[19] C. Lakshminarayanan, S. Bhatnagar, and C. Szepesvári, ‘‘A linearly
relaxed approximate linear program forMarkov decision processes,’’ IEEE
Trans. Autom. Control, vol. 63, no. 4, pp. 1185–1191, Apr. 2018.

[20] F. Chen, Q. Cheng, J. Dong, Z. Yu, G. Wang, and W. Xu, ‘‘Efficient
approximate linear programming for factored MDPs,’’ Int. J. Approx.
Reasoning, vol. 63, pp. 101–121, Aug. 2015.

[21] M. Petrik and S. Zilberstein, ‘‘Constraint relaxation in approximate
linear programs,’’ in Proc. 26th Annu. Int. Conf. Mach. Learn, 2009,
pp. 809–816.

[22] Y. Abbasi-Yadkori, P. L. Bartlett, X. Chen, and A. Malek, ‘‘Large-
scale Markov decision problems via the linear programming dual,’’
2019, arXiv:1901.01992. [Online]. Available: https://arxiv.org/abs/1901.
01992

VOLUME 7, 2019 126085

J. Su et al.: AQP for Efficient Bellman Equation Solution

[23] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, ‘‘Efficient solution
algorithms for factored MDPs,’’ J. Artif. Intell. Res., vol. 19, pp. 399–468,
Oct. 2003.

[24] V. Desai, V. Farias, and C. C. Moallemi, ‘‘A smoothed approximate linear
program,’’ in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 459–467.

[25] N. Bhat, V. F. Farias, and C. C. Moallemi, ‘‘Non-parametric approximate
dynamic programming via the kernel method,’’ in Proc. Adv. Neural Inf.
Process. Syst. Conf., 2012, pp. 386–394.

[26] G. Cybenko, ‘‘Approximation by superpositions of a sigmoidal function,’’
Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[27] A. R. Barron, ‘‘Universal approximation bounds for superpositions of a
sigmoidal function,’’ IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930–945,
May 1993.

[28] G. Lewicki and G. Marino, ‘‘Approximation of functions of finite variation
by superpositions of a sigmoidal function,’’ Appl. Math. Lett., vol. 17,
no. 10, pp. 1147–1152, 2004.

[29] H. D. Nguyen, L. R. Lloyd-Jones, and G. J. McLachlan, ‘‘A universal
approximation theorem for mixture-of-experts models,’’ Neural Comput.,
vol. 28, no. 12, pp. 2585–2593, 2016.

[30] G.-B. Huang, L. Chen, and C.-K. Siew, ‘‘Universal approximation
using incremental constructive feedforward networks with random hidden
nodes,’’ IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, Jul. 2006.

[31] S. Scardapane and D. Wang, ‘‘Randomness in neural networks: An
overview,’’ Wiley Data Mining Knowl. Discovery, vol. 7, no. 2, p. e1200,
2017.

[32] H. Dinh, S. Bhasin, R. Kamalapurkar, and W. E. Dixon, ‘‘Dynamic neu-
ral network-based output feedback tracking control for uncertain non-
linear systems,’’ J. Dyn. Syst. Meas. Control, vol. 139, no. 7, 2017,
Art. no. 074502.

[33] D. Wang and M. Li, ‘‘Stochastic configuration networks: Fundamentals
and algorithms,’’ IEEE Trans. Cybern., vol. 47, no. 10, pp. 3466–3479,
2017.

[34] G. Montufar and N. Ay, ‘‘Refinements of universal approximation results
for deep belief networks and restricted Boltzmann machines,’’ Neural
Comput., vol. 23, no. 5, pp. 1306–1319, 2011.

[35] D. R. Muir, ‘‘Feedforward approximations to dynamic recurrent network
architectures,’’ Neural Comput., vol. 30, no. 2, pp. 546–567, 2017.

[36] H. AbouEisha, M. Farhan, I. Chikalov, M. Moshkov, ‘‘An algorithm for
reduct cardinality minimization,’’ in Proc. 5th Int. Conf. Granular Com-
put., 2013, pp. 1–3.

[37] L. Cai, S. M. Chan, and S. O. Chan, ‘‘Random separation: A new method
for solving fixed-cardinality optimization problems,’’ in Proc. Int. Work-
shop Parameterized Exact Comput., 2006, pp. 239–250.

[38] M. Bruglieri, M. Ehrgott, H. W. Hamacher, and F. Maffioli, ‘‘An annotated
bibliography of combinatorial optimization problems with fixed cardinal-
ity constraints,’’Discret Appl. Math., vol. 154, no. 9, pp. 1344–1357, 2006.

[39] M. Fazel, H. Hindi, and S. P. Boyd, ‘‘Log-det heuristic for matrix rank min-
imization with applications to Hankel and Euclidean distance matrices,’’ in
Proc. Amer. Control Conf. (ACC), Jun. 2003, pp. 2156–2162.

[40] K. Mohan and M. Fazel, ‘‘Iterative reweighted least squares for matrix
rankminimization,’’ in Proc. 48th Annu. Allerton Conf. Commun., Control,
Comput. (CCC), Sep./Oct. 2010, pp. 653–661.

[41] M. Petrik, ‘‘Optimization-based approximate dynamic programming,’’
Ph.D. dissertation, Dept. Comput. Sci., Univ. Massachusetts Amherst,
Amherst, MA, USA, Sep. 2010.

