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ABSTRACT The mobile industrial human-machine interaction plays an important role in the industrial
internet of things, since the engineers can use a mobile device to interact with machines that greatly improves
the efficiency and safety. Nevertheless, connecting to a specific machine becomes a non-trivial problem
due to the massive machines in the network that make the connection list too long to identify the target
machine. Some solutions such as QR code scanning and proximity estimation have been proposed to solve
this problem. However, they have limited performance in scalability and accuracy correspondingly, and thus
cannot satisfy the requirements in most applications. Observing the fact that the engineers generally interact
with the machines in their line-of-sight, we propose the LightCon scheme which adopts proximity estimation
to estimate the machines in the line-of-sight, and controls the display module of machines to show different
visible symbols (colors or numbers). To connect with a specific machine, the engineers just need to select
the corresponding symbol on the mobile device. Therefore, they do not have to remember the trivial address
of each machine. Furthermore, the symbol assignment algorithm is designed to reduce the complexity of
manual symbol selection, and its performance is analyzed theoretically. The performance of LightCon is
evaluated in the testbed, and the experimental results prove that LightCon is a promising solution to simplify
line-of-sight connections with low complexity.

INDEX TERMS Line-of-sight connection, proximity estimation, visible symbols, mobile industrial human
machine interaction, industrial Internet of Things.

I. INTRODUCTION
The mobile industrial human-machine interaction (HMI)
plays an important role in the industrial internet of things
[1]–[4]. With the support of WiFi or Bluetooth [5]–[7],
the engineer can interact with the machine at a safe dis-
tance by using a mobile device. Moreover, the efficiency

The associate editor coordinating the review of this manuscript and
approving it for publication was Huan Zhou.

of field works can be greatly improved, because the engi-
neer can control the machine and observe its operation
simultaneously.

In the mobile industrial HMI, the engineer should con-
nect to the target machine at first by entering its address or
selecting it from a list. However, the machines are densely
deployed in the industrial plant. Take the power distribution
room of the electrical substation shown in Fig.1 as an exam-
ple, there are 36-48 switch cabinets installed in a room with
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FIGURE 1. Line-of-sight human machine interaction in the power
distribution room of the electrical substation.

less than 100m2. Due to the broadcasting nature of wireless
communication, almost every machine can be scanned by
the mobile device that makes the connection list too long
to identify the target machine clearly. Since the engineers
in the industrial field have to make different connection
at 5-20 times per hour, this problem becomes non-trivial
that impacts the experience of HMI or even leads to
misoperation.

A straightforward solution for this problem is using QR
code [8] or NFC [9] that can be scanned to obtain the ID of the
machine. However, they should be executed in a short range
(<10cm) that is not suitable to the scenario that has dangerous
or large machines.

Another solution is proximity estimation [10]–[12] which
estimates whether nodes are closer than a proximity distance.
The application of proximity estimation in the industrial HMI
has been discussed in [10], and the FaceME algorithm has
been proposed to estimate the machine that is closest to the
engineer. However, due to the randomness of wireless signals,
FaceME can hardly estimate the closest machine in the plant
with dense deployedmachines. Besides, the engineers always
need to interact with the machine located in their line-of-sight
rather than the closest one. In this case, the FaceME can not
satisfy its demand.

In this paper, we propose a scheme called LightCon to
simplify the line-of-sight connection in the mobile industrial
HMI. The LightCon uses proximity estimation to estimate
the machines located in the line-of-sight, and then controls
the display module (LED light or LCD screen) of machines
to display different visible symbols, such as colors and num-
bers. In LightCon, the address selection is transferred to the
symbol selection, and the list for manual connection is greatly
shorten.

LightCon reduces the burden of identifying the target
from massive nodes in the scenario with densely-deployed
machines. With the help of visible symbols, it can be used
to connect with not only the closest machine, but also any
machine located in the line-of-sight of the engineer. More-
over, LightCon has low complexity which is helpful to reduce
the time delay and the deployment cost.

Specifically, the major contributions of this paper are sum-
marized as follows:

1) A mobile industrial HMI testbed is built to study the
challenges in the industrial HMI. The user study and experi-
mental results show that the manual connection to the target
machine is non-trivial for the engineer, and the existing algo-
rithm can not satisfy the demand.

2) The LightCon scheme is proposed to simplify
line-of-sight connections. In LightCon, the proximity esti-
mation is firstly used to estimate the machines located in
the line-of-sight. Then the visible symbols are assigned
to the machines according to the estimation results. They
will be showed by the display module of machines,
and it is helpful for the engineer to identify the target
machine.

3) Since multiple rounds of symbol selection may be
required when the machines are more than the symbols,
we propose two symbol assignment algorithms to reduce the
complexity of symbol selection. Then we provide theoretical
analysis to study their efficiency.

4) The LightCon is implemented on the testbed to evaluate
its performance. Experimental results prove that LightCon
is a promising solution to simplify line-of-sight connections
with low complexity.

