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ABSTRACT Integral operators are useful in real analysis, mathematical analysis, functional analysis and
other subjects of mathematical approach. The goal of this paper is to study a unified integral operator via
convexity. By using convexity and conditions of unified integral operators, bounds of these operators are
obtained. Furthermore consequences of these results are discussed for fractional and conformable integral
operators.

INDEX TERMS Convex function, Mittag-Leffler function, integral operator, fractional integral operator,
conformable integral operator.

I. INTRODUCTION AND PRELIMINARY RESULTS
A function f satisfying the following inequality:

f (λx + (1− λ)y) ≤ λf (x)+ (1− λ)f (y) (1)

where λ ∈ [0, 1], x, y ∈ C and C is convex set, is called con-
vex function onC . A function satisfying (1) in reverse order is
called concave function. For properties and characterizations
of convex functions, see [1].
Definition 1 [2]: Let f : [a, b] → R be an integrable

function. Also let g be an increasing and positive function
on (a, b], having continuous derivative g′ on (a, b). The left-
sided and right-sided fractional integrals of a function f with
respect to another function g on [a, b] of order µ > 0 are
defined by:

µ
g Ia+ f (x)=

1
0(µ)

∫ x

a
(g(x)−g(t))µ−1g′(t)f (t)dt, x>a (2)

and

µ
g Ib− f (x)=

1
0(µ)

∫ b

x
(g(t)−g(x))µ−1g′(t)f (t)dt, x<b, (3)

where 0(.) is the Gamma function.
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A k-fractional analogue of above definition is given as
follows:
Definition 2 [3]: Let f : [a, b] → R be an integrable

function. Also let g be an increasing and positive function on
(a, b], having a continuous derivative g′ on (a, b). The left-
sided and right-sided fractional integrals of a function f with
respect to another function g on [a, b] of order µ, k > 0 are
defined by:

µ
g I

k
a+ f (x)=

1
k0k (µ)

∫ x

a
(g(x)−g(t))

µ
k −1g′(t)f (t)dt, x>a

(4)

and

µ
g I

k
b− f (x)=

1
k0k (µ)

∫ b

x
(g(t)−g(x))

µ
k −1g′(t)f (t)dt, x<b,

(5)

where 0k (.) is the k-Gamma function.
A generalized fractional integral with kernel an extended

generalized Mittag-Leffler function is defined as follows:
Definition 3 [6]: Let ω,µ, α, l, γ, c ∈ C, <(µ),<(α),
<(l) > 0, <(c) > <(γ ) > 0 with p ≥ 0, δ > 0 and
0 < k ≤ δ + <(µ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then
the generalized fractional integral operators εγ,δ,k,c

µ,α,l,ω,a+ f and
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ε
γ,δ,k,c
µ,α,l,ω,b− f are defined by:(
ε
γ,δ,k,c
µ,α,l,ω,a+ f

)
(x; p)

=

∫ x

a
(x − t)α−1Eγ,δ,k,cµ,α,l (ω(x − t)µ; p)f (t)dt, (6)

and(
ε
γ,δ,k,c
µ,α,l,ω,b− f

)
(x; p)

=

∫ b

x
(t − x)α−1Eγ,δ,k,cµ,α,l (ω(t − x)µ; p)f (t)dt, (7)

where

Eγ,δ,k,cµ,α,l (t; p) =
∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

(c)nk
0(µn+ α)

tn

(l)nδ
(8)

is the extended generalized Mittag-Leffler function.
Recently Farid defined a new unified integral operator

from which the fractional as well as conformable integral
operators can be derived at once:
Definition 4 [7]: Let f , g : [a, b] −→ R, 0 < a < b,

be the functions such that f be positive and f ∈ L1[a, b], and
g be differentiable and strictly increasing. Also let φx be an
increasing function on [a,∞) and α, l, γ, c ∈ C, p, µ, δ ≥ 0,
and 0 < k ≤ δ + µ. Then for x ∈ [a, b] the left and right
integral operators are defined by:

(gF
φ,γ,δ,k,c
µ,α,l,a+ f )(x; p) =

∫ x

a

φ(g(x)− g(t))
g(x)− g(t)

×Eγ,δ,k,cµ,α,l (ω(g(x)−g(t))µ; p)g′(t)f (t)dt

(9)

and

(gF
φ,γ,δ,k,c
µ,α,l,b− f )(x; p) =

∫ b

x

φ(g(t)− g(x))
g(t)− g(x)

×Eγ,δ,k,cµ,α,l (ω(g(t)−g(x))µ;p)g′(t)f (t)dt.

