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ABSTRACT In this paper, we investigate a supply chain involving one risk-neutral supplier and one
risk-averse retailer, where the retailer adopts the conditional value-at-risk (CVaR) criterion as his perfor-
mance measure. To hedge against high risk, the retailer purchases call options from the supplier to adjust his
firm orders. We derive the optimal order and production policies, with and without a call option contract
and demonstrate that the call option contract can benefit both the retailer and the supplier. In addition,
we also generate insights regarding how the contract parameters, level of risk aversion and shortage cost
impact the retailer’s optimal policy, highlighting the importance of considering the risk aversion and shortage
cost simultaneously. Finally, we derive the condition for the supply chain to be coordinated and show that
compared to non-coordinating contracts, the wholesale price and call option portfolio contracts proposed in
this paper can achieve Pareto optimality. Numerical experiments are conducted to demonstrate theoretical
results and observations.

INDEX TERMS Supply chain coordination, call option contract, risk-aversion, conditional value-at-risk,
shortage cost.

I. INTRODUCTION
Products characterized by long lead times, a short sales sea-
son and high demand uncertainty (‘‘seasonal products’’) are
both well-researched and common in practice [1]. In recent
years, technology has experienced swift advancement and
competition has increased leading to rapidly changing
consumer preferences. These market conditions have led
to a rise in the number of products that exhibit these
characteristics [2], [3]. This increase is of interest consider-
ing the problems that plague seasonal products such as airline
tickets, fashion apparel and fresh food. Seasonal products
often have low salvage values which, when coupled with
high demand uncertainty and rapidly changing preferences,
creates a large risk of over- and under-stocking which is

The associate editor coordinating the review of this article and approving
it for publication was Bora Onat.

problematic for supply chains. To hedge against these risks,
a retailer usually lean order policies such as delayed ordering
or small-volume multi-batch ordering [4]–[6]. However, for
such an order policy to be feasible, the supplier has to adopt a
more flexible production policy to fulfill irregular orders with
a sharp increase in supply cost. Because the incentives of the
retailer and supplier in such situations are not aligned, supply
chain inefficiencies are inevitably created.

Research on supply chains has proposed numerous con-
tracts that resolve these inefficiencies. One effective contract
that allows for flexible ordering policies and is growing in
popularity is a call option contract [7], [8]. In a basic contract,
such as a wholesale price contract, the retailer places an
order with a supplier based on a per-unit cost. In this type of
contract, the retailer must purchase all units ordered (i.e., this
is a firm order). A call option contract operates by making use
of two additional parameters, an option price and an exercise
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price. The option price is a per-unit amount paid by the
retailer to the supplier in order to reserve the right to purchase
additional units of a product at some future time (i.e., this is
an option order). The exercise price is the per-unit amount
paid by the retailer to the supplier should the retailer choose to
exercise any of these options. This call option, when included
in a contract, provides obvious benefits for the retailer in
terms of managing uncertain demand. It allows the retailer
to pay some small amount to ensure additional available
supply while also allowing him to wait until more demand
information is available to determine whether or not those
additional units are needed.Moreover, the call option contract
can be attractive to the supplier. It provides the supplier with
a small amount to invest in additional capacity and material
planning early on with the opportunity to sell more items to
the retailer in the future than he would have otherwise.

The benefits of call options have fueled increasing research
interest in practice. In a report on product risk manage-
ment, Hewlett-Packard noted that the uncertainties surround-
ing their products necessitated risk-management instruments
such as call and put options [9]. The report goes on to
describe the development of contracts with their suppliers that
include both fixed and flexible quantities at varying prices.
It was reported that approximately 35% of HP’s procurement
value has been achieved through call options [10] and that
this move towards more complex contracts that include call
options saved HP nearly $425 million in cumulative costs
from 2000-2006 [9]. Similarly, China Telecom reported using
both firm orders and call options to procure over 100 billion
RMB worth of products from his suppliers annually [11].
These examples demonstrate the value and applicability of
a call option contract.

In addition to evidence in practice, the potential benefits
of call options have been studied in academic research [12].
However, the focus of this stream of literature has been on the
call option’s ability to effectively manage the risk of over- or
under-stocking assuming that (1) the retailer is risk-neutral
and (2) shortage costs are trivial. In a practical setting with
seasonal products, it may be the case that retailer’s have risk
preferences (i.e., are not risk neutral) and that the cost of fail-
ing to meet demand is non-trivial. A large stream of literature
within supply chain contracts has questioned whether or not
decision makers are always concerned with expected profit
maximization. This body of work demonstrates that, often-
times, decision makers are concerned with risk containment
or loss minimization, i.e., exhibit risk aversion [13]–[15].
Furthermore, with increased competition and rapidly chang-
ing consumer preferences, stock-outs may have large effects
on future sales, profitability and a firm’s reputation, creating
a large shortage cost for retailers.

The presence of risk aversion, regardless of the mag-
nitude of shortage costs, can have severe implications for
supply chain and contract performance [10]. When retailer’s
are risk averse, they may order less than supply chain
optimal quantities in an effort to minimize losses in the
event that demand is low. This behavior occurs even under

traditionally contracts, leading to decreased profits [16]. The
shortage costs are difficult to quantify and, when retail-
ers are risk-neutral, the assumption of negligible shortage
costs does not alter overall insights. However, when the
retailer is risk-averse, a non-trivial shortage cost magnifies
the risk of under-ordering relative to over-ordering and may
actually lead to over-ordering. In this scenario, a contract
that allows for both firm and option orders may present a
risk-averse retailer with the necessary flexibility to balance
this trade-off while maintaining high levels of supply chain
performance [17]–[19].

In this paper, we propose portfolio contracts by introducing
the call option contract into a traditional wholesale price
contract, and investigate the benefits when the retailer is
risk-averse and faces a non-trivial shortage cost. We model a
single-period supply chain with one risk-averse retailer and
one risk-neutral supplier. Specifically, we assume that the
retailer is willing to balance lower expected profit for down-
side protection against potential losses, which is in accor-
dance with the conditional value at risk (CVaR) criterion1.
Under the assumptions of this setting, the follows questions
are addressed:
(1) What is the risk-averse retailer’s optimal ordering policy

and the risk-neutral supplier’s optimal production policy
under the portfolio contracts when shortage costs are
non-trivial?

(2) What is the impact of the retailer’s level of risk aversion,
the shortage cost and the portfolio contracts’ parameters
on the retailer’s optimal order policy?

(3) What specific benefit does the addition of the call option
contract provide relative to the wholesale price contract?

(4) What is the condition underwhich the portfolio contracts
are able to coordinate the supply chain?

The main contributions of our research are as follows:
(1) We add to supply chain research by analyzing the portfo-

lio contracts under two practically relevant assumptions:
that the retailer is risk-averse and there is a non-trivial
shortage cost. We derive the optimal ordering policy
of the retailer and the optimal production policy of the
supplier.

(2) We find that the retailer’s optimal total ordering quantity
is independent of the wholesale price, and does not
have a monotonic relationship with the risk aversion and
exercise price which does not occur when risk aversion
and shortage costs are considered in isolation.

(3) We show that when the option order is incorporated into
the firm order, this benefits both the retailer and the
supplier, and improves the performance of the whole
supply chain.

1There are multiple measures of risk aversion widely adopted in the
literature such as mean-variance, value at risk (VaR) and CVaR [20], [21].
However, in comparison with mean-variance and VaR, CVaR is a rela-
tively conservative criterion for decision makers. In addition, CVaR has
been proven to be a coherent risk measure that is easily computed and
commonly used in marketing [21], [22], supply chain management [23] and
finance [24].
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The rest of the article is structured as follows.
Section 2 provides a brief review of relevant literature.
In Section 3, the model formulation and assumptions about
our problem are presented. In Section 4, the retailer’s order
policy and the supplier’s production policy are studied,
respectively. The effects of the introduction of the call option
contract on the retailer and the supplier are analyzed in
Section 5. Section 6 derives the condition under which the
supply chain can be coordinated. Section 7 presents the
results of the numerical examples to validate our findings.
Finally, Section 8 concludes the paper with a summary of our
results, managerial implications, and potential directions for
future research.

II. LITERATURE REVIEW
Our work draws upon three major streams of supply chain
literature: (1) the use of call options in supply chain con-
tracts, (2) supply chain contract performance with risk averse
players and (3) the consideration of shortage costs within
supply chains. Below, we briefly review relevant literature
that connects these areas and highlight our contributions.