The rest of this paper is briefly introduced as follows.
In Section II, the related works of this paper are briefly intro-
duced. Section III introduces the definitions and the testbed
used in this paper, and then Section IV evaluates the problems
that motivate our works by experiments. Section V provides
the details of LightCon scheme and its implementation. Based
on LigtCon, the symbol assignment algorithms are proposed
in Section VI, and their performance are formally analyzed
in Section VII. In Section VIII, the performance of LightCon
is evaluated by experiments. Finally, the conclusion is given
in Section IX.

II. RELATED WORKS
The interaction and communication between human and
machines become more and more important in the industrial
internet of things [31], [32]. Supported by wireless tech-
nologies such as Bluetooth, the engineer is able to send
control commands and read data at any position around the
machine. However, the machines are densely deployed in
the plant (Fig.1). Due to the broadcasting nature of wireless
communication, large number of machines can be scanned by
the mobile device that makes the connection list too long to
identify the target machine clearly. It is an important problem
that impacts the experience of HMI and even leads to misop-
eration.

QR code [8], [15] or NFC [9], [16] scanning is a straight-
forward solution which can simplify the data connection by
obtaining the ID of machines before connection. However,
both of them are not suitable to the scenario with dangerous
or large machines due to the extremely short scanning range
(<10cm). Passive ultra high frequency (UHF) RFID increases
the scanning range to 3-10 meters, and thus becomes a popu-
lar solution for indoor localization in recent years [28], [29].
Nevertheless, with the growth of the scanning range, multiple
tags can be scanned and it is hard for the engineer to identify
the target.

The indoor localization technology [17] can be used to
estimate the location of the engineer which can be fur-
ther used to estimate neighbor machines. In [18], the RSSI
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(Received Signal Strength Indicator)-based triangulation is
used to provide reasonable localization in the indoor envi-
ronments. The fingerprints-based methods [19], [20] firstly
create the radio map by using fingerprints of WiFi signals,
and then use the fingerprints map to estimate the location.
Some works [21], [30] aggregate the signals of smart sen-
sors and wireless communication to refine the localization
results.

Another potential solution is the proximity estimation
algorithms [11], [12], [22]–[24] which use RSSI to estimate
whether nodes are closer than a proximity distance. The
iBeacon developed by Apple is a typical application of prox-
imity estimation, and some algorithms are developed based
on iBeacon to improve its estimation accuracy [24], [25]. The
paper [11] discussed the face-to-face proximity estimation
in the social networks. Combining the data smoothing with
the predefined proximity threshold, this work improves the
estimation accuracy to 1-1.5m that fulfills the demand of
measuring face-to-face proximity.

Most indoor localization and proximity estimation algo-
rithms consider their applications in living buildings which
are different from the industrial environments. Take the power
distribution room for example, there are 36-48 switch cab-
inets installed in a room with less than 100m2. The node
density is much higher than WiFi access points in the living
buildings. Our previous works [10], [26], [27] have studied
the characteristics and challenges in the wireless industrial
HMI, and find that most related works can not provide rea-
sonable estimation accuracy and latency in the industrial HMI
due to the dense deployment of machines. On the other hand,
we observe that the engineer has to face to the machine during
industrial HMI, which makes the relative position between
human and machine more useful than the absolute position
of engineer.

To overcome these challenges, we have proposed the
FaceME algorithm [10] to realize the face-to-machine
proximity estimation. In FaceME, the RSSI difference is
proposed to estimate the proximal node based on the maxi-
mum RSSI, and two-steps estimation is designed to reduce
the time complexity. Based on the results that FaceME can
hardly estimate the closest machine in the plant, our con-
ference paper [27] provides a preliminary study on how
to use visible symbols to simplify the line-of-sight con-
nection. This paper is extended from [27] with improved
scheme design, new theoretical and experimental analysis and
so on.

Compared with related works, this paper distinguishes
them in the following aspects: 1) Visible symbols are
used in LightCon to transfer address selection into sym-
bol selection. 2) The visible symbols are assigned dynam-
ically by wireless communication according to the cur-
rent location of the engineer. 3) The proximity estimation
algorithm is used to reduce the nodes involved in symbol
assignment. 4) The complexity of line-of-sight connections
are analyzed in details with theoretical and experimental
studies.

FIGURE 2. The layout of the mobile industrial HMI testbed.

III. PRELIMINARIES
To clarify the description, we firstly provide the definitions
used in this paper. Then the mobile industrial HMI testbed
used for experiments is introduced.

A. DEFINITIONS
At first, we provide the formal definitions to describe the
mobile industrial HMI considered in this paper:

1) The machine node is a wireless node connects to each
machine in the industrial plant. It is composed of a wireless
communication module and a display module (such as LED
light) that can display different visible symbols such as color
or number. We use S to denote the kinds of symbols.
2) The human node is a mobile device carried by the

engineer. It is the interface for industrial HMI, and it can com-
municate with machine nodes by wireless communication.

3) Themachine node in line-of-sight of the engineer should
satisfy the following conditions: a) the visible symbol of the
node can be clearly identified by the engineer; b) the engineer
has the demand to interact with the machine at the current
location.

4) The neighbor list includes the machine nodes that can be
scanned by the human node. The neighbor list is assumed to
include every machine node in line-of-sight of the engineer.
We use N to denote the number of nodes in the neighbor list.