(10)

In [7] it is proved that the operators defined in (9) and (10) are
bounded, further they are linear hence these are continuous
operators.
Theorem 5 [7]: Under the assumptions of Definition 4,

the following bounds hold for integral operators (9) and (10):∣∣∣(gFφ,γ,δ,k,cµ,α,l,a+ f )(x; p)
∣∣∣ ≤ K‖f ‖[a,b] (11)

and ∣∣∣(gFφ,γ,δ,k,cµ,α,l,b− f )(x; p)
∣∣∣ ≤ K‖f ‖[a,b]. (12)

Hence∣∣∣(gFφ,γ,δ,k,cµ,α,l,a+ f )(x; p)+(gF
φ,γ,δ,k,c
µ,α,l,b− f )(x; p)

∣∣∣≤2K‖f ‖[a,b], (13)

where S is the sum of absolute terms of (8) and K =

S |φ(g(b)− g(a))|.
Integral operators defined in (9) and (10) are unified in

the sense that for specific settings of functions φ, g and

particular values of involved parameters in Mittag-Leffler
function they contain two kinds of general fractional integral
operators (4), (5), and (6), (7). These integral operators and
their consequences are narrated in the following two remarks.

Remark 6: (i) Let φ(x) =
xβ/k0(β)
k0k (β)

, k > 0, β > k and

p = ω = 0, in unified integral operators (9) and (10). Then
generalized Riemann-Liouville fractional integral operators
(4) and (5) are obtained.

(ii) For k = 1, (4) and (5) fractional integrals coincide
with (2) and (3) fractional integrals, which further produce
the following fractional and conformable integrals:

(iii) By taking g as identity function, (4) and (5) fractional
integrals coincide with k-fractional Riemann-Liouville inte-
grals defined by Mubeen et al. in [15].

(iv) For k = 1, along with g as identity function, (4) and
(5) fractional integrals coincide with Riemann-Liouville
fractional integrals [2].

(v) For k = 1 and g(x) = xρ
ρ
, ρ > 0, (4) and (5) produce

fractional integrals defined by Chen et al. in [10].
(vi) For k = 1 and g(x) = xτ+s

τ+s , (4) and (5) produce
generalized conformable integrals defined by Khan et al.
in [13].

(viii) If we take g(x) = (x−a)s
s , s > 0 in (4) and g(x) =

−
(b−x)s
s , s > 0 in (5), then conformable (k, s)-fractional

integrals will be obtained as defined by Habib et al. in [11].
(ix) If we take g(x) = x1+s

1+s , then conformable integrals will
be obtained as defined by Sarikaya et al. in [16].

(x) If we take g(x) = (x−a)s
s , s > 0 in (4) and g(x) =

−
(b−x)s
s , s > 0 in (5) with k = 1, then conformable integrals

will be obtained as defined by Jarad et al. in [12].
Remark 7: Let φ(x) = xβ and g(x) = x, β > 0, in uni-

fied integral operators (9) and (10). Then fractional integral
operators (6) and (7) are obtained, which along with differ-
ent settings of p, k, δ, l, c, γ in generalized Mittag-Leffler
function give the following integral operators:

1. By setting p = 0, fractional integral operators (6) and
(7) are reduced to the fractional intagral operators defined by
Salim-Faraj in [5].

2. By setting l = δ = 1, fractional integral operators (6)
and (7) are reduced to the fractional intagral operators defined
by Rahman et al. in [18].

3. By setting p = 0 and l = δ = 1, fractional integral
operators (6) and (7) are reduced to the fractional intagral
operators defined by Srivastava-Tomovski in [14].

4. By setting p = 0 and l = δ = k = 1, fractional integral
operators (6) and (7) are reduced to the fractional intagral
operators defined by Prabhakar in [19].

5. By setting p = ω = 0, fractional integral operators (6)
and (7) are reduced to the left-sided and right-sided Riemann-
Liouville fractional integrals.

For detailed study of recent generalized, fractional and
conformable integral operators one can consult [3]–[6], [8],
[10]–[14], [16], [17] and references therein.

The purpose of this research is the study of all above
integral operators via convex functions. We are succeeded to
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obtain bounds of integral operators defined in (9) and (10).
These results provide formulas for bounds of all frac-
tional and conformable integrals comprised in Remark1 and
Remark 7. The paper is organized as follows:

In Section II, upper bounds of unified fractional integral
operators (9) and (10) are established by using the involved
conditions and convex functions. Further by imposing an
additional condition of symmetry two sided Hadamard type
bounds are obtained. Moreover by using convexity of |f ′| and
applying integral operator on convolution of two functions
some interesting bounds are studied. It is important to note
that all these results hold for fractional and conformable
integral operators comprised in Remark 6 and Remark 7.
Also some fractional differential equations are solved in
Section III.