A. CALL OPTION CONTRACTS
The use of call options in supply chains with risk neutral
players has received considerable attention under various sit-
uations. Generally, this research can be classified into two cat-
egories. The first is to consider an independent contract, and
the second is to consider the portfolio contracts consisting of
the call option contract and other contracts. When call option
contracts operate as an independent form of contracts in a
supply chain (SC), they generate many benefits. By adopting
a two-period model with correlated demand, Barnes-Schuster
et al. [12] explored the role of the call option contract in
a SC involving a single supplier and a single retailer and
showed that the SC can be coordinated only if the exercise
price is allowed to be piecewise linear. They also derived the
corresponding sufficient conditions on the cost parameters
for the linear prices to coordinate the SC. Wang and Liu [7]
developed a retailer-led SC model to study risk sharing and
SC coordination. They obtained the condition of SC coor-
dination. Moreover, they showed that the option contract
benefits to each party. Zhao et al. [8] developed an option
contract model by taking a cooperative game approach. Com-
pared with the wholesale price contract, they demonstrated
that option contracts can coordinate the SC and improve its
performance. Xu [25] characterized the supplier’s the optimal
production quantity and derived the manufacturer’s optimal
option order quantity. In addition, with the introduction of a
call option contract, they demonstrated that both the supplier
and the manufacturer can be better off. Luo and Chen [26]
examined the effects of a call option contract on the SC
members’ optimal decisions with random yield in a spot
market and derived the conditions under which the SC was
coordinated and/or Pareto-improvement was achieved.

In addition to being used independently, call option con-
tracts have been combined with other forms of contracts,

referred to as portfolio contracts. Burnetas and Ritchken [27]
investigated the efficiency of a SC involving one supplier and
one retailer, where the retailer can purchase reorder options
together with inventory purchases. Further, they studied the
role of the option contract in a SC with a downward-sloping
demand curve, and found that the impact of the option con-
tract on the retailer’s optimal order policy changed with
the degree of demand fluctuation. Fu et al. [28] explored
the value of portfolio procurement from various angles.
When both random demand and spot price were considered,
the optimal portfolio procurement policies were derived.
Moreover, to obtain the optimal procurement solution for
the general problem, they introduced a shortest-monotone
path algorithm. Chen and Shen [29] obtained the channel
agents’ optimal ordering policy and production policy, in the
presence of a service requirement, with and without the
option contract. Through model comparison and analysis,
they found that when the option contract was introduced,
the SC efficiency improved. In a recent work, Wang and
Chen [11] investigated the price-setting newsvendor’s deci-
sion with a call option contract, they showed that when
both single ordering and mixed ordering were available,
the newsvendor’s optimal ordering policy was mixed order-
ing. On top of this, they also showed that mixed ordering was
more capable for hedging against supply price volatility risk.
Wang and Chen [30] obtained the channel agents’ optimal
decisions with portfolio contracts and circulation loss. They
showed that the optimal option pricing policy of the supplier
is unrelated to the wholesale price and demand risk. More-
over, they found that with portfolio contracts, the SC was
coordinated and Pareto-improvement was achieved. These
works highlight the benefits and robustness of call option con-
tracts but only consider their performance when supply chain
members are risk neutral. Eriksson [31] investigated a dyadic
supply chain in a multi-period setting. By combining the base
stock model and the option mechanism, they presented an
algorithm to address that key problem on how to coordinate
the supply chain. Moreover, they illustrated the effects of the
algorithm and showed how two decentralised companies can
each maximise profits while reaching the optimal centralised
system level by numerical experiments.

B. INCLUSION OF RISK AVERSE MEMBERS
Our research assumes that the retailer’s risk aversion is char-
acterized specifically by the CVaR criterion. This criterion
is a measure that accounts for both upside rewards and
downside penalties, making it particularly appropriate for
describing a retailer’s risk aversion. Several supply chain
contracts have been studied while considering risk averse
members that adopt the CVaR criterion with a large focus on
supply chains containing a single risk neutral supplier and
single risk averse retailer. Gan et al. [32], Yang et al. [20],
Shang and Yang [33] and Xie et al. [34] investigate a supply
chain with a single risk neutral supplier and a single risk
averse retailer. Gan et al. [32] find that a buyback contract
can coordinate the supply chain when it is contingent on
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the retailer’s order quantity with an upper bound on returns
while Yang et al. [20] and Xie et al. [34] demonstrate mild
conditions for which buyback contracts, or revenue sharing
contracts, are coordinating. Shang and Yang [33] focus on
profit sharing contracts and demonstrate that when incor-
porating negotiating power and risk preferences, a Pareto-
optimal contract can be designed. Based on their models,
Vipin and Amit [35] find that loss aversion can significantly
improve the utility function’s performance in predicting the
rational behavior. Under recourse option, they extend the
analysis to a supply chain setting and establish coordinating
contract between a loss averse retailer and a risk neutral
supplier. Further, they also find that the contract parameters
are independent on the loss aversion.

Other research has expanded upon this by consideringmul-
tiple players at each level of the supplier chain. Yao et al. [36]
and Hsieh and Lu [37] consider a supply chain that con-
sists of a single supplier but multiple risk averse retailers.
Both demonstrate that there are large differences when com-
pared with a case of no retailer competition with the for-
mer characterizing an optimal returns policy and the latter
showing that as retailers become more risk averse, the buy-
back price approaches the wholesale price. Expanding even
further, Chen et al. [38] research coordinating contracts in
a supply chain with multiple suppliers and multiple retail-
ers. It is found that some of these contracts are not stable
under competition but when the lowest-cost supplier han-
dles all production and the least risk-averse retailer bears
the total risk, the supply chain can be coordinated. These
works demonstrate that contract performance is significantly
impacted by the presence of risk averse players and supply
chain coordination or Pareto-improvement is only achieved
under restricted conditions.

The primary focus of our research is at the intersection
of risk aversion and call option contracts which a small
stream of literature has addressed. For the CVaR criterion,
Wu et al. [39] derive optimal ordering policies for a risk
averse manufacturer under call option contract and found
that as the manufacturer’s risk-aversion increases, the opti-
mal ordering quantity decreases. Lee et al. [40] develop an
efficient algorithm to compute a loss-averse newsvendor’s
optimal solution with uncertain demand andmultiple options.
Wang et al. [41] expand upon this by considering a supply
chain with two risk averse retailers and demonstrate that
the channel can be coordinated with a call option contract.
Considering only the call option contract without any firm
orders such as those under a wholesale price contract for
a two-echelon supply chain with a risk-averse retailer and
risk-neutral supplier, Juanjuan et al. [42] show that under
some specific conditions, the supply chain can be coor-
dinated. While these works begin to consider call option
contract performance under risk aversion, they do not take
into account the impact of a non-trivial shortage cost. In a
setting with a risk averse retailer, shortage costs can have a
substantial impact on behavior.

C. SHORTAGE COSTS WITH RISK AVERSE MEMBERS
A small number of papers exist that study shortage costs and
risk aversion concurrently. Wang and Webster [13] study a
loss-averse newsvendor problem with a non-trivial shortage
cost and find that as the newsvendor’s loss aversion increases,
this leads to an increase in his optimal order quantity. Xu and
Li [43] study a risk-averse newsvendor model, specifically
adopting the CVaR criterion, with and without the shortage
cost. The results show that when a substantial shortage cost
is incorporated into the model, the complexity of the solution
increases. Although both of these papers consider shortage
costs, they do not consider them in a contractual environment
where both a supplier and retailer are making decisions.
Liu et al. [14] studies a newsvendor problem with random
supply capacity. They show that under different conditions,
when the shortage cost is considered, a loss-averse retailer
may order less than, equal to or larger than the risk-neutral
one. Further, when the shortage cost is less than a critical
value, the loss-averse retailer’s optimal order quantity is less
than the risk-neutral retailer’s.

To the best of our knowledge, only Chen et al. [10] and
Yuan et al. [44] consider risk aversion and shortage costs in
the context of contract design. Chen et al. [10] investigate
a supply chain with a single risk neutral supplier and a
single risk averse retailer who faces shortage costs. In this
context, they study the performance of a call option con-
tract as an independent contract and derive conditions for
coordination. Different from our work, Chen et al. [10] do
not consider the call option in combination with a whole-
sale price contract and do not adopt the CVaR criterion to
characterize risk aversion. Yuan et al. [44] consider a supply
chain consisting of a risk-neutral supplier and a risk-averse
retailer, where the retailer orders call option from the sup-
plier with an emergency order opportunity. When the emer-
gency purchase price is low, the analytical model shows that
the optimal order quantity of a risk-averse retailer is less
than that of a risk-neutral retailer. When it is moderate or
high, the risk-averse retailer may order more than, equal to,
or less than a risk-neutral one. Computational studies show a
risk-averse retailer may get higher profit than a risk-neutral
one. Different from our work, Yuan et al. [44] do not con-
sider the call option in combination with a wholesale price
contract, and consider the retailer has an emergency order
opportunity.

The extant literature shows that both retailer risk aversion
and call option contracts have been widely studied. However,
work that considers the intersection of these two streams
is scarce. Furthermore, the consideration of shortage costs
when retailer’s are risk averse has received little attention.
We contribute to these streams of literature by considering
all three factors concurrently. In doing do so, we (1) pro-
vide new insights regarding the impact of shortage costs on
optimal policies and supply chain performance, (2) highlight
the importance of considering shortage costs when retailer’s
are risk averse and (3) provide recommendations for how to
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effectively manage inventory with call option contracts under
new conditions.