B. MOBILE INDUSTRIAL HMI TESTBED
We have implemented a mobile industrial HMI testbed in the
Delta PLC (Programmable Logic Controller) laboratory [10].
Fig. 2 shows the layout of the testbed. There are 23 control
consoles deployed in three rows. The size of the console is
1.2m × 0.7m, and the width of the passage is 1.7m. The
laboratory represents a typical industrial plant where the
engineers move in the passage to interact with machines that
are densely and regularly deployed [33].

Fig.3 shows the framework of mobile industrial testbed.
The testbed contains three parts: the mobile device car-
ried by the engineer is defined as the human node, which
can connect to machine by bluetooth and display its HMI
information. The wireless communication module integrated
Bluetooth and RS485 chips is denoted as the machine node.
And the PLC is designed to control the industrial machine.
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FIGURE 3. The framework of the mobile industrial HMI testbed.

Specifically, 1) Google Nexus 9 is used as the human node,
and an Android application is developed to realize industrial
human-machine interaction. The FaceME [10] and LightCon
are also implemented in the application for analysis.

2) The machine node is composed of an extension board
and a core board. The TI-CC2541 chip is embedded in
core board for control and Bluetooth communication, and
the extension board uses a MAX3485 chip to communicate
with machines by RS485 communication. Moreover, three
LED lights are used in the extension board to display visible
symbols (red, yellow and green).

We will use the testbed to verify the problems in
Section IV, and study the performance of LightCon in
Section VIII.

IV. PROBLEM STATEMENT
In this paper, we argue that the large number of machine
nodes in the industrial internet of things becomes a non-trivial
problem for the engineers who have to interact with them
in the industrial field. We focus on the connection problem
where the engineer has to identify the target machine from
the connection list with large number of nodes.

In this section, we firstly study how the length of the
connection list impacts the complexity of manual connection.
Then the performance of proximity estimation is studied to
prove that the existing works is not sufficient to solve the
problem.

A. COMPLEXITY OF MANUAL CONNECTION
At first, we study the complexity of manual connection with
different length of the connection list. A test Android App is
developed to obtain the experimental results. In this App,
the user has to touch the start button on the screen, then a node
list is displayed on the screen. The target node is randomly
generated, and its ID is displayed on the top of the list. Then
the user has to select the corresponding ID from the node list

TABLE 1. Time of manual connection with different number of nodes in
the connection list.

TABLE 2. Results of the questionnaire for the preferred number of nodes
in the connection list.

and finally clicks the connect button. The selection time is
recorded as the duration from the time that the user touches
the start button to the time that the connect button is clicked.

We invite 197 volunteers to execute this experiment. All
the volunteers are the undergraduate or graduate students in
the school of electrical engineering and automation at Fuzhou
University. The volunteers have to select node ID for 6 times
with different length of the list. The length of the list varies
from 3 to 20, and the average time of manual connection are
given in Table 1. It is clear to see that the manual connection
time increases with the growth of the list. When the number
of nodes in the list is larger than 20, the selection time grows
nearly 6 seconds. Moreover, there are 52 wrong selections
appear in the experiments.

After the manual connection experiment, every volunteer
has to answer a questionnaire with one simple question:
how many nodes do you prefer in the connection list. The
statistic results are given in Table 2. There are 130 volunteers
(65.99%) that prefer to have less than 5 nodes in the connec-
tion list. Moreover, 58 volunteers (29.44%) hope to replace
manual connection with automatic connection (0 node in the
connection list).

Moreover, we execute an experiment to prove that the
connection list with more than 20 nodes is practical in the
industrial internet of things. We deploy 23 machine nodes in
the Delta PLC laboratory described in Section III-B, and then
use the human node to scan machine nodes at the corners of
the laboratory. The results show that all 23 machine nodes
can be scanned by the human node due to the broadcasting
nature of wireless communication. This problemwill be more
severe if the industrial plant is larger and the range of wireless
communication is longer.

To sum up, with the massive nodes in the industrial internet
of things, the complexity of manual connection become a
non-trivial problem which may results in the waste of time,
wrong node selection and the impatience of users.
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FIGURE 4. The flowchart of LightCon scheme.

TABLE 3. The number of nodes in the estimation results (FaceME).

B. ACCURACY OF PROXIMITY ESTIMATION
To simplify the node connection, the FaceME algorithm [10]
has been proposed to estimate the machine that is closest to
the engineers. However, due to the randomness of wireless
signals, FaceME can hardly estimate the closest machine in
the plant with dense deployed machines.

To verify this problem, we implement the FaceME algo-
rithm in the testbed shown in Fig. 2. There are 23 machine
nodes deployed in the testbed, and the human node executes
FaceME algorithm to estimate the closest machine node. The
node deployment can be formulated by dy which denotes the
distance between the human node and the proximal machine
node, and dx which denotes the space between machine
nodes. In this experiment, the dy is fixed at 1.5m, and the
dx is set as 1.2m and 0.6m to represent difference machine
nodes deployment. The experiment runs 100 times to obtain
the statistic results.