II. MAIN RESULTS
Bounds of integral operators (9), (10) and their sum are
obtained in the following theorem.
Theorem 8: Let f : [a, b] −→ R be a positive convex

function, 0 < a < b and g : [a, b] −→ R be differentiable
and strictly increasing function. Also let φx be an increasing
function on [a, b] and α, l, γ, c ∈C, p, µ, δ ≥ 0 and 0 < k ≤
δ + µ. Then for x ∈ [a, b] we have(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

× (φ(g(x)−g(a))) (f (x)+f (a)) (14)

and(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(x; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)

× (φ(g(b)−g(x))) (f (x)+f (b)) (15)

hence(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(x; p)

≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p) (φ(g(x)− g(a)))

(f (x)+ f (a))+ Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)

(φ(g(b)− g(x))) (f (x)+ f (b)) . (16)

Proof 9: As g is increasing, therefore for t ∈ [a, x], x ∈
(a, b), g(x)−g(t) ≤ g(x)−g(a). The function φ

x is increasing,
therefore one can obtain:

φ(g(x)− g(t))
g(x)− g(t)

≤
φ(g(x)− g(a))
g(x)− g(a)

. (17)

Now by multiplying with Eγ,δ,k,cµ,α,l (ω(g(x)−g(t))µ; p)g′(t) the
following inequality is yielded:

φ(g(x)− g(t))
g(x)− g(t)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(t))µ; p)

≤
φ(g(x)− g(a))
g(x)− g(a)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(t))µ; p). (18)

Also Eγ,δ,k,cµ,α,l (ω(g(x) − g(t))µ; p) is series of positive terms,

therefore Eγ,δ,k,cµ,α,l (ω(g(x) − g(t))µ; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(x) −
g(a))µ; p) so the following inequality holds:

φ(g(x)− g(t))
g(x)− g(t)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(t))µ; p)

≤
φ(g(x)− g(a))
g(x)− g(a)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p). (19)

Using convexity of f on [a, x] for x ∈ (a, b) we have

f (t) ≤
x − t
x − a

f (a)+
t − a
x − a

f (x). (20)

Multiplying (19) and (20), then integrating with respect to t
over [a, x] we have∫ x

a

φ(g(x)− g(t))
g(x)− g(t)

g′(t)f (t)

×Eγ,δ,k,c
µ,α,l,ω;g(ω(g(x)− g(t))

µ
; p)dt

≤
f (a)
x − a

φ(g(x)− g(a))
g(x)− g(a)

Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×

∫ x

a
(x − t)g′(t)dt

+
f (x)
x − a

φ(g(x)− g(a))
g(x)− g(a)

Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×

∫ x

a
(t − a)g′(t)dt. (21)

By using (9) of Definition 4, and integrating by parts we get(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x; p)

≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×

(
φ(g(x)− g(a))
g(x)− g(a)

)(
f (a)
x − a

(
g(a)(a− x)+

∫ x

a
g(t)dt

)
+
f (x)
x − a

(
(x − a)g(x)−

∫ x

a
g(t)dt

))
which further simplifies as follows:(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

× (φ(g(x)−g(a))) (f (x)+f (a)) . (22)

Now on the other hand for t ∈ (x, b], x ∈ (a, b) the following
inequality holds true:

φ(g(t)− g(x))
g(t)− g(x)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(t)− g(x))µ; p)

≤
φ(g(b)−g(x))
g(b)−g(x)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(t)−g(x))µ; p). (23)

Also Eγ,δ,k,cµ,α,l (ω(g(t) − g(x))µ; p) is series of positive terms,

therefore Eγ,δ,k,cµ,α,l (ω(g(t) − g(x))µ; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(b) −
g(x))µ; p), so the following inequality is valid:

φ(g(t)− g(x))
g(t)− g(x)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(t)− g(x))µ; p)

≤
φ(g(b)−g(x))
g(b)−g(x)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(b)−g(x))µ; p). (24)
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The following inequality also holds for convex function f :

f (t) ≤
t − x
b− x

f (b)+
b− t
b− x

f (x). (25)

Multiplying (24) and (25), then integrating with respect to t
over (x, b] and adopting the same pattern of simplification as
we did for (21), the following inequality is obtained:(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(x; p)

≤ Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)

×

(
φ(g(b)− g(x))
g(b)− g(x)

)(
f (b)
b− x

(
g(b)(b− x)−

∫ b

x
g(t)dt

)
+
f (x)
b− x

(
(x − b)g(x)+

∫ b

x
g(t)dt

))
which further simplifies as follows:(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(x; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)

× (φ(g(b)−g(x))) (f (x)+f (b)) . (26)

By adding (22) and (26), (16) can be achieved.
Henceforth we give consequences of above theorem

for fractional calculus and conformable integral operators
defined in [2], [5], [9]–[13], [15], [16].
Proposition 10: Let φ(t) = tα and p = ω = 0. Then (9)

and (10) produce the fractional integral operators (2) and (3)
defined in [2], as follows:(

gF
tα,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0) := α

g Ia+ f (x)

and (
gF

tα,γ,δ,k,c
µ,α,l,b− f

)
(x; 0) := α

g Ib− f (x).

