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ABSTRACT With the increase in deployment of scientific workflow applications on an IaaS cloud
computing environment, the distribution of workflow tasks to particular cloud instances to decrease run-
time and cost has emerged as an important challenge. The cloud workflow scheduling is a well-known
NP-hard problem. In this paper, we propose a new approach for multi-objective workflow scheduling in
IaaS clouds offering a limited amount of instances and a flexible combination of instance types, and present
a hybrid algorithm combining genetic algorithm, artificial bee colony optimization and decoding heuristic
for scheduling workflow tasks over the available cloud resources while trying to optimize the workflow
makespan and cost simultaneously. The proposed algorithm is evaluated for real-world scientific applications
by a simulation process. The simulation results show that our proposed scheduling algorithm performs better
than the current state-of-the-art algorithms. We validate the results by the Wilcoxon signed-rank test.

INDEX TERMS Cloud computing, multi-objective optimization, workflow schedule.

I. INTRODUCTION
Scientific workflow is a widely-used model to describe
various scientific computing problems in areas such as bioin-
formatics, astronomy, and physics. With the ever-growing
complexity of scientific computing systems, scientific
workflows are becoming increasingly data-intensive,
communication-intensive and computation-intensive.
Generally, these scientific workflows are very large in size
since they consist of many independent and/or dependent
tasks and thus they require huge infrastructure for their
computation, communication, and storage. The scheduling
of these tasks on distributed resources has been studied
extensively over the years, focusing on heterogeneous envi-
ronments like distributed computing, grid computing and
parallel computing. However, with the emergence of cloud
computing, there are many new challenges that must be
addressed in order to efficiently schedule the large scale
scientific workflow application in cloud environment. This is
because that the cloud environment significantly differs from
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the traditional heterogeneous environments in terms of the
computing, data and pricing models.

As a new form of computing service, cloud computing
enables the delivery of the resources and services over the
Internet, and follows a pay-as-you-go model where con-
sumers are charged according to the use they make of the
service. Infrastructure as a Service (IaaS) is the most com-
mon type of cloud service, providing users with the ability
to lease or release pre-configured virtual machines (VMs)
from a cloud infrastructure. Using the VMs, which are called
instances in IaaS clouds, users can access to a resource pool
with much lower ownership cost for executing applications.
Workflow scheduling in IaaS clouds, which is known to be
NP-complete, is basically to find proper schemes of assigning
tasks to VMs so as to satisfy some performance criteria,
such as the overall completion time and the overall execution
cost. Many meta-heuristic algorithms, such as genetic algo-
rithm (GA) [1] particle swarm optimization (PSO) [2], and
artificial bee colony algorithm (ABC) [3] were proposed to
solve the scheduling problem of the workflow tasks in cloud
environments.

Standard ABC has great exploitation ability and fast
convergence speed, whereas traditional GA has effective
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exploration ability. When being applied for solving workflow
scheduling problems, ABC can easily get stuck in the local
optimal because of its low global exploration efficiency;
GA has slower convergence speed in some cases because of
the lack of powerful local exploitation ability. To overcome
the disadvantages of the two algorithms, this paper proposes
a hybrid approach based on GA and ABC for scheduling
scientific workflows in IaaS clouds with pay-per-use pricing
model. A decoding heuristic is integrated into the hybrid
approach to generate a feasible schedule. The performance of
the proposed algorithm is evaluated against other algorithms
to prove its effectiveness in solving the workflow scheduling
problem in IaaS clouds. The contributions of this paper can
be summarized as follows:
• We develop a new Pareto-based multi-objective work-
flow scheduling algorithm, called HGAABC, for opti-
mizing the workflowmakespan and cost simultaneously.
We extend HGAABC for coping with commercial IaaS
cloud computing systems providing a limited amount of
instances and a flexible combination of instance types.

• We integrate the ability of exploitation in ABC with
the ability of exploration in GA to map each task into
a corresponding VM type of instance series in terms
of pay-per-use pricing model. A decoding heuristic is
proposed to generate a feasible schedule.

• We conduct extensive simulation experiments to eval-
uate the effectiveness of the proposed HGAABC.
We compare our HGAABC with a number of state-of-
the-art multi-objective optimization algorithms, includ-
ing HPSO [4] and PBACO [5]. Extensive experimental
results on real-world scientific applications show the
efficacy of our algorithm. We validate the results by the
Wilcoxon signed-rank test.

The remaining sections of the paper are organized as fol-
lows. A survey on related works is presented in section II.
Section III presents the models and problem formulation.
Section IV describes the proposed HGAABC in detail. The
experimental results are given in Section V. Finally, the con-
clusion is drawn in Section VI.