The experiment result is given in Table 3. In the table,
the integral number indicates the number of nodes in the esti-
mation result, and the percentage that follows each number
demonstrates the frequency that the number appears in the
experiments. When dx = 1.2m, there are 72 times that the
estimation results have more than one node. The problem
becomes severe when the dx is reduced to 0.6m. It is 100%
that the estimation results have more than one node, and the
maximum number of nodes is up to 5.

The multiple nodes in estimation results indicate that the
manual connection is required to connect with the target
machine. Although the FaceME has greatly reduced the num-
ber of nodes in the list (from 23 to 5), it is still a burden
for the engineer to identify the ID of the target machine.
Moreover, the engineer may need to interact with a machine
located in line-of-sight rather than the closest one. In this
case, the FaceME can not satisfy the demand.

To solve this problem, we observe that the interac-
tion between the human and machines are always in

line-of-sight [31], [32]. Based on this observation, we pro-
pose to take advantages of the visible symbol (such as a
LED light or screen) which is widely installed on a machine.
Then the machine ID selection can be transformed into the
symbol selection, and the complexity of data connection to a
specific machine is greatly reduced. Based on this idea, a new
algorithm called LightCon is proposed in the next section.

V. LIGHTCON SCHEME
LightCon adopts proximity estimation to reduce the number
of nodes involved in the manual connection, and then con-
trols the display module of machine nodes to display visible
symbols based on symbol assignment algorithm. In this case,
the address selection can be transferred to the symbol selec-
tion which reduces the burden of identifying the target from
massive nodes in the list. The flowchart of LightCon scheme
is depicted in Fig. 4.

A. PROXIMITY ESTIMATION
In this paper, LightCon adopts the modified FaceME [10]
algorithm for proximity estimation. The RSSI difference is
measured in the offline measurement, then the RSSI differ-
ence and themaximumRSSI are used in the online estimation
to estimate the nodes in line-of-sight. The RSSI value of
machine node i is defined as R(i). Due to the fluctuation of
the wireless signals, the range of R(i) can be defined as,

R(i) ∈ [L(R(i)),U (R(i))] (1)

where L(R(i)) is the lower bound of R(i), and U (R(i)) is the
upper bound of R(i).

Different from FaceME, LightCon changes the definition
of RSSI difference to estimate the nodes in line-of-sight rather
than the proximal node. Given the set of nodes located in
the engineer’s line-of-sight C , and the setM− of all machine
nodes except the nodes inC , the definition of RSSI difference
is formulated as,

1R(C,M−) = L(R(C))− U (R(M−)) (2)

where L(R(C)) denotes the lower bound of the RSSI of nodes
in C , and U (R(M−)) denotes the upper bound of the RSSI
of nodes in M−. The RSSI difference R(C,M−) reflects the
difference between the minimum RSSI of nodes in C and the
maximum RSSI of nodes inM−.

In the offline measurement, the L(R(C)) and U (R(M−))
should be measured by the massive RSSI data collection.
Specifically, L(R1(C)) and U (R1(M−)) is defined as the
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result calculated by the original data, and L(Rm(C)) and
U (Rm(M−)) is defined as the result processed by Gaussian
filtering algorithm.

The online estimation includes two parts: the prelimi-
nary and advanced estimation. In the preliminary estimation,
the human node collects the RSSI of each machine node that
can be scanned once. Based on that data, the maximum RSSI
value Rmax(1) of all machine nodes can be obtained. Then,
combining theRmax(1) and the L(R1(C)) andU (R1(M−)) that
are measured in offline measurement, the human node can
obtain the candidates list called CA.

In the advanced estimation, the human node should further
collect the RSSI of machine nodes in the CA for m times.
Smoothing the above data by Gaussian filter, the human
node can obtain the maximum filtered RSSI value Rmax(m).
Based on the Rmax(m) and the L(Rm(C)) and U (Rm(M−))
that are measured in offline measurement, the human node
can remove redundant nodes from the CA list to refine the
estimation result and obtain the final neighbor list.

B. VISIBLE SYMBOL ASSIGNMENT
When obtains the neighbor list after running proximity esti-
mation algorithm, the human node firstly executes a symbol
assignment algorithm to assign symbols for machine nodes.
When nodes are more than visible symbols, multiple rounds
of symbol selection may be required which directly impacts
the complexity of LightCon. Therefore, the symbol assign-
ment algorithms will be discussed in details in Section VI.
When the symbol assignment is completed, the human

node generates a SA (symbol assignment) packet that con-
tains the ID and assigned symbols of every node in the
neighbor list. Then the SA packet is broadcast by the human
node. When the machine node receives the SA packet which
contains its ID, it will control the display module to display
the assigned symbol.

Meanwhile, after delivering the SA packet, the human node
displays a list of visible symbols. The symbols are ordered
according to the RSSI values of the nodes assigned to each
symbol. After this step, the visible symbols are displayed
synchronously on both the machine nodes and the human
node.

The engineer checks the visible symbol on the target
machine, and then manually selects the same symbol on the
human node. Once the symbol is selected, the human node
checks the number of nodes that are assigned to the selected
symbol, which is denoted as nk . If nk > 1, the symbol assign-
ment algorithm will be executed again to assign symbols for
the rest nk nodes. The process repeats until nk = 1 is satisfied,
then the human node will connect to the machine node left in
the list.