Further
φ

t
is increasing for α ≥ 1, therefore they satisfy the

following bound:

(αg Ia+ f )(x)+ (αg Ib− f )(x)

≤
1

0(α)

(
(g(x)− g(a))α (f (x)+ f (a))

+(g(b)− g(x))α(f (x)+ f (b)) ) .

Proposition 11: Let g(x) = I (x) = x and p = ω = 0.
Then (9) and (10) produce integral operators defined in [17]
as follows:

0(α)
(
IF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0) := (a+ Iφ f )(x)

=

∫ x

a

φ(x − t)
(x − t)

f (t)dt

and

0(α)
(
IF

φ,γ,δ,k,c
µ,α,l,b− f

)
(x; 0) := (b− Iφ f )(x)

=

∫ b

x

φ(t − x)
(t − x)

f (t)dt.

Further they satisfy the following bound:

(a+ Iφ f )(x)+ (b− Iφ f )(x)

≤ φ(x − a)(f (x)+ f (a))+ φ(b− x)(f (x)+ f (b)).

Corollary 12: If we take φ(t) = 0(α)t
α
k

k0k (α)
and p = ω = 0.

Then (9) and (10) produce the fractional integral operators (4)
and (5) defined in [3] as follows:gF

t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,a+ f

 (x; 0) :=αg I
k
a+ f (x)

and gF
t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,b− f

 (x; 0) :=αg I
k
b− f (x).

Further
φ

t
is increasing for α ≥ k , therefore they satisfy the

following bound:

(αg I
k
a+ f )(x)+(

α
g I

k
b− f )(x)≤

1
k0k (α)

((g(x)−g(a))
α
k (f (x)+ f (a))

+(g(b)− g(x))
α
k (f (b)+ f (x)).

Corollary 13: If we take φ(t) = tα and g(x) = I (x) = x
with p = ω = 0. Then (9) and (10) produce left and right
Riemann-Liouville fractional integrals [2] as follows:(

IF
tα,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0) := αIa+ f (x)

and (
IF

tα,γ,δ,k,c
µ,α,l,b− f

)
(x; 0) := αIb− f (x).

Further
φ

t
is increasing for α ≥ k therefore, they satisfy the

following bound:

(αIa+ f )(x)+ (αIb− f )(x)

≤
1

0(α)
((x − a)α(f (x)+ f (a))+ (b− x)α(f (b)+ f (x))).

Corollary 14: If we take φ(t) = t
α
k 0(α)
k0k (α)

and g(x) =
I (x) = x, p = ω = 0. Then (9) and (10) produce the
fractional integral operators define in [15] as follows:IF

t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,a+ f

 (x; 0) := αI ka+ f (x)

and IF
t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,b− f

 (x; 0) := αI kb− f (x).

Further they satisfy the following bound for α ≥ k:

(αI kb− f )(x)+ (αI kb− f )(x) ≤
1

k0k (α)
((x − a)

α
k (f (x)+ f (a))

+(b− x)
α
k (f (b)+ f (x))).
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Corollary 15: If we take φ(t) = tα, α > 0 and g(x) = xρ
ρ
,

ρ > 0 with p = ω = 0. Then (9) and (10) produce the
fractional integral operators defined in [10], as follows:(

gF
tα,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0) = (ρIαa+ f )(x)

=
ρ1−α

0(α)

∫ x

a
(xρ − tρ)α−1tρ−1f (t)dt

and(
gF

tα,γ,δ,k,c
µ,α,l,b− f

)
(x; 0) =

ρ1−α

0(α)

∫ b

x
(tρ − xρ)α−1tρ−1f (t)dt.

Further they satisfy the following bound:

(ρIαa+ f )(x)+ (ρIαb− f )(x) ≤
1

ρα0(α)
((xρ − aρ)α(f (x)+ f (a))

+(bρ − xρ)α(f (b)+ f (x))).

Corollary 16: If we take φ(t) = tα, α > 0 and
g(x) = xs+1

s+1 , s > 0, p = ω = 0. Then (9) and (10) produce
the fractional integral operators define as follows:(
gF

tα,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0) = (sIαa+ f )(x)

=
(s+1)1−α

0(α)

∫ x

a
(xs+1−ts+1)α−1tsf (t)dt

and(
gF

tα,γ,δ,k,c
µ,α,l,b− f

)
(x; 0) = (sIαb− f )(x)

=
(s+1)1−α

0(α)

∫ b

x
(ts+1−xs+1)α−1tsf (t)dt.