II. RELATED WORK
Scheduling of workflows is an NP-complete problem [6].
Many heuristic algorithms are developed to solve the tasks
scheduling problem using different strategies. Heterogeneous
Earliest Finish Time (HEFT) [7] is a popular heuristic
which was initially designed for task scheduling in het-
erogeneous multiprocessor systems. An extension of HEFT
called MOHEFT was proposed by Durillo and Prodan [8]
for workflow scheduling in Amazon EC2, to minimize
makespan and cost of execution. Wu et al. [9] proposed
a heuristic algorithm, called Critical-Greedy, to solve the
budget-constrained workflow scheduling problem for delay
minimization in cloud computing environments. Xu et al.
[10] developed a heuristic-based algorithm called Min-min
based time and cost tradeoff (MTCT) to solve the problem
of workflow scheduling in clouds considering fault recovery,

makespan and cost. Rimal and Maier [11] proposed a
cloud-based workflow scheduling (CWSA) policy for
compute-intensive workflow applications in multi-tenant
cloud computing environments, which aims to minimize the
scheduling execution time, workflow execution costs, and
total expected tardiness. Deldari et al. [12] proposed a cluster
combining algorithm (CCA) for workflow scheduling on
the multicore cloud, which aims to minimize the monetary
costs of workflow execution while meeting a user-defined
deadline.

Meanwhile, a number of nature-inspired metaheuristic-
based algorithms have been applied in solving the task
scheduling problem. Rodriguez and Buyya [2] proposed
a particle swarm optimization (PSO) based algorithm for
scheduling a scientific workflow application on IaaS clouds,
which aims to minimize the overall workflow execution cost
while meeting deadline constraints. Liu et al. [13] proposed
an coevolutionary genetic algorithm (CGA) with adaptive
penalty function to find a proper task-VM mapping strategy,
which aims to minimizes the total financial cost and the
makespan under the deadline constraint. An evolutionary
multi-objective optimization (EMO)-based algorithm [14]
was proposed to solve the workflow scheduling problem
which optimizes both makespan and cost for the cloud envi-
ronments. Li et al. [15] proposed a PSO-based task schedul-
ing algorithm for scientific workflow in clouds to minimize
the total workflow execution cost while meeting the deadline
and risk rate constraints. Rehman et al. [1] proposed a multi-
objective genetic algorithm for the scheduling of scientific
workflows in cloud environments, which aims to minimize
the energy consumption and the makespan under the budget
and deadline constraint.

Recently, some hybrid algorithms are proposed to solve
multi-objective workflow scheduling problems in the cloud.
Anwar and Deng [16] designed a hybrid metaheuristic based
on predict earliest finish time (PEFT) and symbiotic organ-
isms search (SOS) algorithms for the workflow scheduling
problem in the cloud, which aims to minimize the makespan,
the execution cost, and the inefficient utilization of the VMs.
Manasrah and Ali [17] presented a hybrid GA-PSO algo-
rithm for cloud scientific workflow scheduling, which aims
to reduce the makespan and the cost and balance the load of
the dependent tasks over the heterogonous VMs in clouds.
Choudhary et al. [18] presented a hybrid algorithm based on
HEFT and gravitational search algorithm (GSA) for work-
flow scheduling that considersminimization ofmakespan and
cost. Verma and Kaushal [4] proposed the multi-objective
hybrid particle swarm optimization (HPSO) algorithm based
upon non-dominance sorting procedure to give a trade-off
schedule plan between cost and makespan depending upon
the user preference for scientific workflow scheduling in IaaS
clouds.

Unlike all the aforementioned methods, we propose a
hybrid algorithm combining genetic algorithm, artificial bee
colony optimization and decoding heuristic for schedul-
ing scientific workflows over the available cloud resources.
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The proposed algorithm aims to optimize the makespan and
economic cost of running scientific workflow applications in
an IaaS cloud offering a limited amount of instances and a
flexible combination of instance types.

III. PROBLEM MODELING
In this section, we first present the system model. Next,
we describe the cloud computing model. Then, we present
our workflow model. Finally, we conclude this section by
describing the scheduling model formalized as a multi-
objective optimization problem.

A. SYSTEM MODEL
Our proposed system model consists of three layers, namely,
cloud user, workflow scheduler, and cloud resource, as shown
in Figure 1. The first layer is the cloud user, which submit
tasks associatedwith theworkflow to theworkflow scheduler.
The second layer is the workflow scheduler, which contains
HGAABC scheduling algorithm. The last layer of the pro-
posed model is the cloud resource in IaaS cloud environment.
The working of our proposed system model is explained step
by step below.

1. The cloud user submits the workflow to the queue
which works on a First-Come-First-Serve (FCFS)
basis.

2. The workflows are sent to the proposed HGAABC
algorithm, which is used to find the optimal solution
for two conflicting objectives, ie. makespan and cost.

3. The schedule generated by the HGAABC algorithm is
then dispatched for execution to the cloud environment.

4. After execution, the results are collected and then
returned to the corresponding user.

FIGURE 1. System model.

B. IaaS CLOUD MODEL
Suppose that the IaaS provider provides a computation ser-
vice such as Amazon Elastic Compute Cloud (EC2) [19]
which we can use to execute the workflow tasks, and a storage
service such as Amazon Elastic Block Store (EBS) [20]
which can be attached to the computation resources as a
local storage device to offer enough space for the data files
resulting from executing tasks. Our hardware platform is
represented by a set V of m heterogeneous VMs, which
can be of any type as provided by an IaaS provider. Each
virtual machine has its own CPU processing speed measured
in million floating-point operations per second (MFLOPS),

memory in Gigabytes (GB), storage space in GB, bandwidth
in Megabits per second (Mbps), computation cost in dollars
per hours and storage cost in dollars per minutes per GB.