III. MODEL FORMULATION AND ASSUMPTIONS
Consider a single-period two-party SC where a risk-neutral
supplier who produces seasonal products sells via a
risk-averse retailer to the end-users. Since the selling sea-
son is short enough and/or the production lead-time is long
enough such that the supplier must produce all units prior to
the start of the selling season. Therefore, the retailer has no
chance to replenish inventory during the selling season and
must make ordering decisions before the selling season.

In addition to placing initial firm orders (by a wholesale
price contract), the retailer can purchase and exercise call
options (by a call option contract) from the supplier to adjust
his initial firm orders. The wholesale price contract is char-
acterized by one parameter, i.e. the wholesale price, which
is a per unit price the supplier charges the retailer for units
the retailer commits to buying (i.e., firm orders). The call
option contract is characterized by two parameters, namely,
the option price and the exercise price. The option price is a
per unit price the supplier charges the retailer to secure the
right to purchase additional units (i.e., option orders). The
exercise price is a per unit price the supplier charges the
retailer for any additional units he actually purchases (i.e.,
options exercised). Therefore, the retailer fully commits to
purchase firm orders but is not obligated to purchase option
orders. However, the supplier is required to produce both firm
and option orders, ensuring that they are available.

The notation used throughout this paper are listed
in Table 1.

TABLE 1. Notation.

The sequence of events is illustrated in Figure 1 and
unfolds over three distinct time periods marked by t1 (start
of the production season), t2 (start of the selling season),
and t3 (end of the selling season). Before the production
season (before t1), the supplier offers the retailer a wholesale
price contract (w), as well as a call option contract (o, e).
Based on a preliminary demand forecast and a shortage cost

FIGURE 1. Sequence of events under the Portfolio Contracts.

penalty (hr ), at time t1, the retailer considers the portfolio
contracts and places orders with the supplier. Specifically,
the retailer places a firm order for q1 units and an option
order for q2 units, resulting in payments of wq1 and oq2
respectively, to the supplier. During the production season
(between t1 and t2), the supplier will produce Q units result-
ing in a cost of cQ. At the start of the selling season (t2)
the retailer receives q1. During the selling season (between
t2 and t3), the retailer learns what realized demand is and
determines whether or not to exercise the option contract.
If X < q1, the retailer will not exercise the options contract.
At t3, the retailer will salvage each of the remaining q1 − X
units for v, resulting in revenue of pX + v(q1−X ). If q1 < X ,
the retailer will exercise the call option, paying the supplier
emin(X − q1, q2) and earning revenue of pmin(X , q1 +
q2). In addition, if q1 + q2 < X , the retailer will incur a
per-unit shortage cost of hr at time t3 resulting in a cost of
hr (X − q1 − q2).
To avoid trivial or impractical cases, we impose a series of

assumptions regarding the costs in the SC. To ensure that the
contracts are profitable for both parties, we assume p > o +
e > w > c. Having o+ e > c and w > c ensures profitability
for the supplier while having p > o + e and p > w ensures
profitability for the retailer. To ensure retailer participation,
we further assume that o+ e > w > e and hr > w. When the
total cost of purchasing optional units exceeds the wholesale
price, this ensures the retailer will place firm orders while
having the wholesale price exceed the exercise price ensures
the retailer will place option orders. By requiring the shortage
cost to exceed the wholesale price, we create an incentive
for the retailer to satisfy demand. Additionally, we assume
that c > o + v to avoid an arbitrage opportunity for the
supplier. Finally, we assume that all information is known to
both parties (i.e., is symmetric).

Since the retailer is risk-averse and wants to control the
potential risk, we assume that the retailer takes CVaR as his
performance measure. That is, the retailer’s decision problem
is to maximize CVaR. The definition of CVaR [20], [45], [46]
is as follows

CVaRη(πr ) = max
ξ∈R

{
ξ −

1
η
E[ξ − πr ]+

}
.

Under this utility function, πr is the retailer’s random profit,
ξ is a real number denoted as the target level of the profit, E
is the expectation taken on the random demand X , and η ∈
(0, 1] is a threshold quantile that reflects the retailer’s degree
of risk aversion. Note that if η = 1, then the value of CVaR
is equal to the expected profit, and the retailer is risk-neutral.
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If 0 < η < 1, then the value of CVaR is less than the expected
profit, and the retailer is risk-averse. Higher values of η imply
a lower degree of risk-aversion.

IV. THE OPTIMAL ORDERING AND PRODUCTION
POLICIES WITH PORTFOLIO CONTRACTS
The retailer is provided with the wholesale price contract
(w) and the call option contract (o, e) at the beginning of
the production season but prior to demand being realized.
In consideration of the portfolio contracts, random demand
(X ) and the shortage cost (hr ), the retailer will determine the
firm order quantity (q1) and the option order quantity (q2).
Given the decision setting in Section III, the retailer’s profit
function is:

πr (X , q1, q2) = pmin(q1+q2,X )+ v[q1−X ]+−wq1−oq2
− emin(q2, (X−q1)+)−hr (X − q1 − q2)+.

The first two terms above are the expected revenue from
selling products and from salvage of overstock, respectively.
The third, fourth and fifth terms capture the costs of purchas-
ing the firm order and the option order, and of exercising the
option order as required, respectively. The last term is the
shortage penalty cost. Further, the retailer’s corresponding
CVaR measure is

CVaRη(πr (X , q1, q2))=max
ξ∈R

{
ξ−

1
η
E[ξ−πr (X , q1, q2)]+

}
Clearly, our goal is to find the optimal ordering decisions
when the retailer is risk-averse under CVaR criterion, i.e.,

max
q1>0,q2>0

CVaRη(πr (X , q1, q2)). (1)

Let q∗1 and q
∗

2 be the optimal solutions to the decision prob-
lem presented in (1). The following theorem gives explicit
expressions for q∗1 and q

∗

2
2.

Theorem 1: With the portfolio contracts, CVaRη(πr (X , q1,
q2)) is jointly concave with q1 and q2. The retailer’s opti-
mal firm order quantity is q∗1 = F−1(A) and optimal
option order quantity is q∗2 =

1
p+hr−e

[(p − e)(F−1(B) −

F−1(A)) + hr (F−1(C) − F−1(A))], where A = (e+o−w)η
e−v ,

B = (p+hr−o−e)η
p+hr−e

and C = 1− oη
p+hr−e

.

By characterizing the retailer’s optimal ordering policy in
Theorem 1, we can make two initial observations regard-
ing q∗1 and q∗2. First, since e + o > w and e > v,
we find that q∗1 > 0. Second, we find that q∗2 > 0 for
any risk aversion level provided that o ≤ (w−v)(p+hr−e)

p+hr−v
.

Together, these two results demonstrate that, regardless of
the retailer’s risk aversion level, he will always place a firm
order and an option order as long as the option price, o,
is low enough. For the remainder of this paper, we impose this
condition on o to ensure that the retailer places both types of
orders.

In characterizing the retailer’s optimal firm and option
quantities, we can derive the total order quantity for the

2Proofs of all theorems and corollaries are provided in the Appendix.

retailer: q∗ = q∗1 + q∗2 = (p + hr − e)−1[(p − e)F−1(B) +
hrF−1(C)]. Note that, if the retailer is risk-neutral (i.e., η =
1), then q∗ = F−1( p+hr−o−ep+hr−e

) and if shortage cost is ignored

(i.e., hr = 0), then q∗ = F−1( (p−o−e)ηp−e ). Given that q∗ is
dependent on both η and hr , the retailer’s optimal ordering
policy is more complicated than the case when the retailer is
risk-neutral or shortage cost is not considered.

Next we investigate the impact of the retailer’s level of
risk aversion on his optimal ordering policy (q∗1, q

∗). Let
M (hr , η) = (p−e)(p+hr−o−e)f (F−1(C))−ohr f (F−1(B)),
then
Theorem 2: The risk-averse retailer’s optimal order policy

(q∗1, q
∗) has the following relationships with risk aversion

coefficient:

(a)
dq∗1
dη > 0;

(b) if M (hr , η) > 0, then dq∗

dη > 0, if M (hr , η) = 0, then
dq∗

dη = 0, otherwise, dq
∗

dη < 0.

Theorem 2(a) shows that q∗1 is increasing in η. Since lower
values of η indicate higher levels of retailer’s risk-aversion,
the optimal firm order quantity (q∗1) decreases as the retailer
becomes more risk-averse. Since η = 1 for a risk-neutral
retailer, Theorem 2(a) also shows the risk-neutral q∗1 is strictly
greater than the q∗1 for a risk-averse retailer. Furthermore,
these results are independent of the shortage cost. Differ-
ent from the case of the firm order quantity, Theorem 2(b)
shows that q∗, and by extension, q∗2, is not monotonic in η.
The risk-averse retailer’s optimal total order quantity can
be less than, equal to or larger than that of the risk-neutral
retailer. When M (hr , η) > 0(< 0), q∗ is increasing (decreas-
ing) in η, indicating that the total optimal order quantity
decreases (increases) as the retailer’s level of risk aversion
increases. When M (hr , η) = 0, q∗ does not change as the
retailer’s level of risk aversion changes.