Further they satisfy the following bound:

(sIαa+ f )(x)+ (sIαb− f )(x)

≤
1

(s+ 1)α0(α)
((xs+1 − as+1)α(f (x)+ f (a))

+(bs+1 − xs+1)α(f (b)+ f (x))).

Corollary 17: If we take φ(t) = t
α
k 0(α)
k0k (α)

and g(x) = xs+1
s+1 ,

s > 0, p = ω = 0. Then (9) and (10) produce the fractional
integral operators defined in [16], as follows:gF

t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,a+ f

 (x; 0)

= (sk I
α
a+ f )(x)

=
(s+ 1)1−

α
k

k0k (α)

∫ x

a
(xs+1 − ts+1)

α
k −1tsf (t)dt

andgF
t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,b− f

 (x; 0)

= (sk I
α
b− f )(x)

=
(s+ 1)1−

α
k

k0k (α)

∫ b

x
(ts+1 − xs+1)

α
k −1tsf (t)dt.

Further
φ

t
is increasing for α ≥ k therefore, they satisfy the

following bound:

(sk I
α
a+ f )(x)+ (sk I

α
b− f )(x)

≤
1

(s+ 1)
α
k k0k (α)

((f (x)+ f (a))(bs+1 − xs+1)
α
k

+(xs+1 − as+1)
α
k (f (b)+ f (x))).

Corollary 18: If we take φ(t) = tα and g(x) = xβ+s
β+s ,

β, s > 0, p = ω = 0. Then (9) and (10) produce the fractional
integral operators defined in [13] as follows:(
gF

tα,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0)

= (sβ I
α
a+ f )(x)

=
(β + s)1−α

0(α)

∫ x

a
(xβ+s − tβ+s)α−1tsf (t)dt

and(
gF

tα,γ,δ,k,c
µ,α,l,b− f

)
(x; 0)

= (sβ I
α
b− f )(x)

=
(β + s)1−α

0(α)

∫ b

x
(tβ+s − xβ+s)α−1tsf (t)dt.

Further they satisfy the following bound:

(sβ I
α
a+ f )(x)+ (sβ I

α
b− f )(x)

≤
1

(β + s)α0(α)
((xβ+s − aβ+s)α(f (x)+ f (a))

+ (bβ+s − xβ+s)α(f (b)+ f (x))).

Corollary 19: If we take g(x) = (x−a)ρ
ρ

, ρ > 0 in (9) and

g(x) = −(b−x)ρ
ρ

, ρ > 0 in (10) with φ(t) = tα, α > 0,
p = ω = 0. Then (9) and (10) produce the fractional integral
operators defined in [12], as follows:(
gF

tα,γ,δ,k,c
µ,α,l,a+ f

)
(x; 0)

= (ρIαa+ f )(x)

=
ρ1−α

0(α)

∫ x

a
((x − a)ρ − (t − a)ρ)α−1(t − a)ρ−1f (t)dt

and(
gF

tα,γ,δ,k,c
µ,α,l,b− f

)
(x; 0)

= (ρIαb− f )(x)

=
ρ1−α

0(α)

∫ b

x
((b− x)ρ − (b− t)ρ)α−1(b− t)ρ−1f (t)dt.

Further they satisfy the following bound:

(ρIαa+ f )(x)+ (ρIαb− f )(x)

≤
1

ρα0(α)
((x − a)ρα(f (x)+ f (a))

+ (b− x)ρα(f (b)+ f (x))).

Corollary 20: If we take g(x) = (x−a)ρ
ρ

, ρ > 0 in (9) and

g(x) = −(b−x)
ρ

ρ
, ρ > 0 in (10) with φ(t) = t

α
k 0(α)
k0k (α)

, α > k ,
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p = ω = 0. Then (9) and (10) produce the fractional integral
operators defined in [11], as follows:gF

t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,a+ f

 (x; 0)

= (sk I
α
a+ f )(x) = (ρk I

α
a+ f )(x)

=
ρ1−

α
k

k0k (α)

∫ x

a
((x − a)ρ − (t − a)ρ)

α
k −1(t − a)ρ−1f (t)dt

andgF
t
α
k

k0k (α)
,γ,δ,k,c

µ,α,l,b− f

 (x; 0)

= (sk I
α
a+ f )(x) = (ρk I

α
b− f )(x)

=
ρ1−

α
k

k0k (α)

∫ b

x
((b− x)ρ − (b− t)ρ)

α
k −1(b− t)ρ−1f (t)dt.

Further they satisfy the following bound:

(ρk I
α
a+ f )(x)+ (ρk I

α
b− f )(x)

≤
1

ρ
α
k k0k (α)

((x − a)
ρα
k (f (x)+ f (a))

+(b− x)
ρα
k (f (b)+ f (x))).

We will use the following lemma to get the next theorem.
Lemma 21 [9]: Let f : [a, b]→ R be a convex function.