The users are charged based on the number of time inter-
vals that they have used the resource, even if they have
not entirely used the last time interval. For instance, for a
60 seconds interval, if a VM is used for 61 seconds, the user
will pay for two periods of 60 seconds, that is, 120 seconds.

All the VMs offered by IaaS providers are assumed to be in
the same physical region, so the average bandwidth between
VMs, denoted by BW, is roughly the same. In theory a user
can access an infinite pool of VMs, but in practice, most
IaaS providers restrict the total number of allocated VMs to
a user. For example, Amazon currently restricts its common
users to a maximum of 20 VMs of EC2 services. Therefore,
we assume that a user can acquire a maximum of r VMs
simultaneously.

C. WORKFLOW APPLICATION MODEL
A scientific workflow application is modeled as a directed
acyclic graph (DAG), defined by a two-tuple W(T, E), where
T is the set of vertices standing for n different tasks of
the workflow, and E is the set of directed edges between
the vertices standing for dependencies. A dependency ei,j
between the tasks ti and tj represents a precedence constraint
that the task tj cannot start its execution before ti completes
and sends all the needed output data to task tj. For a given
dependency ei,j, task ti is called one of the immediate prede-
cessors of task tj, and task tj is called one of the immediate
successors of task ti. A task ti may have multiple predecessor
and multiple successor tasks, defined as pred(ti) and succ(ti)
of ti, respectively. A task is viewed as a ready task when all
its predecessors have completed execution. Assume that each
task ti has aworkload, represented byWL i, which is the length
of the task in machine instructions. Also, each edge ei,j has
a weight that indicates the size of the data to be transferred
from ti to tj, denoted by DS i,j.

D. SCHEDULING MODEL
This work focuses on finding a schedule to execute a work-
flow on IaaS computing resources such that the overall com-
pletion time and the overall execution cost are minimized.
The overall completion time of a workflow is also called
makespan. Let A = (ai,j)n×m be the workflow assignment
matrix. If task ti is assigned to VM vj, then aij = 1; otherwise,
aij = 0. After task ti is assigned to VM vj, its execution time
TE

(
ti, vj

)
can be calculated as

TE ti,vj = WL ti
/
Svj (1)

where Svj represents the processing speed of VM vj. The time
it takes to transfer data from tk to ti can be calculated as

DT k,i=


0 if ti and tk are assigned to

the same VM
DSk,i/BW otherwise

(2)
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Note that the data transfer time between two tasks being
executed on the same VM is 0. Thus, the start time ST ti,vj
and completion time FT ti,vj of task ti on VM vj are computed
recursively as shown in (3) and (4), respectively.

ST ti,vj =


A(j) pred (ti) = ∅

max
{
max tk∈pred(ti)

(
FT tk ,v̄k+DT k,i

)
,A(j)

}
otherwise

(3)

FT ti,vj = TE ti,vj + ST ti,vj (4)

In (3), A(j) denotes the earliest time at which VM vj is
available to begin executing task ti and v̄k represents the
VM on which task tk runs. The workflow makespan MT is
finally defined as the maximum completion time of all the
tasks in the workflow. This is depicted in (5).

MT = max i∈{1,2,...,n}
∑m

j=1
(ai,j � FT ti,vj ) (5)

The overall execution cost of a workflow consists of the
computation cost, the storage cost and the cost of data trans-
fer. Many IaaS providers do not charge for the internal data
transfer, so the data transfer cost is assumed to be zero in our
cost model. Let the binary variable yj indicate whether VM j
is leased or not. The computation cost PC of running a cloud
workflow can be defined as follows.

PC =
∑m

j=1
[yj �

⌈
ETL j − STL j

3600

⌉
� RPj] (6)

where RPj is the price per hours of usage for VM vj, ETL j and
STL j represent the lease start and lease end times for VM vj,
respectively. The data storage cost SC can be given by

SC=
∑n

i=1

∑m

j=1
[ai,j � SAti �


TE ti,vj +

∑
tk∈succ(ti)

DT i,k

60


� SPj] (7)

where SAti is data sizes resulting from executing task ti, and
SPj denotes the price per GB of data storage per minutes for
VM vj. Finally, the cost of executing the entire workflow,
denoted by TC, can be given by

TC = PC + SC (8)

Let Tvj be the set of tasks allocated to VM vj. Based on the
previous definitions, theworkflow scheduling problem can be
formulated as a mathematical optimization problem, which is
described as follows.