Therorem 2(b) also highlights the importance of consider-
ing the retailer’s shortage cost when he is risk-averse. Recall
that if hr = 0, then q∗ = F−1( (p−o−e)ηp+−e ) and thus, dq∗

dη >

0. This result is consistent with our intuition, showing that
the risk-averse retailer’s total optimal order quantity mono-
tonically decreases as the retailer’s level of risk aversion
increases. However, our results show that, when the shortage
cost is considered, under certain conditions, higher levels of
risk aversion can lead the retailer to actually increase his total
order quantity. A risk-averse retailer perceives a larger loss
when profit is negative. Negative profit can be caused by a
large overstock or a large understock. Without considering a
cost of stocking out, the cost of understocking looms larger
and the retailer will be incentivized only to lower his total
order quantity. Conversely, when the cost of stocking out
dominates that of overstocking, the potential negative profit
from understocking becomes salient, causing the retailer to
order more. Based on these results, we further investigate
the relationship between the risk-averse retailer’s optimal
ordering policy and the shortage cost.
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Theorem 3: q∗1 is constant in hr , i.e,
dq∗1
dhr
= 0, while both

q∗ and q∗2 are strictly increasing in hr , and
dq∗

dhr
=

dq∗2
dhr

.
Theorem 3 states that as the shortage cost increases,

the risk-averse retailer’s optimal firm order quantity remains
constant, while optimal total order quantity and optimal
option order quantity strictly increase. Furthermore, if η = 1
(the retailer is risk-neutral), then the results of Theorem 3 still
hold, showing that the retailer’s risk aversion has no effect on
the relationship between q∗ and hr . Therefore, by providing
the risk-averse retailer the opportunity to purchase both firm
and option orders, the portfolio contracts can address both
the risk of overstocking and of understocking. A risk-averse
retailer’s fear of low or negative profits due to overstock-
ing can be addressed by lowering the firm order quantity.
The retailer can use option orders to manage the risk that
realized demand may be higher than the firm order quantity
since he is able to exercise those options after demand is
realized.

The next corollary demonstrates how the retailer’s optimal
ordering policy changes as the wholesale price, the option
price or the exercise price increases.
Corollary 1: The effects of price parameters of the port-

folio contracts on the optimal order policy (q∗1, q
∗) are as

follows:

(a) q∗1 is decreasing in w, and q
∗ is constant in w;

(b) q∗1 is increasing in o, while q
∗ is decreasing in o;

(c) q∗1 is increasing in e, while q∗ is complicated in e.
If H (hr , η) > 0, then q∗ is increasing in e, if H (hr , η) =
0, then q∗ is constant in e, otherwise, q∗ is decreas-
ing in e, where H (hr , η) = hr [F−1(C) − F−1(B)] −

(p−e)oη
(p+hr−e)f (F−1(B))

−
ohrη

(p+hr−e)f (F−1(C))
.

Corollary 1(a) shows that when the wholesale price, w,
increases, the retailer will decrease his optimal firm order
quantity. However, as w increases, the total optimal order
quantity remains constant, indicating that q∗2 increases. This
implies that optimal total order quantity is unrelated to the
wholesale price w. However, Corollary 1(b) shows that q∗

does change as the option price, o, changes. Specfically, q∗1
is increasing in o while q∗ is decreasing in o. Since

dq∗2
do <

−
dq∗1
do < 0, the optimal firm order quantity is less sensitive

to changes in o than the optimal option order quantity. These
results mean that when the option becomes more expensive,
the retailer reacts by increasing his firm order quantity. At the
same time, the retailer decreases his option order quantity
(q∗2). The increase in the firm order quantity is less than the
decrease in the option order quantity, resulting in a decrease
in the total order quantity. Therefore, when all else remains
constant, the supplier’s mechanism to alter the retailer’s total
order quantity is the option price, o.

Corollary 1(c) shows that, similar to the relationship
between risk aversion and the total optimal order quantity,
the relationship between the exercise price and the total
optimal order quantity is not monotonic. If the retailer is
risk-neutral, then H (hr , 1) = −

o
f (F−1( (p+hr−o−e)p+hr−e

))
< 0

and if shortage cost is not considered, then H (0, η) =
−

oη

f
(
F−1
(
(p−o−e)η

p−e

)) < 0. Therefore, when only one factor

is considered, q∗ is monotonically decreasing in e. How-
ever, when both risk aversion and shortage cost are con-
sidered, the retailer’s optimal total order quantity (q∗) may
be increasing or constant in e, both of which will never
occur when the retailer is risk-neutral or shortage cost is not
considered. That is because q∗ is influenced not only by η
and hr , but is also influenced by demand uncertainty. When
the retailer has the opportunity to purchase both firm and
option orders, he can adjust both quantities simultaneously
to account for the trade-off between demand uncertainty and
shortage/overage costs.

Corollary 1 demonstrates the benefits of the portfolio con-
tracts in allowing the retailer to account for demand uncer-
tainty in both directions. Based on these results, we analyze
the effect of demand uncertainty on the optimal order policy.
For simplicity, we consider only the case when demand is
normally distributed with mean µ and standard deviation σ .
Corollary 2: When market demand uncertainty changes,

the change in the optimal order policy is as follows:

(a) if 2(e+ o− w)η > e− v, then q∗1 is increasing in σ , and
q∗1 > µ; if 2(e + o − w)η = e − v, then q∗1 is constant
in σ , and q∗1 = µ; otherwise, q

∗

1 is decreasing in σ , and
q∗1 < µ

(b) q∗2 is strictly increasing in σ , and q
∗

2 > µ.

Corollary 2(a) shows that the the relationship between the
retailer’s optimal firm order quantity and demand uncertainty
is dependent on the relationship between the portfolio con-
tract parameters and the level of risk aversion. The retailer’s
optimal firm order quantity can be either greater than µ and
increasing in σ , equal to µ and constant in σ or less than
µ, and decreasing in σ . Contrastingly, the retailer’s optimal
option quantity, q∗2, is strictly greater than µ, increasing in
σ , and independent of η. This means that, regardless of risk
aversion, as variance in demand grows, the retailer relies
more on the right to exercise options to satisfy demand once
it is realized. Accounting for risk aversion and additional
contract parameters, when the exercise price is large enough,
the retailer increases the firm order quantity at the same
time to avoid the necessity to exercise the option. When the
exercise price is low enough, the retailer counters this action
by decreasing the firm order quantity.

In what follows, we consider the supplier’s optimal produc-
tion policy. At the beginning of the selling season, although
the retailer may exercise either part of or all of the call options
due to seasonal product’s intrinsic attributes, the supplier has
to manufacture the exact quantity the retailer orders. In fact,
the call option contract transfers random demand risk from
the retailer to the supplier. Thus, the optimal production
quantity of the supplier is equal to the total optimal quantity
the retailer orders, i.e., Q∗ = q∗1 + q∗2. Given the decision
setting presented in Section 3, the supplier’s expected profit
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function is

πs(Q∗) = wq∗1 + oq
∗

2 + eE[min(q∗2, (x − q
∗

1)
+)]

+ vE(q∗2 − (x − q∗1)
+)+ − c(q∗1 + q

∗

2).

The first term represents revenue that the supplier derives
from the retailer’s firm order. The second and third terms are
the revenue from option sales and exercised options. Note that
revenue from the firm order quantity and the option sales are
known while the revenue from the exercised options is not
known until demand is realized. Therefore, the introduction
of the call option contract transfers some of the risk from
demand uncertainty from the retailer to the supplier. The
fourth term is the revenue from salvaging the excess option
units not exercised by the retailer and the last term is the
production cost. Then

πs(Q∗) = wq∗1 + oq
∗

2 + e

(
q∗2 −

∫ q∗1+q
∗

2

q∗1

F(x)dx

)

+v

(∫ q∗1+q
∗

2

q∗1

F(x)dx

)
− c(q∗1 + q

∗

2). (2)

For the retailer, we analyzed how the parameters of the
portfolio contracts and the shortage cost impacted the opti-
mal ordering policy. Interestingly, we found that q∗ was not
impacted by w (Corollary 1(a)) and that while hr had no
impact on q∗1, both q

∗ and q∗2 were increasing in hr (The-
orem 3). The following results analyze how these effects
impact the supplier’s optimal expected profit.
Theorem 4: Under the portfolio contracts, the opti-

mal expected profit of the supplier is increasing in w,
i.e., dπs(Q

∗)
dw > 0.