If f is symmetric about
a+ b
2

, then the following inequality
holds:

f
(
a+ b
2

)
≤ f (x), x ∈ [a, b]. (27)

The following theorem provides the Hadamard type estima-
tion of integral operators (9) and (10).
Theorem 22: Along with statement of Theorem 8, if in

addition f is symmetric about
a+ b
2

, then the following
inequality holds:

f
(
a+ b
2

)((
gF

φ,γ,δ,k,c
µ,α,l,b− 1

)
(a; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,a+ 1

)
(b; p)

)
≤

((
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(a; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(b; p)

)
≤ 2φ(g(b)− g(a))Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p)

×(f (a)+ f (b)). (28)

Proof 23: For x ∈ (a, b), under the assumption on g and
φ

x
the following inequality holds:

φ(g(x)− g(a))
g(x)− g(a)

g′(x)Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

≤
φ(g(b)− g(a))
g(b)− g(a)

g′(x)Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p). (29)

Using convexity of f on [a, b] for x ∈ (a, b) we have

f (x) ≤
x − a
b− a

f (b)+
b− x
b− a

f (a). (30)

Multiplying (29) and (30) and then integrating with respect
to x over [a, b], the following inequality is obtained:∫ b

a

φ(g(x)− g(a))
g(x)− g(a)

g′(x)f (x)

×Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)dx

≤
f (b)
b− a

φ(g(b)− g(a))
g(b)− g(a)

Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p)

×

∫ b

a
(x − a)g′(x)dx

+
f (a)
b− a

φ(g(b)− g(a))
g(b)− g(a)

Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p)

×

∫ b

a
(b− x)g′(x)dx.

By using (9) of Definition 4 and integrating by parts we get(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(b; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p)

×(φ(g(b)−g(a)))(f (a)+f (b)) . (31)

On the other hand the following inequality holds:

φ(g(b)− g(x))
g(b)− g(x)

g′(x)Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)

≤
φ(g(b)− g(a))
g(b)− g(a)

g′(x)Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p). (32)

Multiplying (30) and (32) and then integrating with respect
to x over [a, b] and simplifying on the same pattern as we did
for (29) and (30), following inequality is obtained:(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(a; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(b)− g(a))µ; p)

× (φ(g(b)−g(a)))(f (a)+f (b)) . (33)

By adding (31) and (33), we have((
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(b; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(a; p)

)
≤ 2φ(g(b)− g(a))Eγ,δ,k,cµ,α,l (ω(g(b)−g(a))µ; p)(f (a)+ f (b)).

(34)

Multiplying both sides of (27) by
φ(g(x)− g(a))
g(x)− g(a)

g′(x)

Eγ,δ,k,cµ,α,l (ω(g(x) − g(a))µ; p), then integrating over [a, b] we
get

f
(
a+ b
2

)∫ b

a

φ(g(x)− g(a))
g(x)− g(a)

g′(x)

×Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)dx

≤

∫ b

a

φ(g(x)− g(a))
g(x)− g(a)

g′(x)f (x)

×Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)f (x)dx.

By using (10) of Definition 4 we get

f
(
a+b
2

)(
gF

φ,γ,δ,k,c
µ,α,l,b− 1

)
(a; p)≤

(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(a; p). (35)
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Multiplying both sides of (27) by
φ(g(b)− g(x))
g(b)− g(x)

g′(x)

Eγ,δ,k,cµ,α,l (ω(g(b) − g(x))µ; p) and integrating over [a, b] we
have

f
(
a+b
2

)(
gF

φ,γ,δ,k,c
µ,α,l,a+ 1

)
(b; p) ≤

(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(b; p) (36)

by adding (35) and (36), the following inequality is obtained:

f
(
a+ b
2

)((
gF

φ,γ,δ,k,c
µ,α,l,b− 1

)
(a; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,a+ 1

)
(b; p)

)
.

≤

((
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(a; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(b; p)

)
. (37)

Combining (34) and (37), inequality (28) can be achieved.
Remark 24: Theorem 22 can be utilized to obtain bounds

of Hadamard type for fractional integral operators and con-
formable integrals like Corollaries 1 − 9. We leave them for
the readers.
Theorem 25: Let f : [a, b] −→ R be a differentiable

function. If |f ′| is convex, 0 < a < b and g : [a, b] −→ R
be differentiable and strictly increasing function. Also let φx
be an increasing function and α, l, γ, c ∈ C, p, µ, δ ≥ 0 and
0 < k ≤ δ + µ. Then for x ∈ (a, b) we have∣∣∣(gFφ,γ,δ,k,cµ,α,l,a+ f ∗ g

)
(x; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,b− f ∗ g

)
(x; p)

∣∣∣
≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)φ(g(x)− g(a))

(|f ′(x)| + |f ′(a)|)

+Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)φ(g(b)− g(x))

(|f ′(x)| + |f ′(b)|). (38)

where(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ∗ g

)
(x; p)

:=

∫ x

a

φ(g(x)− g(t))
g(x)− g(t)

× Eγ,δ,k,cµ,α,l (ω(g(x)

−g(t))µ; p)g′(t)f ′(t)dt(
gF

φ,γ,δ,k,c
µ,α,l,b− f ∗ g

)
(x; p)

:=

∫ b

x

φ(g(t)− g(x))
g(t)− g(x)

× Eγ,δ,k,cµ,α,l (ω(g(x)

−g(t))µ; p)g′(t)f ′(t)dt.