C. IMPLEMENTATION
We implement LightCon in the testbed (refer to Section III-B
for details) to demonstrate how it works. The human node
(Nexus 9) uses Bluetooth to broadcast the SA packet, and
the machine node controls its LED light according to the

FIGURE 5. Machine nodes with different symbols (colors).

FIGURE 6. The user interface of symbol selection in LightCon.

received SA packet. Fig. 5 shows a demonstration with three
machine nodes displayed with different symbols (red, yellow
and green).

On the other hand, the human node transforms the neigh-
bors list to the symbols list, and then displays the symbols list
on the user interface for manual connection. Fig. 6 demon-
strates the user interface that displays the symbols list. The
engineer can connect to the target machine by selecting the
corresponding color on the list.

Since the number of visible symbols are much less
than the number of machines, based on the results given
in Section IV-A, the LightCon can greatly reduces the com-
plexity of manual connection in the scenarios with dense
deployed machines. Moreover, compared with the number
printed on the label, the visible symbol (especially the color)
displayed on the machine node is easier to be identified in
a distance. Therefore, LightCon can also be used to connect
with the large or dangerous machine.

It is important to note that, the LightCon only requires
RSSI value for proximity estimation, which is supported
by most wireless communication protocols. Therefore,
LightCon can be applied with most wireless communi-
cation protocols, such as WiFi, Bluetooth and Zigbee.
Moreover, the maximum number of symbols depends on
the display module of the machine node. We will study the
performance of LightCon with different number of symbols
in Section VII and VIII-C.

Since most mobile devices support WiFi and Bluetooth
communication, and most machine nodes have the display
module, the cost of applying LightCon is low. In sum,
LightCon is a scalable and cost efficient solution to simplify
line-of-sight connections in the industrial internet of things.
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VI. SYMBOL ASSIGNMENT ALGORITHMS
When machine nodes are more than the visibile symbols,
multiple machine nodes may share a same symbol, which
may lead to multiple rounds of symbol selection until the
unique node is selected. In this case, the symbol assign algo-
rithm is critical to the complexity of LightCon.

In this section, two symbol assignment algorithms are pro-
posed: average symbol assignment (A-SA) and biased sym-
bol assignment (B-SA). To clarify the description, we denote
the current round of symbol selection as k , and the number of
nodes in the kth symbol selection is denoted as nk . Then we
can derive an important parameter K as,

K =
⌈
logS

N
⌉

(3)

The parameter K is used in the symbol assignment algo-
rithms, and it is equal to the maximum round of symbol
selection which will be proved in Section VII.

A. AVERAGE SYMBOL ASSIGNMENT (A-SA)
The Average Symbol Assignment (A-SA) algorithm is
designed based on a simple idea: divide nk nodes into S
groups equally. Specifically, nk nodes are divided into hk
groups which have

⌈ nk
S

⌉
machine nodes, and S − hk groups

which have
⌊ nk
S

⌋
machine nodes. The de and bc represent a

smallest integer larger than itself and a largest integer smaller
than itself, respectively. Formally,

nk = hk·
⌈nk
S

⌉
+ (S − hk)

⌊nk
S

⌋
(4)

where hk is equal to the remainder of nkS ,

hk = nk−S ·
(⌈nk

S

⌉
− 1

)
(5)

B. BIASED SYMBOL ASSIGNMENT (B-SA)
In Biased Symbol Assignment (B-SA) algorithm, the given
nk nodes are divided into ik groups with SK−k−1 machine
nodes, jk groups that include SK−k machine nodes, and one
group with lk machine nodes. Formally,

nk = ik · SK−k−1 + jk · SK−k + lk (6)

The value of ik , jk and lk should satisfy the following con-
straints,

ik + jk + 1 = S (7)

SK−k−1 ≤ lk < SK−k (8)

then we have,

ik = S −
⌊

nk − SK−k−1

SK−k − SK−k−1

⌋
(9)

jk =
⌊

nk − SK−k−1

SK−k − SK−k−1

⌋
− 1 (10)

lk = nk − (jk + 1) · SK−k + (jk + 1) · SK−k−1 (11)

The expression of jk (10) is derived as follows. Combining
(8) and (11), we have,

SK−k−1≤nk−(jk+1) · SK−k+(jk+1)·SK−k−1<SK−k (12)

FIGURE 7. Process of Biased Symbol Assignment(B-SA).

Then the range of jk can be obtained as,

nk − SK−k

SK−k − SK−k−1
< jk + 1 ≤

nk − SK−k−1

SK−k − SK−k−1
(13)

and,

nk − SK−k−1

SK−k − SK−k−1
− 2 < jk ≤

nk − SK−k−1

SK−k − SK−k−1
− 1 (14)

Since jk is an integer, The (10) can be derived directly based
on (14).

The process of B-SA algorithm is shown in Fig. 7. The
motivation of designing B-SA algorithm is taking advan-
tage of all the symbols S to minimize the number of nodes
involved in the K th round of symbol selection.