Recall that, according to Corollary 1(a), the retailer’s opti-
mal total order quantity is independent of the wholesale
price. Theorem 4 shows that as the wholesale price increases,
the optimal expected profit of the supplier increases. It is
clear that the supplier can improve his expected profit by
setting a relatively high wholesale price without influencing
the retailer’s total order quantity. Corollary 1(a) also shows
that when the wholesale price increases, the retailer decreases
his optimal firm order and increases his optimal option order.
Since w < o + e, the retailer’s total order cost is increasing
in w. Then the retailer’s optimal expected profit is decreasing
inw. These results, in conjunction with Theorem 4, imply that
the wholesale price w can be used to adjust profit distribution
between the supplier and the retailer.

From Theorem 2, when the retailer is risk-averse and
adopts the CVaR criterion, the presence of a shortage cost cre-
ates an intricate effect on the retailer’s optimal order policy.
By extension, the shortage cost will also impact the supplier’s
optimal expected profits.
Theorem 5: If o+ e− (e− v)F(q∗) > c, then dπs(Q∗)

dhr
> 0;

if o+ e− (e− v)F(q∗) = c, then dπs(Q∗)
dhr

= 0; if o+ e− (e−

v)F(q∗) < c, then dπs(Q∗)
dhr

< 0.
Theorem 5 shows that the relationship between the sup-

plier’s optimal expected profit and the shortage cost is

determined by production cost, option price, exercise price,
total order quantity and the demand distribution function.
Also, note that this relationship is independent of w. Recall
from Theorem 2 that the retailer’s firm order quantity was
not impacted by hr . Since the firm order quantity is the only
quantity associated withw, the wholesale price does not inter-
act with hr to impact the supplier’s optimal expected profit.
We find that when the expected revenue of the supplier from
option sales and exercised options is larger than production
cost (i.e., o + e − (e − v)F(q∗) > c), the supplier’s optimal
expected profit is increasing in hr . When the expected rev-
enue of the supplier from option sales and exercised options
is equal to production cost (i.e., o + e − (e − v)F(q∗) = c),
the supplier’s optimal expected profit is constant in hr . When
the expected revenue of the supplier from option sales and
exercised options is less than production cost (i.e., o + e −
(e − v)F(q∗) < c), the supplier’s optimal expected profit is
decreasing in hr .

The intuition for these results is easily reconciled with
results regarding the retailer’s optimal option quantity (q∗2).
Recall that as hr increases, the retailer’s option order quantity
increases. When the revenue from options outweighs the
supplier’s production cost, it is beneficial to the supplier to
have the retailer place more option orders. However, if the
production cost outweighs the revenue from options, then this
hurts the supplier. These results also highlight the need for the
supplier to make efforts to decrease production cost.

V. THE EFFECT OF THE CALL OPTION CONTRACT
The above results demonstrate that the introduction of the
call option contract is an effective tool for the retailer and
the supplier when risk aversion and a shortage cost are
present. In this section, we further investigate the effect of
the introduction of the call option contract by comparing it
to a case when only a wholesale price contract is offered.
Consider a base model where the risk-averse retailer cannot
purchase a call option. This means that there is no purchase or
supply flexibility and the retailer’s order quantity will be the
supplier’s production quantity. To keep this baseline setting
distinct from the case of the introduction of the call option
contract, we will refer to the retailer’s order quantity as q0.
In this case, the retailer’s expected profit function reduces to
that of a wholesale price contract with shortage costs.

πr (X , q0)=pmin(q0,X )+v[q0 − X ]+−wq0 − hr (X−q0)+.

As in Section 4, we assume that the retailer is risk averse and
adopts the CVaR criterion leading to the following function.

CVaRη(πr (X , q0)) = max
ξ∈R

{
ξ −

1
η
E[ξ − πr (X , q0)]+

}
Under this assumption, the retailer solves for the single order
quantity, q0, that solves the following decision problem.

maxq0≥0CVaRη(πr (X , q0)). (3)

Let q∗0 be the optimal solution for the problem presented
in (3). The following lemma characterizes the retailer’s
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optimal order quantity under CVaR without the call option
contract.
Lemma 1: Without the call option contract, CVaRη(πr (X ,

q0)) is a concave function with q0, and the optimal order
quantity is given by q∗0 =

1
p+hr−v

[(p − v)F−1(B
′

) +

hrF−1(C
′

)], where B
′

=
(p+hr−w)η
p+hr−v

and C
′

= 1− (w−v)η
p+hr−v

.
Similar to Theorem 1, Lemma 1 derives that when the

retailer places orders only by the wholesale price contract,
the retailer’s optimal ordering quantity exists and is unique.
As seen in the characterization of q∗0 in Lemma 1, the optimal
order quantity is dependent on w, whereas, in the case of
the introduction of the call option contract, the optimal total
order quantity q∗ was independent ofw. Note that the optimal
order quantity q∗0 without the call option contract and q∗

with the call option contract have similar structural form.
The following theorem characterizes the specific relationship
between these two order quantities.
Theorem 6: The retailer’s total optimal order quantity q∗

with the call option contract is larger than the optimal order
quantity q∗0 without the call option contract, while the firm
order quantity q∗1 with the call option contract is less than
that without the call option contract, i.e., q∗ > q∗0 > q∗1.
This result indicates that under the portfolio contracts,

the quantity that the retailer commits to purchasing is less
than what they purchase when the call option contract is not
offered. When the call option contract is offered, because the
the retailer buys options, he has the flexibility to purchase a
larger total amount than with the wholesale price contract.
In other words, the portfolio contracts allow the retailer to
better manage the risk of overstocking by placing a lower
firm order. But, it also allows the retailer to better manage the
risk of understocking and potentially achieve higher levels of
revenue by reserving access to a larger number of total units
that are only used if necessary.

Theorem 6 demonstrates the benefit of the call option con-
tract with respect to flexibility for the retailer. The next result
investigates whether or not the call option contract benefits
the retailer by comparing the maximum CVaR derived from
the portfolio contracts, CVaRη(πr (X , q∗1, q

∗

2)), and the whole-
sale price contract, CVaRη(πr (X , q∗0)). Bymodel comparison,
the following theorem is obtained.
Theorem 7: The retailer’s maximum CVaR with the call

option contract is better off than that without the call option
contract, i.e., CVaRη(πr (X , q∗1, q

∗

2)) > CVaRη(πr (X , q∗0)).
Theorem 7 states that when the retailer is risk-averse

and there is a shortage cost, with the call option contract,
the retailer will always obtain greater CVaR than without.
In combination with Theorem 6, this demonstrates that the
introduction of the call option contract benefits the retailer
by providing greater flexibility without sacrificing CVaR.
In fact, it achieves even higher CVaR than a wholesale price
contract.

We now consider whether or not the introduction of the call
option contract is beneficial for the supplier.When the retailer
obtains products only through the wholesale price contract,

the supplier’s optimal production quantity, Q∗0, is equal to the
retailer’s optimal order quantity, q∗0. The optimal expected
profit of the supplier is πs(Q∗0) = (w−c)q∗0. Given Theorem 6
and that Q∗0 = q∗0, we can conclude that Q∗ > Q∗0. In other
words, the supplier’s optimal production quantity is always
larger when the call option contract is offered. However, since
part of this production quantity is due to options, the supplier
may not sell the entire quantity to the retailer. Therefore,
we now examine the effect of the call option contract on the
optimal expected profit of the supplier. We can obtain the
following theorem.
Theorem 8: The optimal expected profit of the supplier

with the call option contract is larger than that without the
call option contract, i.e., πs(Q∗) > πs(Q∗0).
This theorem clearly states that the supplier is always

better off when he offers the portfolio contracts that include
a call option contract rather than only a wholesale price
contract. Based on Theorems 7 and 8, we can easily obtain
that CVaRη(πr (X , q∗1, q

∗

2))+ πs(Q
∗) > CVaRη(πr (X , q∗0))+

πs(Q∗0) proving that the introduction of the call option con-
tract benefits each player individually as well as the SC.

VI. SUPPLY CHAIN COORDINATION
In the previous sections, we have discussed how the intro-
duction of the call option contract impacts optimal SC deci-
sions and shown that portfolio contracts provide benefits to
both parties in the SC when the retailer is risk averse and
faces shortage costs. However, the baseline for comparison
in the prior section was a wholesale price contract, a contract
that does not coordinate the SC. Therefore, one issue left
to address is whether the portfolio contracts merely provide
increased profits over the wholesale price contract or if they
can also coordinate the SC. As a benchmark, we assume
that a single, risk-neutral decision maker controls the SC and
decides the production quantity to maximize the expected
profit of the SC [10]. We assume that the single decision
maker’s production quantity is qc and the production cost,
shortage cost, salvage value and retailer price are the same as
in prior sections. Under these assumptions, the SC’s expected
profit is:

E[π (X , qc)]

= pE min(qc,X )+ vE(qc − X )+ − hrE(X − qc)+ − cqc,

where the first two terms are the system’s expected revenue
and salvage revenue, the third term is the shortage cost, and
the last term is the production cost. Then

E[π (X , qc)] = (p+hr−v)
(∫ qc

0
xf (x)dx+

∫
∞

qc
qcf (x)dx

)
+ (v− c)qc − hrµ.