Proof 26: Using the convexity of |f ′| over [a, b] for t ∈
[a, x] we have

|f ′(t)| ≤
x − t
x − a

|f ′(a)| +
t − a
x − a

|f ′(x)|. (39)

From which we can write

−

(
x − t
x − a

|f ′(a)| +
t − a
x − a

|f ′(x)|
)
≤ f ′(t)

≤

(
x − t
x − a

|f ′(a)| +
t − a
x − a

|f ′(x)|
)

(40)

we consider the right hand side inequality of the above
inequality i.e.

f ′(t) ≤
(
x − t
x − a

|f ′(a)| +
t − a
x − a

|f ′(x)|
)
. (41)

Further the following inequality holds true:

φ(g(x)− g(t))
g(x)− g(t)

g′(x)Eγ,δ,k,cµ,α,l (ω(g(x)− g(t))µ; p)

≤
φ(g(x)− g(a))
g(x)− g(a)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p). (42)

Multiplying (41) and (42) and integrating with respect to t
over [a, x], the following inequality is obtained:∫ x

a

φ(g(x)− g(t))
g(x)− g(t)

g′(t)f ′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(t))µ; p)dt

≤
|f ′(a)|
x − a

φ(g(x)− g(a))
g(x)− g(a)

Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×

∫ x

a
(x − t)g′(t)dt

+
|f ′(x)|
x − a

φ(g(x)− g(a))
g(x)− g(a)

Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×

∫ x

a
(t − a)g′(t)dt

which gives(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ∗ g

)
(x; p) ≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×φ(g(x)−g(a))(|f ′(x)|+|f ′(a)|).

(43)

If we consider the left hand side inequality from the inequality
(40) and proceed as we did for the right hand side inequality
we have(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ∗ g

)
(x; p) ≥ −Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×φ(g(x)−g(a))(|f ′(x)|+|f ′(a)|).

(44)

Combining (43) and (44), the following inequality is
obtained:∣∣∣(gFφ,γ,δ,k,cµ,α,l,a+ f ∗ g

)
(x; p)

∣∣∣ ≤ Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p)

×φ(g(x)−g(a))(|f ′(x)|+|f ′(a)|).

(45)

On the other hand using convexity of |f ′(t)| over [a, b] for
t ∈ (x, b] we have

|f ′(t)| ≤
t − x
b− x

|f ′(b)| +
b− t
b− x

|f ′(x)|. (46)
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Further the following inequality holds true:

φ(g(x)− g(t))
g(x)− g(t)

g′(x)Eγ,δ,k,cµ,α,l (ω(g(x)− g(t))µ; p)

≤
φ(g(b)− g(x))
g(b)− g(x)

g′(t)Eγ,δ,k,cµ,α,l (ω(g(x)− g(a))µ; p). (47)

By adopting the same treatment as we did for (39) and (42),
one can obtain the following inequality from (46) and (47):∣∣∣(gFφ,γ,δ,k,cµ,α,l,b− f ∗ g

)
(x; p)

∣∣∣ ≤ Eγ,δ,k,cµ,α,l (ω(g(b)− g(x))µ; p)

×φ(g(b)−g(x))(|f ′(x)|+|f ′(b)|).

(48)

Combining (45) and (48), inequality (38) can be achieved.

III. PROPOSED FRACTIONAL DIFFERENTIAL EQUATIONS
Theorem 27: Let µ, α, l, γ, ν, c ∈ C, <(µ),<(α),
<(l) > 0, <(c) > <(γ ) > 0 with p ≥ 0, δ > 0 and
0 < k ≤ δ+<(µ). Let g(x) = I (x), f (x) = x2 and φ(t) = tα .
Then the differential equation

(Dν0+y)(x) = λ1
(
IF

tα,γ,δ,k,c
µ,α,l,0+ x2

)
(x; p)+ x2 (49)

with initial condition (I1−ν0+ ) = (0+) = C , has its solution in
the L(0,∞)

y(x) = C
xν−1

0(ν)
+ 2λ1

∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

×
(c)nk

0(µn+ α + ν + 3)
ωn

(l)nδ

×xνn+α+ν+2 + 2
xν+2

0(ν + 3)
(50)

where C is an arbitrary constant.
Proof 28: For the function f (x) = x2 the generalized

fraction integral operator is calculated in [20, Thorem 3.1]
as follows:(
IF

tαγ,δ,k,c
µ,α,l,ω,a+x

2
)
(x; p)