C. CASE STUDY
To clarify the basic idea of the symbol assignment algorithms,
we study a case with three different visible symbols (S = 3)
and five nodes in the neighbor list (N = 5). We can derive
K = 2 based on (3), which means the maximum round of
symbol selection is 2.

In this case, the A-SA algorithm divides machine nodes
into three groups as {2, 2, 1}. Only one machine node can be
connected in one round of symbol selection. The connection
to other machines requires two rounds of symbol selection.

The B-SA algorithm divides machine node as {3, 1, 1}.
Two nodes can be connected in one round of symbol
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TABLE 4. Variables list.

selection, and the others requires two rounds of symbol selec-
tion. B-SA reduces the average round of symbol selection
by comparing with A-SA. Their performance will be further
analyzed in Section VII and VIII-C.

VII. THEORETICAL ANALYSIS
In LightCon, multiple rounds of symbol selection may be
required when the nodes is more than the symbols. The
user experience is greatly affected by the rounds of symbol
selection, which is denoted by γ . Thus, it is used as the
performance metric in this section. The variables used in the
analysis are summarized in Table 4.

According to the K defined in (3), the minimum and
maximum round of symbol selection are firstly analyzed as
follows.
Theorem 1: In A-SA and B-SA algorithms, given N

machine nodes and S symbols, for connecting to any machine
node, the maximum round of symbol selection is K , and the
minimum round of symbol selection is K − 1.
Proof 1 (Proof of Theorem 1): In A-SA, at the first round

of symbol assignment,

N = h1 ·
⌈
N
S

⌉
+ (S − h1)

⌊
N
S

⌋
(15)

According to (3), we have,

logS
N
S ≤ K − 1 < logS

N (16)

then,

SK−2 <
N
S
≤ SK−1 (17)

Finally, we deduce that,

SK−2 <
⌈
N
S

⌉
≤ SK−1 (18)

SK−2 ≤
⌊
N
S

⌋
≤ SK−1 (19)

Combining (18) and (19) with (15), for connecting to any
machine node by A-SA algorithm, the rounds of symbol
selection is either K − 1 or K .
In B-SA, at the first round of symbol assignment,

N = i1 · SK−2 + j1 · SK−1 + l1 (20)

For the node in groups with SK−2 or SK−1 nodes, it is
required to execute K − 1 or K rounds of symbol selection
respectively to establish the connection. For the node in the
group with l1 nodes, since SK−2 < l1 < SK−1 (according
to (8)), the rounds of symbol selection is either K − 1 or K .
The proof is completed.

Then we derive the expected rounds of symbol selection.
The probability that a machine node is selected as the target
is assumed to follow uniform distribution, and the number of
nodes with γ = K − 1 is denoted as P.
Theorem 2: In A-SA algorithm, given N machine nodes

and S symbols, the expected rounds of symbol selection is,

EA(γ ) =

K + 1−
2 · SK−1

N
, N ∈ [SK−1, 2 · SK−1]

K , N ∈
(
2 · SK−1, SK

]
(21)

Proof 2 (Proof of Theorem 2): According to Theorem 1,
there are P nodes with γ = K − 1 and N − P nodes with
γ = K , then we can derive,

EA(γ ) =
P
N
· (K − 1)+

N − P
N
· K (22)

Since the A-SA algorithm divides nodes into S groups
equally, the value of P is determined by the range of N :
when N ∈ [SK−1, 2 · SK−1], P = 2 · SK−1 − N ; when
N ∈ (2 · SK−1, SK ], P = 0.
Combining with (22), we can easily deduce (21). The proof

is completed.
Theorem 3: In B-SA algorithm, given N machine nodes

and S symbols, the expected rounds of symbol selection is,

EB(γ ) = K −

K−1∑
k=1

(ik ′ · SK−k−1)

N
(23)

where

ik ′ = S −
⌊

nk ′ − SK−k−1

SK−k − SK−k−1

⌋
(24)

nk ′ =

{
N , k = 1
nk−1′−

(
S−ik−1′

)
·
(
SK−k−1−SK−k−2

)
, k ≥ 2

(25)

Proof 3 (Proof of Theorem 3): Based on (6) given in
Section VI-B, the P in B-SA is only relevant to ik · SK−k−1

and lk .
An iteration with nk+1 = lk can be used to calculate the

number of nodes that have γ = K − 1 in lk . Combining
nk+1 = lk with (9) and (11), we can derive the definition
of ik ′ (24) and nk ′ (25).
Then the P can be expressed as,

P =
K−1∑
k=1

(ik ′ · SK−k−1) (26)
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Combining with (22),

EB(γ ) =

K−1∑
k=1

(ik ′ · SK−k−1)

N
· (K−1)

+

N−
K−1∑
k=1

(ik ′ · SK−k−1)

N
· K (27)

(23) can be directly derived from (27). The proof is com-
pleted.

Finally, we analyze the efficiency and optimality of B-SA
algorithm as follows.
Corollary 1: The expected rounds of symbol selection in

B-SA algorithm is not larger than that in A-SA algorithm.
Proof 4 (Proof of Corollary 1): We define e as the dif-

ference between E(γ ) of A-SA and B-SA, thus the
proof of this corollary can be transformed to prove
e = EA(γ )− EB(γ ) ≥ 0.