[42] M. Fu, Z.-Q. Luo, and Y. Ye, ‘‘Approximation algorithms for quadratic
programming,’’ J. Combinat. Optim., vol. 2, no. 1, pp. 29–50, 1998.

[43] T. M. Mitchell, Machine Learning. Beijing, China: China Machine Press,
2003.

[44] J. A. Nelder and R. Mead, ‘‘A simplex method for function minimization,’’
Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[45] Y. Ye, ‘‘The simplex and policy-iteration methods are strongly polynomial
for the Markov decision problem with a fixed discount rate,’’ Math. Oper.
Res., vol. 36, no. 4, pp. 593–784, 2011.

[46] M. Hintermüller, K. Ito, and K. Kunisch, ‘‘The primal-dual active set
strategy as a semismooth newton method,’’ SIAM J. Optim., vol. 13, no. 3,
pp. 865–888, 2002.

[47] D. Bello and G. Riano, ‘‘Linear programming solvers for Markov deci-
sion processes,’’ in Proc. IEEE Syst. Inf. Eng. Design Symp., Apr. 2006,
pp. 90–95.

[48] M. Petrik and S. Zilberstein, ‘‘Robust approximate bilinear programming
for value function approximation,’’ J. Mach. Learn. Res., vol. 12, no. 12,
pp. 3027–3063, 2011.

[49] P. N. Beuchat and J. Lygeros, ‘‘Approximate dynamic programming via
penalty functions,’’ IFAC-PapersOnLine, vol. 50, no. 1, pp. 11814–11821,
2017.

[50] C. Luo, C. Tan, X. Wang, and Y. Zheng, ‘‘An evolving recurrent interval
type-2 intuitionistic fuzzy neural network for online learning and time
series prediction,’’ Appl. Soft Comput., vol. 78, pp. 150–163, May 2019.

[51] S. Zhou and X. Wang, ‘‘Identifying the linear region based on machine
learning to calculate the largest Lyapunov exponent from chaotic time
series,’’ Chaos, Interdiscipl. J. Nonlinear Sci., vol. 28, no. 12, 2018,
Art. no. 123118.

JIANMEI SU received the M.Sc. degree in
computational mathematics from the School of
Management Science and Engineering, Chengdu
University of Technology (CDUT). She is cur-
rently pursuing the Ph.D. degree in control science
and engineering with the Machine Intelligence
Institute, School of Automation, University of
Electronics Science and Technology of China
(UESTC). Her research interests include video
processing, optimization, and machine learning.

HONG CHENG received the Ph.D. degree in
pattern recognition and intelligent systems from
Xi’an Jiaotong University, in 2003, where he has
been an Associate Professor, since 2005. He held
a postdoctoral position with the Computer Science
School, Carnegie Mellon University, USA, from
2006 to 2009. Since July 2000, he has been with
Xi’an Jiaotong University, where he was a Team
Leader of the Intelligent Vehicle Group, Institute
of Artificial Intelligence and Robotics, until 2006.

He is a Full Professor with the School of Automation and the Vice Director
of Center for Robotics, UESTC, where he is currently the Founding Director
of the Machine Intelligence Institute. His team in XJTU had developed
an intelligent driving platform-Springrobot, which has an important social
effect in China. His current research interests include computer vision and
machine learning, robotics, human computer interaction, and multimedia
signal processing.

Dr. Cheng has been a Senior Member of ACM and an Associate Editor of
the IEEE Computational Intelligence Magazine. He is a Reviewer for many
important journals and conferences, including the IEEE TITS, MAV, CVPR,
ICCV, ITSC, IVS, ACCV, etc. He serves as the Finance Chair of ICME 2014,
the Local Arrangement Chair of VLPR 2012, and the Registration Chair of
the 2005 IEEE ICVES.

HONGLIANG GUO received the B.E. degree
in dynamic engineering and the M.E. degree in
dynamic control from the Beijing Institute of Tech-
nology, China, and the Ph.D. degree in electri-
cal and computer engineering from the Stevens
Institute of Technology, USA. He joined Almende,
Rotterdam, The Netherlands, as a Postdoctoral
Researcher, in 2011. In 2013, he joined NTU,
as a Research Fellow. His research interests
include selforganizing systems and agent-based
technologies.

126086 VOLUME 7, 2019

J. Su et al.: AQP for Efficient Bellman Equation Solution

RUI HUANG received the Ph.D. degree in con-
trol science and engineering from the University
of Electronic Science and Technology of China
(UESTC), in July 2018, where he is currently a
Postdoctoral with the School of Automation Engi-
neering, Center for Robotics. He was a Joint Train-
ingDoctoral Student with the TAMS,University of
Hamburg, from 2016 to 2017. His current research
interests include reinforcement learning, exoskele-
ton, human–robot interaction, and robot control.

ZHINAN PENG received the B.S. degree in
information and computing science from Fuyang
Normal University, Fuyang, China, in 2014, and
the M.S. degree in computational mathematics
from the University of Electronic Science and
Technology of China (UESTC), Chengdu, China,
in 2016, where he is currently pursuing the Ph.D.
degree with the School of Automation Engineer-
ing. His current research interests include neu-
ral networks-based control, multi-agent systems,

adaptive dynamic programming, and reinforcement learning.

VOLUME 7, 2019 126087