Minimize MT = max i∈{1,2,...,n}
m∑
j=1

(ai,j � FT ti,vj ) (9)

Minimize TC = PC + SC (10)

Subject to FT tk ,v̄k+DT k,i≤ST ti,vj ∀vj∈V , ∀ti ∈ Tvj ,

∀tk ∈pred(ti) (11)

m∑
j=1

aij = 1 ∀ti ∈ T (12)

m∑
j=1

yj ≤ r (13)

yj, ai,j ∈ {0, 1} ∀ti ∈ T , ∀vj ∈ V (14)

Two objective functions given by (9) and (10) aim to
find the schedule for a scientific workflow application
that minimizes both makespan and cost simultaneously.
Constraint (11) ensures that a task can only be started after its
predecessor task has finished and all the required input data
is received. Constraint (12) ensures that each task is assigned
to only one of VMs. Constraint (13) ensures that a maximum
of r VMs can be simultaneously acquired. Constraint (14)
defines the domain of the variables of the problem.

IV. THE PROPOSED HYBRID ALGORITHM
Because of the NP-Hard nature of the optimization prob-
lem described above, there is a great difficulty to find the
best solutions in practically acceptable times. This section
will show how to apply a hybrid algorithm based genetic
algorithm, artificial bee colony optimization, and decoding
heuristic to efficiently search for good solutions in large
solution spaces. The decoding heuristic generates a feasible
scheduling based on a given mapping of tasks to VMs and a
mapping of VMs to their types. The hybrid algorithm based
on ABC and GA is used to evolve such mappings. The main
steps of the HGAABC algorithm is depicted in Algorithm 1.
The proposed algorithm begins with generating a random
population of FN candidate solutions. Each solution is an
allocation of the whole workflow tasks over the available
VMs. The initial population is passed through the GA algo-
rithm with the first half of the predefined iterations (MCN).
In the GA algorithm, the solutions are called chromosomes;
the chromosomes are recursively enhanced by the GA oper-
ators (i.e., selection, crossover, and mutation). The resulting
chromosomes are passed to the ABC algorithm at the second
half of MCN. In the ABC algorithm, the solutions are called
food sources; the food sources are enhanced gradually at
each iteration through three groups of bees: employed bees,
onlooker bees and scout bees. In the evolutionary process,
the fast non-dominated sortingmethod and crowding distance
measure are used to update the population. The following
subsections describe the phases of the proposed HGAABC
algorithm.

A. ENCODING SCHEME
In the proposed algorithm, a solution is a two-tuple including
a mapping TV of tasks to VMs and a mapping VK of VMs to
their types.We split a solution into two parts to represent them
respectively. The first part task2vm is a vector representing
themapping TV and its length is equal to the number n of tasks
in the workflow. The second part vm2type is a vector denoting
the mapping VK and its length is equal to the maximum
number r of available VMs. The value of each element in the
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Algorithm 1 The Proposed HGAABC Algorithm
Input: Workflow, set of VMs and set of VM types
Output: Set of Pareto-optimal solutions
/∗ Initialization phase∗/
1. Randomly generate an initial population of FN individ-
uals. (see Section
IV Part C for details)
/∗GA phase∗/(see Section IV Part D for details)
2. Repeat
3. Choose FN/2 pairs of chromosomes from the current

population by using selection operator.
4. Apply the crossover operator to each of the selected

pairs in Step 3 to generate FN chromosomes with a
predefined crossover probability CP.

5. Apply the mutation operator to each of the generated
FN chromosomes with a predefined mutation
probability MP.

6. Create a temporary population by combining the parent
population and the offspring population generated by
the GA operators.

7. Create a new population P1 by choosing FN
chromosomes from the temporary population based
on the elitist preservation strategy. (see Section IV
Part F for details)

8. Until the number of cycles reaches to the half number of
predefined iterations

/∗ABC phase∗/ (see Section IV Part E for details)
9. Repeat
10. Send the employed bees onto their food sources

according to the elite-guide strategy.
11. Create a temporary population by combining the

current population and the population generated
by the employed bees

12. Create a new population P2 by choosing FN food
sources from the temporary population based
on the elitist preservation strategy. (see Section IV
Part F for details)

13. Send the onlooker bees onto their food sources
depending on their nectar amounts and the elite-guide
strategy.

14. Create a temporary population by combining the
population P2 and the population generated by the
onlooker bees.

15. Create a new population P3 by choosing FN food
sources from the temporary population based on the
elitist preservation strategy. (see Section IV Part F
for details)

16. Send the scout bees to search possible new food
sources.

17. Until the number of cycles reaches to the half number
of predefined iterations

18. Return all non-dominated solutions in the current
population

vector task2vm is a real number between 0 and the number of
VMs available to run the tasks. The value of each element
in the vector vm2type is a real number between 0 and the
number of VM types available. During the search process,
the solutions in continuous representation are used to find
the non-dominated solutions. when decoding the solution, we
apply the floor function to convert the continuous vectors into
the discrete vectors. In the discrete vector task2vm, each index
denotes a task and its value denotes the VM where this task
will be executed. In the discrete vector vm2type, each index
represents a VM and its value represents the VM type. For
example, Fig. 2 shows the encoding of a schedulewith 5VMs,
6 tasks and 4 types of VMs.

FIGURE 2. Encoding scheme of a valid schedule.