When N ∈
(
2 · SK−1, SK

]
, based on (21) and (23), it is

clear to derive that,

e =
K−1∑
k=1

(ik ′ · SK−k−1) ≥ 0 (28)

When N ∈
[
SK−1, 2 · SK−1

]
, we have,

e′ = e·N=
K−1∑
k=1

(ik ′ · SK−k−1)+ N − 2 · SK−1

=
SK−1
S−1

+N−2 · SK−1−
K−1∑
k=1

⌊
nk ′ − SK−k−1

SK−k−SK−k−1

⌋
· SK−k−1

(29)

Further, when N ∈
[
SK−1, 2 · SK−1 − SK−2

)
, we have⌊

nk ′−SK−k−1

SK−k−SK−k−1

⌋
= 1, then (29) can be simplified as,

e′ =
SK − 1
S − 1

+ N − 2 · SK−1 −
SK−2 − 1
S − 1

= N − SK−1 + SK−2 ≥ 0 (30)

When N ∈
[
2 · SK−1 − SK−2, 2 · SK−1

]
, we have⌊

nk ′−SK−k−1

SK−k−SK−k−1

⌋
= 2, then,

e′ =
SK − 1
S − 1

+ N − 2 · SK−1 − 2 ·
SK−2 − 1
S − 1

= N + SK−2 − SK−1 −
SK−2 − 1
S − 1

≥ 0 (31)

Combining the results given above, we have e ≥ 0 when
N ∈

[
SK−1, 2 · SK−1

]
. The proof is completed.

Corollary 2: The expected rounds of symbol selection in
B-SA algorithm is not larger than that in any other symbol
assignment algorithms.
Proof 5 (Proof of Corollary 2): We firstly consider the

symbol assignment algorithms which have the following
characteristic: the minimum round of symbol selection

is K − 1. Based on the proof of Theorem 3, the num-
ber of nodes with γ = K − 1 can not be larger

than
K−1∑
k=1

(ik ′ · SK−k−1). In this case, with given N nodes,

the reduction of nodes with γ = K − 1 leads to the growth
of nodes with γ ≥ K which increases the expected rounds of
symbol selection.

Then we consider the algorithms whose minimum round of
symbol selection is K − 2. Compared with B-SA algorithm,
if there are m nodes with γ = K − 2, at least m + 1 nodes
will be added in the nodes with γ ≥ K . It also increases the
expected rounds of symbol selection. The other algorithms
are worse than the algorithms discussed above. The proof is
completed.

VIII. EXPERIMENTAL EVALUATION
The experiments are executed in the testbed to evaluate
the performance of LightCon. According to the analysis in
Section VII, the Biased Symbol Assignment (B-SA) algo-
rithm is used in LightCon to assign symbols. The perfor-
mance are analyzed by two metrics: the connection time
and the rounds of symbol selection. The connection time
is defined as the duration from the time that the engineer
initiates the connection to the time that the connection is
completed. The rounds of symbol selection has been defined
in Section VII. The results are discussed in the following
sections.

A. CONNECTION TIME OF LIGHTCON
In this section, we study the connection time of LightCon
in details with three parts: the time of neighbors scanning,
the time of SA packet transmission and the time of manual
symbol selection.

In the testbed, eight machine nodes are deployed in a row
(N = 8), and three different symbols can be displayed on
every machine node (S = 3). According to Theorem 1,
the round of symbol selection can be derived as K = 2. We
invite 7 volunteers to execute data connection to the proximal
machine node with LightCon respectively. The number of
machine nodes gradually grows from 1 to 8 in the experiments
to study its impact on the connection time. Each experiment
repeats 10 times, and the human node record the time auto-
matically. The results are summarized in Table 5.

As shown in Table 5, the time of neighbors scanning
increases from 221ms to 760mswith the growth of number of
nodes. The reason is the interference caused by the broadcast-
ing of multiple machine nodes. The time of neighbors scan-
ning is short when there is only one machine node. However,
more nodes leads to more interference in broadcasting, and
thus increases the neighbors scanning time.

The time of SA packet transmission also rises when the
number of nodes increases. Nevertheless, the maximum time
of SA packet transmission is 21ms, which is much less than
other parts. Specifically, when there are more than 3 machine
nodes, the transmission time clearly becomes larger. It is
because the probability that the human node needs to execute
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TABLE 5. The connection time of LightCon with different parts.

manual connection twice increases when N > S. It results
in the dual broadcasting of SA packet and the growth of
transmission time.

Table 5 shows the time of manual symbol selection in two
rounds separately. The time is generally larger than 1000ms,
and the major reason is the relatively slow reaction of human.
Moreover, the time for the first round of manual connection
has no relation with the number of nodes. It is because
LightCon transfers the node selection to the symbol selection,
and the number of symbols is fixed at 3. On the other hand,
the time for the second round of manual connection is zero
when number of nodes from 1 to 3. It is because LightCon
runs symbol assignment algorithm only once when N < S.
Finally, we examine the total connection time which grows

from 1245ms to 3610mswith the increasing number of nodes.
The reason is that the total connection time is mainly deter-
mined by the time of manual symbol selection and neigh-
bors scanning. Specifically, the total connection time grows
sharply when N ≥ 4, because the second round of man-
ual symbol selection appears. Nevertheless, the total time
is still less than 3.6 seconds which is acceptable in most
applications.