The centralized SC’s decision problem is maxqc≥0 E[π (X ,
qc)]. It is not difficult to obtain that E[π (X , qc)] is concave
in qc. Thus the optimal production quantity of the system
is q∗c = F−1

(
p+hr−c
p+hr−v

)
. Note that since the supplier adopts
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the make-to-order supply policy and supplies product up to
q∗ under the portfolio contracts, to achieve the maximum
expected profit of the system, it is sufficient for the supplier
to provide a call option contract to push the retailer to pursue
a total order quantity up to the production quantity of the
system, i.e., q∗ = q∗c . This observation leads to the following
result.
Theorem 9: When

(p+ hr − e)F−1(D) = (p− e)F−1(B)+ hrF−1(C) (4)

is satisfied, the SC can be coordinated by the portfolio con-
tracts, where D = p+hr−c

p+hr−v
.

Theorem 9 states that the channel coordination is deter-
mined by the relationship between the level of risk aversion
(η), option price (o), exercise price (e), retail price (p), pro-
duction cost (c), shortage cost (hr ) and demand uncertainty.
Recall that from Theorem 1, the risk-averse retailer’s optimal
total order quantity was independent of w under the portfolio
contracts. Similarly, we find that the condition on SC coordi-
nation is independent of w. Although we saw in Theorem 4
that w increases the supplier’s expected profit and decreases
the retailer’s expected profit, it does not impact the total profit
of the SC. Instead, w is merely a mechanism that controls the
allocation of profit between the supplier and retailer when
introducing the call option contract. In a non-coordinated
system, SC expected profits are lower than in a coordinated
system. Thus, when compared with a non-coordinating con-
tract, the portfolio contracts can achieve Pareto optimality by
regulating wholesale price. That is, the two parties’ profits do
not decrease and at least on party is strictly better off.

In addition to being independent of w, SC coordination is
also independent of demand uncertainty under specific con-
ditions. According to Theorem 9, if the retailer is risk-neutral
(i.e., η = 1), we can obtain from Equation (4) that when
o = (p+hr−e)(c−v)

(p+hr−v)
, the SC can be coordinated. If the shortage

cost is ignored (hr = 0), thenwe can obtain fromEquation (4)
that when o = [1− p−c

(p−v)η ](p−e), the SC can be coordinated.
These results reveal that when the retailer is risk-neutral or
shortage costs are absent, the portfolio contracts coordinate
the SC, regardless of the demand distribution. However, when
both risk aversion and shortage costs are present, Theorem 9
shows that the condition of channel coordination depends on
the demand distribution. This dependency occurs because the
optimal total order quantity (q∗) is not monotonic in η and its
direction is determined by the relationship between η, hr and
demand uncertainty (i.e, M (hr , η)).

VII. NUMERICAL EXPERIMENTS
In this section, we make use of numerical experiments to fur-
ther validate the impact of the introduction of the call option
contract on optimal decisions and illustrate the effects of risk
aversion and shortage cost on the optimal ordering policy. Let
p = 30, c = 10, o = 5 and v = 2. It is assumed that the
random demand satisfies the normal distribution with mean
(µ = 100) and standard deviation (σ ). Note that although the
parameters are assigned specific values and normal demand

FIGURE 2. The effect of risk aversion on the optimal order quantity.

distribution are used, the results of the theoretical analysis
are independent on the specific values and distribution of
demand. To evaluate the effect of risk aversion on the optimal
total order quantity q∗, we vary the level of risk aversion, η,
from 0.1 to 1 in steps of 0.1 with fixed values of hr = 25,
w = 22 and e = 20. In addition, we consider three different
levels of demand variation: σ = 75, σ = 50 and σ = 25. The
results of this numerical experiment are presented in Figure 2.

For each level of demand variation, the optimal total order
quantity is first decreasing in η and decreases more slowly
as η increases. At a certain point, q∗ begins to increase in
η and increases more rapidly as η continues to increase.
In addition, Figure 2 shows that the risk averse retailer can
order less than, equal to or larger than the corresponding
risk neutral retailer (η = 1). These results are consistent
with Theorem 2. Figure 2 also illustrates that the higher
the level of demand variation, the larger the optimal total
order quantity. Further, from these figures, we can observe
that as σ increases, the U-shaped relationship between η and
q∗ becomes steeper. Therefore, as demand variation grows,
the role of risk aversion becomes more prominent.

FIGURE 3. The effect of exercise price on the optimal order quantity.

In Figure 3, we illustrate the effect of the exercise price on
the optimal total order quantity. In this experiment, we con-
sider three shortage costs (hr = 23, 25, and 27), and fix
w = 22, σ = 25 and η = 0.8. In addition, we vary e from
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FIGURE 4. The effect of shortage penalty cost on the optimal order
quantity.

FIGURE 5. The effect of wholesale price on the optimal expected profit.

18 to 21 in steps of 0.1. As Figure 3 demonstrates, under
different shortage costs, the exercise price can have varying
effects on the optimal total order quantity, which is consistent
with Corollary 1. We see that when hr = 23, q∗ decreases as
e increases while when hr = 27, q∗ increases as e increases.
When hr = 25, the relationship between q∗ and e is not
monotonic.

Next, we analyze the effect of the shortage cost on the
optimal ordering policy by comparing q∗, q∗1 and q

∗

0. We vary
hr from 23 to 40, in steps of 1 and fix w = 22, σ = 25,
η = 0.8 and e = 20. The results are illustrated by Figure 4.
We can observe that the optimal firm order quantity q∗1 is
constant with respect to hr , while both q∗ and q∗0 are strictly
increasing in hr . This result is in accordance with Theorem 3.
Moreover, Figure 4 illustrates that the optimal order quantity
without the call option contract, q∗0 is smaller than the total
optimal order quantity with the call option contract, q∗, but is
larger than optimal firm order quantity, q∗1, which is consistent
with Theorem 6.

To illustrate the impact of the introduction of the call option
contract on the supplier’s optimal profit, we fix hr = 25,
σ = 25, η = 0.8 and e = 20, and vary w from 21 to
24, in steps of 0.1. Figure 5 illustrates the supplier’s opti-
mal expected profit with respect to wholesale price, with
and without the call option contract. As shown in Figure 5,

the optimal expected profit of the supplier is increasing in
w when the call option contract is offered while it is not
monotonic in w without the call option contract. Moreover,
the optimal expected profit of the supplier when the call
option contract is introduced (i.e.,πs(Q∗)) is larger than the
optimal expected profit when it is not offered (i.e.,πs(Q∗0)).
These results are consistent with Theorem 4 and Theorem 8.
Figure 5 also illustrates that as wholesale price increases,
πs(Q∗)−πs(Q∗0) becomes larger, indicating that the effects of
risk aversion and demand uncertainty on the optimal expected
profit of the supplier are reducedwhen the call option contract
is introduced.

VIII. CONCLUSION
This paper investigated a supply chain involving a single
risk-neutral supplier and a single risk-averse retailer, where
the retailer adopts CVaR as his performance measure. Differ-
ent from prior analytical research that considers this supply
chain setup, we assume that the retailer faces a non-trivial
shortage cost. The inclusion of this cost emphasizes that not
only does the retailer face substantial risk in over-ordering
but also in under-ordering. To hedge against the risk of not
satisfying demand, we allow the retailer to purchase option
orders, in addition to firm orders, from the supplier through a
call option contract. The presence of both order types allows
the retailer to effectively manage the risk of over-ordering
(through the firm order) and under-ordering (through the
option order). In this context, we explore the supplier’s opti-
mal production policy and the retailer’s optimal order policy
and compare results with that of a simple wholesale price
contract.

Our analytical findings provide several insights. First,
we find that when shortage cost is considered, the retailer’s
optimal total order quantity is not monotonic in the risk
aversion coefficient, which is different from the case without
shortage cost. Second, we find that the retailer’s optimal
total order quantity may be increasing in exercise price when
both risk aversion and shortage cost are considered, which
never happen, when the retailer is risk-neutral or shortage
cost is not considered. Finally, compared to a case when the
retailer only places a firm order (a wholesale price contract),
we find that the introduction of the call option contract is
Pareto-improving for both players and we are able to estab-
lish conditions under which the supply chain is coordinated.
Although the conditions for coordination are complex, they
provide important insight by demonstrating that both the level
of retailer risk aversion and demand uncertainty play a role,
which is not the case when the retailer is risk neutral or
shortage cost is not considered.