B. DECODING SCHEME
Decoding a solution means to generate a feasible schedule.
We define a schedule S = (R, M, MT, TC) in terms of a set
of VMs actually leased, a task to VM mapping, the overall
completion time and the overall cost. For a given solution
in discrete representation, we apply the decoding heuristic in
Algorithm 2 to decode the solution into an actual schedule.
Initially, the set of VMs actually leased R and the set of task to
VMmappingsM are empty and the overall makespanMT and
the overall cost TC are set to zero. The initial lease start time
STL j and lease end time ETL j of all VMs are set to zero. After
this, the algorithm estimates the start and end time of each
workflow task. The next step is the calculation of the total
data transfer time (Transtimeti ), data storage size (SAti,), and
cost (SC). Then the lease start and end time can be estimated
for each leased VM. Once the algorithm finishes processing
each task, R will contain all VMs that need to be leased as
well as the times when they should be started and shutdown.
Additionally, the entire task to VMmapping will be inM and
each task will have a VM assigned to it as well as an estimated
start and end times. With this information, the algorithm
can now use (5) and (8) to compute the overall cost TC
and completion time MT associated to the current solution.
Finally, the algorithm returns the schedule associated to the
given solution.

C. INITIALIZING POPULATION
In the proposed algorithm, the initial population is generated
by using a random strategy. Let Xi = {xi1, xi2, · · · , xiq}
denotes the ith individual in the population, where q is the
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Algorithm 2 The Decoding Heuristic
Input: An array L[n] denoting the mapping task2vm
An array Q[r] denoting the mapping vm2type

Output: A schedule S = (R,M ,MT ,TC)
1. R = φ
2. M = φ
3. MT = 0
4. TC = 0
5. SC = 0
6. For j = 0 to r − 1
7. STL j = 0
8. ETL j = 0
9. EndFor
10. For i = 0 to n− 1
11. Transtimeti = 0
12. SAti = 0
13. If ti has no predecessor tasks
14. ST ti,vL[i] = ETLvL[i]
15. Else
16. ST ti,vL[i]

= max
{

max
tk∈pred(ti)

(
FT tk ,v̄k + DT k,i

)
,ETLvL[i]

}
17. EndIf
18. Calculate TE ti,vL[i] according to (1)
19. Calculate FT ti,vL[i] according to (4)
20. For each successor task ts of ti
21. If ts is allocated to a VM different to vL[i]
22. Transtimeti = Transtimeti + DT i,s
23. EndIf
24. SAti = SAti + DS i,s
25. EndFor
26. For each predecessor task tk of ti
27. SAti = SAti + DSk,i
28. EndFor
29. SC = SC + SAti �

⌈TE ti,vL[i]+Transtimeti
60

⌉
� SPQ[L[i]]

30. Add the mapping of task ti to VM vL[i] to M
31. If vL[i] /∈ R
32. STLvL[i] = ST ti
33. Add VM vL[i] to R
34. EndIf
35. ETLvL[i] = ST ti + ET ti + Transtimeti
36. Endfor
37. Calculate MT according to (5)
38. Calculate TC according to (8)
39. Return S

problem dimension and its size is equal to n + r . Each
individual is initialized through the following equation.

xij = Lj + rand[0, 1](Uj − Lj) (15)

where rand[0, 1] is a random number chosen from a nor-
mal distribution within the range from zero and one, and
Lj andUj are the lower and upper bounds for the dimension j,
respectively.

D. APPLYING THE GA ALGORITHM
At the first phase, the GA is applied to find the non-dominated
solutions to the workflow scheduling problem. In each
iteration, the GA delivers the chromosomes between three
different operators: the selection, crossover, and mutation
operators. These operators are explained in the following
subsections respectively.

1) SELECTION OPERATOR
In the GA algorithm, not all the chromosomes in the current
population are evolved through the GA operators in each
iteration. The roulette wheel strategy [21] is chosen as the
selection mechanism. Each chromosome in the current pop-
ulation has an associated selection probability GP(Xi) which
is define as

GP (Xi) = f (Xi)
/∑FN

i=1
f (Xi) (16)

where f (Xi) represents the fitness value of chromosome Xi
and it can be calculated using the following equation.

f (Xi)=(FN − R (Xi)+1)
/∑FN

j=1
[FN−R

(
Xj
)
+1] (17)

where R (Xi) denotes the rank of a chromosome Xi in the
population and it can be given by

R (Xi) = 1+ di (18)

where di denotes the number of chromosomes dominating
the chromosome Xi in the current population. It is worth
remarking that chromosomes with an identical rank obtain
the same fitness value and have thus the same probability to
reproduce.

2) CROSSOVER OPERATOR
The crossover operator aims to produce new chromosomes
by changing the position of the genes inside every two chro-
mosomes. In the crossover, the two points randomly selected
as showed in Fig. 3, divide the parent into three parts (0–1,
1–2, 2–3). All genes from the parts (0–1, 2–3) are copied to
identical positions in the offspring and all the genes within
the part (1–2) of two parent are exchanged for generating the
remaining parts of two offspring.

FIGURE 3. Crossover operator.

3) MUTATION OPERATOR
The mutation operator is used to generate small perturba-
tions on chromosomes in order to maintain the diversity of
population. Uniform mutation operator is used in this paper.
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In uniform mutation, a random selected gene is replaced with
a random real value between its lower and upper bounds.
Fig. 4 shows how the mutation operator operates.