B. CONNECTION TIME COMPARISON
In this part, we study the time of connecting to nodes in line-
of-sight by comparing LightCon with that of FaceME [26],
QR code scanning [8] and NFC scanning [9]. There are
23 machine nodes deployed in the testbed shown in Fig.2.
We invite 7 volunteers to use the human node to connect with
nodes 1-5 (Fig.2) in turns. The original position of the human
node is in front of the machine node 1, such that the nodes
1−5 are in the line-of-sight of the volunteer. Each experiment
repeats 10 times, and the average connection time is recorded
for comparison.

Fig. 8 shows that, if the target machine node is farther from
the original position of the human node, more connection
time is required in FaceME, QR code scanning and NFC
scanning. The major reason is that these methods should be
operated in a position that is close to the target machine.
Therefore, the volunteer has to move from the original posi-
tion to the target position which leads to more connection
time. While in LightCon, the connection time grows slightly
when the distance to the target machine node increases. The
reason is that the LightCon uses visible symbols to support
the line-of-sight connection, and the volunteer can connect to

FIGURE 8. Connection time comparison.

the target machine without movement. Nevertheless, accord-
ing to the observation in the experiments, the volunteers need
more time to confirm the visible symbol when the target
machine is farther. It results in the slight growth of connection
time.

Then we focus on the connection time of machine node 1
which represents the scenario that does not consider the
human movement. In this scenario, the connection time of
LightCon, QR code scanning, FaceME and NFC scanning
are 3s, 3.1s, 2.6s and 4s respectively. NFC scanning has the
largest connection time. The major reason is that the human
node in the testbed is Nexus 9 which is a 10-inch tablet. The
volunteers always have to take several seconds to find the
right position to read NFC tags. QR code scanning needs
several seconds to open the camera and scan the QR code,
while the FaceME spends several seconds to process the
RSSI of machine nodes. The connection time of LightCon
is slightly larger than that of FaceME, since two rounds of
symbol selection is required when the number of nodes in the
proximity estimation results is larger than 3.

Based on the results given above, FaceME is a better
solution when the engineer only needs to connect with the
proximal machine node and the node deployment is sparse
enough to estimate the proximal one. In other cases, LightCon
performs better than FaceME.

C. ROUNDS OF SYMBOL SELECTION
Finally, we evaluate the performance of A-SA and B-SA
algorithms by studying the rounds of symbol selection γ with
large number of nodes. We implement both algorithms in
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TABLE 6. The rounds of symbol selection γ in A-SA algorithm and B-SA algorithm with different number of machine nodes N and symbols S.

Matlab for simulations, since the testbed can not support the
experiments that have large number of machines nodes with
different number of symbols.

The number of nodes N varies from 5 to 40, and the
number of symbols S grows from 2 to 5. The target machine
is randomly selected, and the LightCon scheme with A-SA
and B-SA algorithms run separately to connect with the target
machine. We calculate the rounds of symbol selection by
running 10000 times with every setting of N and S. The
results are given in Table 6. In the table, the number before the
colon means the value of γ , and the number after the colon
presents the times that each γ appears in the experiments.
As shown in Table 6, the rounds of symbol selection

is either K or K − 1 which proves the correctness of
Theorem 1. When the number of nodes N increases from 5 to
40, the rounds of symbol selection γ grows with the same
number of symbols S. When the number of nodes is larger
than 20 and the number of symbols S is 2, the rounds of
symbol selection is larger than 4which can hardly be tolerated
by the users.

Nevertheless, this problem can be solved with more sym-
bols. Given the same number of nodes N , the γ is reduced
when the number of symbols increases. When the number of
symbols S is larger than 4, no more than 3 rounds of symbol
selection is required even if N = 40. This result proves
that the LightCon can satisfy the demands in most industrial
internet of things with densely deployed nodes, and it can
work with wireless technologies that have larger transmission
range than Bluetooth (such as WiFi and Zigbee).

Finally, we compare the performance of A-SA and
B-SA. Table 6 shows that, given the same S and N , the γ
in B-SA algorithm is no larger than that in A-SA algorithm.
Furthermore, the advantage of B-SA algorithm is larger with
more symbols. These results coincide with theoretical analy-
sis given in Section VII.

IX. CONCLUSION
This paper considers the challenges of the line-of-sight con-
nection in the mobile industrial HMI. A testbed is imple-
mented to study the problem, and then the LightCon scheme
is proposed to use proximity estimation and visible symbol
assignment to simplify line-of-sight connections. The symbol
assignment algorithm is designed to reduce the complexity
of symbol selection, and its performance is analyzed theo-
retically. The performance of LightCon is evaluated in the
testbed, and the experimental results prove that LightCon is a
promising solution to simplify line-of-sight connections with
low complexity.
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