These analytical findings generate many managerial impli-
cations. When designing contracts in practice, our results
underscore the need to account for the retailer’s risk aversion.
Although it adds to the supplier’s cost, it is beneficial to
the supplier’s overall profit to invest in flexible production
policies. Not allowing the retailer to place a second order
in the future may benefit the supplier in the short term, but
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providing this flexibility allows the supply chain to more
efficiently match demand. In practice, retailers often face
considerable costs for not satisfying demand. Our research
calls attention to the importance of knowing what these short-
age costs are. When these costs are large, being able to satisfy
demand more often can be crucial for the long term success
of a supply chain.

Given the results of our research, we suggest some poten-
tial directions for future research. First, our work assumed
that both the retailer and supplier are aware of the retailer’s
level of risk aversion. To represent a more realistic sce-
nario, one possible extension of this work is to consider
that the information regarding the retailer’s risk aversion is
asymmetric. This would add to the complexity of the sup-
plier’s contract parameter decisions. Second, we considered
only a two-party channel problem. This framework could be
extended to include multiple suppliers, multiple retailers or
both. Considering multiple players at each level of the sup-
ply chain introduces competition which could lead to useful
results that mimic practice more closely. Third, we have con-
sidered uncertainty in demand, but not uncertainty in supply
which can exist in practice. Given that demand uncertainty
impacts the ability to coordinate the supply chain, it would
be interesting to include supply uncertainty in the frame-
work. Finally, in practice, retailersmay interact with suppliers
over multiple time periods but our model only considers a
single time period. While this simplified scenario provides
insights regarding the role of shortage costs and option orders,
the consideration of multiple time periods could potentially
increase our understanding of the benefits of allowing flexible
ordering. The provision of this option could lead to better
relationships between suppliers and retailers and satisfying
demand more often might impact future shortage costs.

APPENDIX
Proof of Theorem 1: Let g(ξ, q1, q2) = ξ − 1

η
E[ξ −

πr (X , q1, q2)]+,CVaRη(πr (X , q1, q2) = maxξ∈R g(ξ, q1, q2).
For any fixed q1 and q2, we can maximize g(ξ, q1, q2) over
ξ ∈ R. Obviously, we have

g(ξ, q1, q2)

= ξ −
1
η

∫ q1

0
[ξ + (w− v)q1 + oq2 − x(p− v)]+f (x)dx

−
1
η

∫ q1+q2

q1
[ξ+(w− e)q1+oq2 − x(p− e)]+f (x)dx

−
1
η

∫
∞

q1+q2
[ξ + hrx − (p+ hr − w)q1

− (p+ hr − o− e)q2]+f (x)dx.

If ξ ≤ −(w − v)q1 − oq2, then g(ξ, q1, q2) = ξ −
1
η

∫
∞
(p+hr−w)q1+(p+hr−o−e)q2−ξ

hr

[ξ + hrx − (p + hr − w)q1 −

(p + hr − o − e)q2]f (x)dx, and ∂g(ξ,q1,q2)
∂ξ

= 1 −
1
η
[1 − F( (p+hr−w)q1+(p+hr−o−e)q2−ξhr

)]. Set ξ1(q1, q2) =
(p + hr − w)q1 + (p + hr − o − e)q2 − hrF−1(1 −
η). Obviously, if ξ1(q1, q2) ≤ −(w − v)q1 − oq2, i.e,

(p + hr − v)q1 + (p + hr − e)q2 ≤ hrF−1(1 − η),
then ξ1(q1, q2) is the solution of ∂g(ξ,q1,q2)

∂ξ
= 0 for fixed

q1 and q2. Therefore, g(ξ1(q1, q2), q1, q2) = ξ1(q1, q2) −
1
η

∫
∞

(p+hr−w)q1+(p+hr−o−e)q2−ξ
1(q1,q2)

hr

[ξ1(q1, q2)+ hrx − (p+ hr −

w)q1−(p+hr−o−e)q2]f (x)dx. However,
∂g(ξ1(q1,q2),q1,q2)

∂q1
=

p + hr − w > 0 and ∂g(ξ1(q1,q2),q1,q2)
∂q2

= p + hr − o −
e > 0, which indicates that ξ1(q1, q2) is not the solution of
maxξ∈R g(ξ, q1, q2). Thus (p+ hr − v)q1+ (p+ hr − e)q2 >
hrF−1(1− η).

If −(w − v)q1 − oq2 < ξ ≤ (p − w)q1 − oq2, then

g(ξ, q1, q2) = ξ − 1
η

∫ ξ+(w−v)q1+oq2
p−v

0 [ξ + (w−v)q1 + oq2 −
x(p− v)]f (x)dx − 1

η

∫
∞
(p+hr−w)q1+(p+hr−o−e)q2−ξ

hr

[ξ + hrx − (p+

hr − w)q1 − (p + hr − o − e)q2]f (x)dx, and
∂g(ξ,q1,q2)

∂ξ
=

1− 1
η
[F( ξ+(w−v)q1+oq2p−v )+1−F( (p+hr−w)q1+(p+hr−o−e)q2−ξhr

)].

Note that ∂g(ξ,q1,q2)
∂ξ

|ξ=−(w−v)q1−oq2=
1
η
F( (p+hr−v)q1+(p+hr−e)q2hr

) + 1 − 1
η

> 0. If
∂g(ξ,q1,q2)

∂ξ
|ξ=(p−w)q1−oq2= 1 − 1

η
[F(q1) + 1 −

F( hrq1+(p+hr−e)q2hr
)] < 0, then ξ2(q1, q2) satisfy

∂g(ξ,q1,q2)
∂ξ

=

0, and we have F( (p+hr−w)q1+(p+hr−o−e)q2−ξ
2(q1,q2)

hr
)−

F( ξ
2(q1,q2)+(w−v)q1+oq2

p−v ) = 1 − η. ∂g(ξ
2(q1,q2),q1,q2)

∂q1
=

1
η
[(v−

w)F( ξ
2(q1,q2)+(w−v)q1+oq2

p−v )−(1−F( (p+hr−w)q1+(p+hr−o−e)q2−ξ
2(q1,q2)

hr
)(p+

hr −w)) = 1
η
[(v − w)F( ξ

2(q1,q2)+(w−v)q1+oq2
p−v ) + (p + hr −

w)(η − F( ξ
2(q1,q2)+(w−v)q1+oq2

p−v )) = 1
η
[(p + g − w)η −

(p + g − v)F( ξ
2(q1,q2)+(w−v)q1+oq2

p−v )). ∂g(ξ2(q1,q2),q1,q2)
∂q2

=

1
η
[−oF( ξ

2(q1,q2)+(w−v)q1+oq2
p−v ) +

(1 − F( (p+hr−w)q1+(p+hr−o−e)q2−ξ
2(q1,q2)

hr
)(p + hr − o −

e)) = 1
η
[−oF( ξ

2(q1,q2)+(w−v)q1+oq2
p−v ) + (p + hr − o −

e)(η − F( ξ
2(q1,q2)+(w−v)q1+oq2

p−v )) = 1
η
[(p + g − o − e)η −

(p + g − e)F( ξ
2(q1,q2)+(w−v)q1+oq2

p−v )). Clearly, there does

not exist ξ2(q1, q2) which satisfies both ∂g(ξ2(q1,q2),q1,q2)
∂q1

=

0 and ∂g(ξ2(q1,q2),q1,q2)
∂q2

= 0. Thus 1 − 1
η
[F(q1) + 1 −

F( hrq1+(p+hr−e)q2hr
)] > 0.

If (p − w)q1 + (p − o − e)q2 < ξ , then g(ξ, q1, q2) =
ξ− 1

η

∫ q1
0 [ξ+(w−v)q1+oq2−x(p−v)]f (x)dx− 1

η

∫ q1+q2
q1

[ξ+
(w−e)q1+oq2−x(p−e)]f (x)dx− 1

η

∫
∞

q1+q2
[ξ+hrx−(p+hr−

w)q1−(p+hr−o−e)q2]f (x)dx, and
∂g(ξ,q1,q2)

∂ξ
= 1− 1

η
< 0.

If (p − w)q1 − oq2 < ξ ≤ (p − w)q1 + (p − o − e)q2,
then g(ξ, q1, q2) = ξ − 1

η

∫ q1
0 [ξ + (w − v)q1 + oq2 −

x(p − v)]f (x)dx − 1
η

∫ ξ+(w−e)q1+oq2
p−e

q1 [ξ + (w− e)q1 + oq2 −
x(p− e)]f (x)dx − 1

η

∫
∞
(p+hr−w)q1+(p+hr−o−e)q2−ξ

hr

[ξ + hrx − (p+

hr − w)q1 − (p + hr − o − e)q2]f (x)dx, and
∂g(ξ,q1,q2)

∂ξ
=

1− 1
η
[F( ξ+(w−e)q1+oq2p−e )+1−F( (p+hr−w)q1+(p+hr−o−e)q2−ξhr

)].