FIGURE 4. Mutation operator.

E. APPLYING THE ABC ALGORITHM
The solutions that are returned from the GA algorithm are fed
into the ABC algorithm to find the non-dominated solutions
from the GA generated solutions. In the ABC algorithm,
the solutions are called food sources. The number of the
employed bees or the onlooker bees is equal to the number of
food sources in the population. The ABC algorithm consists
of three stages as follows.

1) SENDING EMPLOYED BEES
The employed bees generate food sources in the neighbor-
hood of their current locations. In the original ABC algo-
rithm, the new candidate food source is generated by moving
the old food source towards another food source selected
randomly from the population. Since the probability that the
randomly chosen solution is a good solution is the same as
that the randomly chosen solution is a bad one, the new
candidate solution is not promising to be a solution better than
the previous one. In order to improve the exploitation, we take
advantage of the information of the non-dominated solution
to guide the search of candidate solutions. The local search
technique is called the elite-guide strategy. Each employed
bee Xi generates a new candidate solution Vi in the neighbor-
hood of its present position as follows:

Vij=Xij + ϕij
(
Xij − Xkj

)
+ ωij

(
Yj − Xij

)
Y ∈ ES (19)

where Xk is a randomly selected food source which is differ-
ent from i, j is a random dimension index chosen from the
set{1,2,...,q}, and ϕij is a uniformly distributed real random
number within the range [−1, 1]. The third term in the right-
hand side of (19) is called the elite-guide term, where Yj
denotes the jth element of the solution choosing from ES ran-
domly. In (19),ωij is a random number in the range of [0, 1.5],
and ES denotes the elite set which consist of the solutions
in the first non-dominated front of the current population.
When the value obtained by (19) exceed its predetermined
boundaries, it is set to its boundaries. After the candidate
solution is generated, its fitness is assessed. If the fitness
of the candidate solution is better than that of the old one,
then candidate solution replaces the old one, and the trial
for this candidate solution is set to zero. Otherwise, the trial

for the old solution is incremented by one. After all the
employed bees independently perform local search, the par-
ent population and offspring population are combined into
a population. This combined population undergoes a sorting
based on the elitist preservation strategy to determine the next
population.

2) SENDING ONLOOKER BEES
After all the employed bees complete their search processes,
they come into the hive and share the nectar information of the
food sources and their position information with the onlooker
bees on the dance area. Each onlooker bee selects a food
source depending on the probability value associated with the
food source. The selecting probability AP(Xi) is calculated as
follows [22].

AP (Xi) = 0.9× f (Xi)
/

max
k∈{1,2,..,FN }

f (Xk )+ 0.1 (20)

And then a random real number within the range [0, 1] is
generated for each food source. If the number is greater
than the probability value associated with that source then
the onlooker bee keeps the old positions, otherwise the
onlooker bee updates its position as the employed bee does.
After all onlookers complete the exploitation process, there
are 2∗FN solutions. The population selection strategy also
will be applied to choose FN optimal solutions as the new
population.

3) SENDING SCOUT BEES
A scout bee performs randomly search to increase the pop-
ulation diversity and avoid being trapped in local optimum.
If a food source cannot be improved further through a pre-
determined number LIM of trials, then that food source will
be abandoned. The employed bee corresponding to the aban-
doned food source becomes a scout bee, and the food source is
replaced with a solution that is produced in the same manner
as that in the initialization phase.

F. ELITIST PRESERVATION STRATEGY
In order to preserve the better solutions generated during
the evolution process, the parent and offspring population
after evolution are combined into a population. The elitist
preservation strategy based on fast non-dominated sorting
and crowding distance measure proposed by Deb et al. [23]
is applied to select FN feasible solutions from the combined
population in order to generate a new population.

In the proposed elitist preservation strategy, the first step
is to choose the members of the new population from the
non-dominated fronts in the order of their ranking. Assume
that the front fl denotes the last non-dominated front beyond
which no other fronts can be accommodated in the new
population. If the number of solutions in all fronts from the
first front f1 to the last front fl is greater than the population
size, the crowding distance measure is used to remove the
excess individuals from the last front fl .
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V. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
To evaluate the performance of the proposed HGAABC
algorithm in addressing the problem of scientific work-
flow scheduling in IaaS clouds, we use an extension of
CloudSim [24] called the WorkflowSim-1.0 toolkit [25] to
simulate a cloud environment. Pegasus project has published
five real-world workflow applications from diverse scientific
areas, four of which are used in our experiments. They are
Montage workflow for astronomical physics, Sipht workflow
for bioinformatics, Cybershake workflow for earthquake haz-
ards and LIGO workflows for detecting gravitational waves.
Fig. 5 describes the simplified structures of small instances
of workflows used in our experiments and the detailed char-
acteristics of these workflows can be found in [26].

FIGURE 5. Structure of the four different workflows.