= (x − a)α ×
[
a2Eγ,δ,k,cµ,α+1,l(ω(x − a)

µ
; p)

+2a(x − a)Eγ,δ,k,cµ,α+2,l(ω(x − a)
µ
; p)

+2(x − a)2 × Eγ,δ,k,cµ,α+3,l(ω(x − a)
µ
; p)
]
. (51)

Now putting a = 0 the above equation reduces to(
IF

tαγ,δ,k,c
µ,α,l,ω,0+x

2
)
(x; p) = 2x2+α(Eγ,δ,k,cµ,α+3,l(ω(x)

µ
; p)). (52)

Using (52) in (49) we get

(Dν0+y)(x) = λ12x
2+α(Eγ,δ,k,cµ,α+3,l(ω(x)

µ
; p))+ x2. (53)

Applying Laplace transform on both sides of (53) we have

L[(Dν0+y)(x); s] = L[λ12x2+α(E
γ,δ,k,c
µ,α+3,l(ω(x)

µ
; p)); s]

+L[x2; s]. (54)

Laplace transform of Mittag-Leffler function is obtained as
follows:

L[xα−1Eγ,δ,k,cµ,α,l (ω(x)µ; p)]

=

∫
∞

0
xαe−sxEγ,δ,k,cµ,α,l (ω(x)µ; p)dx

=

∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

(c)nk
0(µn+ α)

ωn

(l)nδ

×

∫
∞

0
xα+µn−1e−sxdx

=
1
sα

∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

(c)nk
(l)nδ

ωn. (55)

And Laplace transform of fractional derivative Dν0+ f is
calculated as follows:

L[Dν0+ f ; s] = sνF(s)

−

n∑
k=1

Dν−k0+ f (0+) (n− 1 < ν < n)Re(s) > 0.

(56)

Using (55) and (56) (for n = 1) in (54) we have

y(s) = Cs−ν + 2λ1s−(µn+α+ν+3)
∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

×(c)nk
ωn

(l)nδ
+ 2s−(ν+3). (57)

Now taking the inverse Laplace transformation on both side
of (57) and after some simplifications, we achieved the
required result (50).
Theorem 29: Let µ, α, l, γ, c ∈ C, <(µ),<(α),<(l) > 0,
<(c) > <(γ ) > 0 with p ≥ 0, δ > 0 and 0 < k ≤ δ +<(µ).
Let g(x) = I (x), and φ(t) = tα . Then the differential equation

(Dα0+y)(x)=λ1
(
IF

tα,γ,δ,k,c
µ,α,l,0+ 1

)
(x; p)+ λ2xαE

γ,δ,k,c
µ,α+1,l(ωx

µ
; p)

(58)

with initial condition (I1−α0+ ) = (0+) = C , has its solution in
the L(0,∞)

y(x) = C
xα−1

0(α)
+ (λ1 + λ2)

∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

×
(c)nk

0(µn+ 2α + 1)
ωn

(l)nδ
xνn+2α (59)

where C is an arbitrary constant.
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Proof 30: By convenient settings of values of function
g(x) = I (x) and φ(t) = tα in (6), we have(

ε
γ,δ,k,c
µ,α,l,ω,a+1

)
(x; p) =

(
IF

tαγ,δ,k,c
µ,α,l,ω,a+1

)
(x; p). (60)

By putting a = 0 in (60) one can obtained:

(Dα0+y)(x) = λ1x
αEγ,δ,k,cµ,α+1,l(ωx

µ
; p)+ xαEγ,δ,k,cµ,α+1,l(ωx

µ
; p)

= (λ1 + λ2)xαE
γ,δ,k,c
µ,α+1,l(ωx

µ
; p). (61)

Applying Laplace transform on both sides of (61) and after
simplification one can obtained:

y(s) = Cs−α + (λ1 + λ2)s−(µn+2α+1)

×

∞∑
n=0

βp(γ + nk, c− γ )
β(γ, c− γ )

(c)nk
ωn

(l)nδ
. (62)

Applying inverse Laplace transform and after simplification
the required result (59) can be achieved.

IV. CONCLUDING REMARKS
The findings of this research provide compact presentation
of bounds for fractional integral operators and conformable
integrals simultaneously. These bounds can be achieved from
the bounds of unified integral operators (9) and (10) which
have been established by utilizing convex functions, func-
tions whose derivatives in absolute value are convex, symmet-
ric convex functions, and by applying the conditions involved
in definitions of unified operators.
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