Wemodeled an IaaS provider providing a single data center
and five different types of VMs. The configurations of each
type of VM are based on Amazon EC2 offerings and are
shown in Table 1. The maximum number of VMs that can be
simultaneously rented is limited to 20. We used the method
proposed by Ostermann et al. [27] to estimate the computing
capacity in MFLOPS based on the number of EC2 compute
units. The price for data storage is 0.10 $ per GB-month. The
workload of each task is randomly generated from 10000 to
100000 MFLOPS and the output size is randomly generated

TABLE 1. Type of VMs used in the experiments.

from the interval of [10, 100]GB. The average bandwidth
between VMs is set to 0.1 GB/s.

The performance of the proposed HGAABC algorithm is
compared to that of a multi-objective ant colony optimization
(PBACO) algorithm proposed in [5], a hybrid multi-objective
particle swarm optimization (HPSO) algorithm proposed
in [4] and a single-objective HEFT algorithm proposed in [7].
In addition, we also compare the HGAABC algorithm with
its variants, including a multi-objective genetic algorithm
(MGA) and a multi-objective artificial bee colony algorithm
(MABC). The programs for all six algorithms were coded in
the Java language and ran on an Intel(R) Core(TM) i7 pro-
cessor with 1.80 GHz CPU and 8 GB RAM. The settings
for various parameters in the HGAABC algorithm have
a direct effect on the algorithm performance. Appropriate
parameter values are determined on the basis of preliminary
experiments. The final parameter settings are determined to
be FN = 50, MCN = 1000, LIM = 200, CP = 0.8 and
MP = 0.5. In the case of the HPSO algorithm, the corre-
sponding parameters are population size = 50, maximum
iterations = 1000, c1 = 2.5 → 0.5 and c2 = 0.5 → 2.5,
inertia weight ω = 0.9 → 0.1. The parametric values for
the PBACO algorithm are set to be population size = 50,
maximum iterations = 1000, α = 3, β = 2, ρ = 0.01. The
parametric values for the MGA algorithm are set to be popu-
lation size= 50, maximum iterations= 1000, CP = 0.8, and
MP = 0.5 . The parametric values for theMGA algorithm are
set to be population size = 50, maximum iterations = 1000,
and LIM = 200 . For all the experiments, 20 independent runs
were conducted to guarantee statistical validity of the results.

B. SIMULATION RESULTS
In the first series of experiments, we assess the behavior of
the different algorithms optimizing each individual objection.
Because of the lack of information about the preferences
of objectives, we utilize a Fuzzy-based approach [28] to
generate the best compromised solution from the obtained
Pareto set. For each objective function fk , a linearmembership
function µk is defined as follows:

µk=


1 fk ≤ f mink

(f maxk − fk )
/
(f maxk − f mink ) f mink < fk < f maxk

0 fk ≥ f maxk

(21)

where f mink and f maxk represent the maximum and minimum
values of the kth objective function among all non-dominated
solutions, respectively. Correspondingly, the normalized
membership functionµi is calculated for each non-dominated
solution as

µi =
∑OB

k=1
µik
/∑ND

j=1

∑OB

k=1
µik (22)

where OB and ND represent the number of objectives func-
tions and non-dominated solutions, respectively. The solution
with the maximum membership µi is chosen as the best
compromise solution. Fig. 6 and Fig. 7 show the average
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FIGURE 6. Comparison of average makespan for different algorithms.

FIGURE 7. Comparison of average cost for different algorithms.

makespan and cost of the schedules computed by the six algo-
rithms for four types of workflows with varying the number
of tasks, respectively. From Figs. 6 and 7, it can be seen
that HEFT algorithm performs worst in terms of the overall
makespan and cost for four types of workflows. Furthermore,
it can also be observed that HGAABC algorithm outperforms
PBACO, HPSO, MGA, MABC and HEFT algorithms in
terms of the overall makespan and cost for four types of
workflows. This is because HGAABC can search the solution
space more efficiently and globally so that it can obtain both
relatively low cost and relatively short makespan.

In the second series of experiments, we analyze the trade-
off solutions computed by HPSO, PBACO, MGA, MABC,
and HGAABC for different workflow types and apply
Q-metric [29], FS-metric [30] and S-metric [31] to compare
the quality of the Pareto-optimal fronts among different algo-
rithms. Q-metric is utilized to measure the convergence of the
non-dominated solutions found by the two algorithms, which
is computed by

Q (A,B) = |ϕ|
/
|γ | (23)

where A and B represent two sets of Pareto-optimal solutions
found by two different algorithms, respectively. γ is the set
of non-dominated solutions within A∪B and ϕ = A ∩ γ .
The Pareto-optimal front found by an algorithm has better
convergence to the true Pareto-optimal front than that found
by the other algorithm, if and only if Q (A,B) > 0.5.
FS-metric indicates the size of the space covered by
the Pareto-optimal front found by an algorithm, which is

computed by

FS(A) =
√∑m

i=1
min

(x1,x2)∈A×A
(fi (x1)− fi (x2))2 (24)

where f is the objection function and m is the number of
objectives. A larger FS-metric value is preferable, which
means that the Pareto-optimal solutions found by an algo-
rithm are widely spread along the true Pareto front. S-metric
is employed to evaluate the uniformity of the Pareto-optimal
solutions found by an algorithm, which is computed by

S (A) =

√∑|A|

i=1
(di − d̄)

2/
|A| (25)

where di = min
k∈A

∧
k 6=i

∑m
j=1 |fj (k)− fj(i)| and d̄ =∑|A|

i=1 di
/
|A|. The desired value for S-metric is zero, which

means that the Pareto-optimal solutions found by an algo-
rithm are equidistantly spaced.

Fig. 8 shows the tradeoff solutions obtained by five
algorithms for four types of workflow applications with
1000 tasks. The figure shows that HGAABC algorithm has
the optimal trade-off solutions, and MGA algorithm per-
forms the worst. Tables 2-5 show the comparison of results
among five algorithms considering Q-metric, FS-metric and
S-metric for Montage, CyberShake, Sipht, and LIGO work-
flows, respectively. The ‘‘true’’ value in the first five rows
means that one algorithm is better than another algorithm on
Q-metric. As can be seen from the table, for the Q-metric,
the Pareto-optimal solutions found by HGAABC algorithm
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FIGURE 8. Makespan-cost trade-offs on four types of scientific workflows.

TABLE 2. Multi-objective performance metrics on the montage workflow.

TABLE 3. Multi-objective performance metrics on the LIGO workflow.

always outperform that of four other algorithms, which
indicates that the HGAABC algorithm has better conver-
gence than the comparative algorithms. Regarding FS-metric,
the value of HGAABC algorithm is greater than the corre-
sponding values for four other algorithms. It means that the
Pareto-optimal solutions found by the HGAABC algorithm
have better diversity than that found by the comparative algo-
rithms. With respect to the S-metric, the value of HGAABC
algorithm is less than the values of four other algorithms.
It shows that HGAABC algorithm achieves the better unifor-
mity of Pareto-optimal front than the other four algorithms.

Due to the stochastic characteristic of the HGAABC,
HPSO, PBACO,MGA, andMABC algorithms, the statistical
test should be conducted in order to validate the statistical

TABLE 4. Multi-objective performance metrics on the CyberShake
workflow.

TABLE 5. Multi-objective performance metrics on the sipht workflow.

significance of the achieved experimental results. In the third
series of experiments, we use wilcoxon signed rank test [32]
to find out whether there is any significant difference between
the results obtained by five multi-objective algorithms. This
test includes a null hypothesis H0 and an alternate hypothesis
H1 defined as

H0 : µ1 = µ2 (26)

H1 : µ1 6= µ2 (27)

where H0 is a statement of no significant difference between
two algorithms and H1 denotes the presence of a significant
difference between two algorithms. During the test, a level
of significance α is set to 0.05. If thep-value is less than
(or equal to) 0.05, then H0 is rejected in favor of H1. But,
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TABLE 6. Results of Wilcoxon signed rank test for FS-metric.

TABLE 7. Results of Wilcoxon signed rank test for S-metric.

if the p-value is greater than 0.05, then H0 is not rejected.
Tables 6, 7 and 8 show the test results for four types of
workflow with varying the number of tasks. The greater-than
sign (>) and the less-than sign (<) denote that HGAABC
algorithm performs significantly better and worse than its
comparative one, respectively. The equal sign (=) represents
that there is no significant difference between HGAABC
algorithm and its comparative one. R+ is the sum of ranks for
the problems in which HGAABC algorithm outperformed its
comparative one, and R− is the sum of ranks for the opposite.
From these tables, it can be obviously seen that HGAABC
algorithm has higher ‘‘>’’ counts than other comparative

algorithms. This implies that HGAABC algorithm shows a
significant improvement over the PBACO, HPSO, MABC,
and MGA algorithms in terms of Q-metric, FS-metric and
S-metric with α = 0.05.

In the last series of experiments, we evaluate the scalabil-
ity of the proposed algorithm. Table 9 shows the execution
time of the HGAABC, MGA, and MABC algorithms for
four types of workflow applications with different number
of tasks. From the table we can see that the execution time
of the proposed algorithm is greater than that of the MABC
algorithm but smaller than that of the MGA algorithm. The
reason is that the predefined number of iterations is divided
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TABLE 8. Results of Wilcoxon signed rank test for Q-metric.

TABLE 9. Running time of scheduling algorithms.

equally between the GA and ABC algorithms. In addition,
we also observe that the proposed algorithm takes less than
5 min to solve the difficult workflow scheduling problem of
up to 1000 tasks. Therefore, our algorithm can be suitable for
large-scale scientific workflow applications.

VI. CONCLUSION
This paper investigates the problem of scientific workflow
scheduling in IaaS clouds. The scenario is modeled as amulti-
objective optimization problem which aims to optimize the
workflow makespan and cost simultaneously and is solved
using the hybrid multi-objective optimization algorithm,

HGAABC. The proposed algorithm considers fundamental
features of IaaS providers such as a pay-as-you-go model,
heterogeneity, elasticity, and dynamicity of the resources.
The simulation experiments conducted with four well-known
scientific workflows show that our algorithm has an overall
better performance than the state-of-the-art algorithms.
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