Note that ∂g(ξ,q1,q2)
∂ξ

|ξ=(p−w)q1−oq2=
1
η
F( hrq1+(p+hr−e)q2hr

)−
1
η
[F(q1) + 1 − 1

η
> 0 and ∂g(ξ,q1,q2)

∂ξ
|ξ=(p−w)q1−oq2=
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1 − 1
η

< 0. Therefore, there must exist ξ3(q1, q2)

which satisfies ∂g(ξ,q1,q2)
∂ξ

= 0, i.e, ξ3(q1, q2) =

argmaxξ∈R g(ξ, q1, q2), then CVaRη(πr (X , q1, q2) =

g(ξ3(q1, q2), q1, q2). To facilitate analysis, we further denote
A = F(q1), B = F( ξ

3(q1,q2)+(w−e)q1+oq2
p−e ) and C =

F( (p+hr−w)q1+(p+hr−o−e)q2−ξ
3(q1,q2)

hr
), then C − B = 1 − η.

Taking the first partial derivative of g(ξ3(q1, q2), q1, q2) with
respect to q1 and q2, we have ∂g(ξ3(q1,q2),q1,q2)

∂q1
=

1
η
[(v −

e)A + (v − w)B + (p + hr − w)(1 − C)] = −1
η
[(e − v)A +

(p + hr − v)B + (p + hr − w)η] and ∂g(ξ3(q1,q2),q1,q2)
∂q2

=

1
η
[−oB + (p + hr − o − e)(1 − C)] = −1η [(p + hr − e)B −

(p+ hr − o− e)η]. Further, taking the first partial derivatives
of ∂g(ξ3(q1,q2),q1,q2)

∂q1
and ∂g(ξ3(q1,q2),q1,q2)

∂q2
with respect to q1

and q2, we have
∂2g(ξ3(q1,q2),q1,q2)

∂q12
=
−1
η
[(e− v)f (F−1(A))+

(p+hr−v)(w−e)
p−e f (F−1(B))] < 0, ∂2g(ξ3(q1,q2),q1,q2)

∂q22
=

−1
η
[ o(p+hr−e)p−e f (F−1(B))] < 0, ∂2g(ξ3(q1,q2),q1,q2)

∂q1∂q2
=

−o(p+hr−v)
(p−e)η f (F−1(B)) and ∂2g(ξ3(q1,q2),q1,q2)

∂q2∂q1
=

−(p+hr−v)(w−e)
(p−e)η f (F−1(B)). With some algebra, we have

∂2g(ξ3(q1,q2),q1,q2)
∂q12

∂2g(ξ3(q1,q2),q1,q2)
∂q22

−
∂2g(ξ3(q1,q2),q1,q2)

∂q1∂q2
∂2g(ξ3(q1,q2),q1,q2)

∂q2∂q1
=

1
η2
[ o(e−v)(p+hr−e)p−e f (F−1(A))f (F−1(B))]>

0, which indicates that g(ξ3(q1, q2), q1, q2) is strictly jointly
concave in q1 and q2. According to the first order optimality
condition, the optimal solution is given below:

∂g(ξ3(q1, q2), q1, q2)
∂q1

=
−1
η

[(e− v)A+ (p+ hr − v)B]−p−hr+w = 0,

∂g(ξ3(q1, q2), q1, q2)
∂q2

=
−1
η

(p+ hr − e)B+ (p+ hr − o− e) = 0.

Combined with C − B = 1 − η, we obtain A = F(q1) =
(e+o−w)η

e−v , B=F( ξ
3(q1,q2)+(w−e)q1+oq2

p−e ) = (p+hr−o−e)η
(p+hr−e)

andC=

F( (p+hr−w)q1+(p+hr−o−e)q2−ξ
3(q1,q2)

hr
) = 1 − −oη

(p+hr−e)
. Further,

we can obtain optimal firm order quantity q∗1 = F−1(A) and
optimal total order quantity q∗ = q∗1 + q∗2 =

1
p+hr−e

[(p −
e)F−1(B) + hrF−1(C)]. Since q∗2 = q∗ − q∗1, we can derive
q∗2 =

1
p+hr−e

[(p − e)(F−1(B) − F−1(A)) + hr (F−1(C) −
F−1(A))].

Proof of Theorem 2: From Theorem 1, q∗1 = F−1(A)
and q∗ = 1

p+hr−e
[(p−e)F−1(B)+hrF−1(C)]. We can obtain

dq∗1
dη =

e+o−w
(e−v)f (F−1(A))

> 0, and

dq∗

dη
=

p− e
p+ hr − e

1
f (F−1(B))

p+ hr − o− e
p+ hr − e

−
hr

p+ hr − e
1

f (F−1(C))
o

p+ hr − e

=

[
(p−e)(p+hr−o−e)

f (F−1(B))
−

ohr
f (F−1(C))

]
1

(p+hr−e)2

=
[(p−e)(p+hr−o−e)f (F−1(C))−ohr f (F−1(B))]

f (F−1(C))f (F−1(B))(p+hr−e)2

=
M (hr , η)

f (F−1(C))f (F−1(B))(p+hr−e)2
,

where M (hr , η) = (p − e)(p + hr − o − e)f (F−1(C)) −
ohr f (F−1(B)). Since (p + hr − e)2f (F−1(C))f (F−1(B)) is
always positive, it is clear that ifM (hr , η) > 0, then dq∗

dη > 0.

If M (hr , η) = 0, then dq∗

dη = 0, otherwise, dq
∗

dη < 0.
Proof of Theorem 3: From Theorem 1, we can obtain

q∗1 = F−1(A) and q∗ = 1
p+hr−e

[(p− e)F−1(B)+ hrF−1(C)].

Note that q∗1 is independent of hr , so
dq∗1
dhr
= 0, and q∗1 is

constant in hr . The derivative of q∗ with respect to hr is
dq∗

dhr
=

1
(p+hr−e)2

[ oη
p+hr−e

( p−e
f (F−1(B))

+
hr

f (F−1(C))
)+ (p− e)(F−1(C)−

F−1(B))]. SinceC−B = 1−η > 0, thenF−1(C)−F−1(B) >
0. It is clear that oη

p+hr−e
( p−e
f (F−1(B))

+
hr

f (F−1(C))
) > 0 and p > e.

It is easy to obtain that dq
∗

dhr
> 0. Since

dq∗2
dhr
=

dq∗

dhr
−

dq∗1
dhr

, then
dq∗2
dhr
=

dq∗

dhr
> 0, both q∗ and q∗2 are all strictly increasing

in hr .
Proof of Corollary 1:

(a) By Theorem 1, we have
dq∗1
dw =

−η

(e−v)f (F−1(A))
< 0,

which implies that q∗1 is decreasing in w, while q∗ is inde-
pendent of w, q∗ is constant in w.
(b) By taking the derivative of q∗1 and q

∗ with respect to o,

we have
dq∗1
do =

η

(e−v)f (F−1(A))
> 0, i.e, q∗1 is increasing in o,

while dq∗

do =
−η

(p+hr−e)2
[ p−e
f (F−1(B))

+
hr

f (F−1(C))
] < 0, then q∗ is

decreasing in o.
(c) By taking derivative of q∗1 and q∗ with respect

to e, respectively, we have
dq∗1
de =

η(w−o−v)
(e−v)2f (F−1(A))

and
dq∗

de =
1

(p+hr−e)2
[hr (F−1(c)− F−1(B))−

oη
p+hr−e

( p−e
f (F−1(B))

+

hr
f (F−1(C))

)]. Since w > o + v,
dq∗1
de > 0, which

means that q∗1 is decreasing in e. Since H (hr , η) =
hr [F−1(C)−F−1(B)]−

(p−e)oη
(p+hr−e)f (F−1(B))

−
ohrη

(p+hr−e)f (F−1(C))
,

dq∗

de =
1

(p+hr−e)2
H (hr , η),

dq∗

de is related to H (hr , η)’s sign.

If H (hr , η) > 0, then dq∗

de > 0, and q∗ is increasing in e,
if H (hr , η) = 0, then dq∗

de = 0, and q∗ is constant in e,
otherwise, dq

∗

de < 0, and q∗ is decreasing in e.
Proof of Corollary 2: The demand is assumed to be

normally distributed with mean E(X ) = µ and the standard
deviation 2

√
D(X ) = σ . 8 and φ denote the distribution and

probability density functions of the standard normal distri-
bution, respectively. Set z1 = 8−1(A) = 8−1( (e+o−w)ηe−v ),
z2 = 8−1(B) = 8−1( (p+hr−o−e)ηp+hr−e

), z3 = 8−1(C) =
8−1(1− oη

p+hr−e
), q∗B = F−1(B) and q∗C = F−1(C), then we

can obtain q∗1 = µ+ σ z
1, q∗B = µ+ σ z

2 and q∗C = µ+ σ z
3,

where z1, z2 and z3 are the optimal quantities.
(a) Since q∗1 = µ + σ z1 = µ + σ8−1( (e+o−w)ηe−v ), it is

obvious that if 2(e+o−w)η > e− v, then q∗1 is increasing in
σ , and q∗1 > µ; if 2(e+o−w)η = e−v, then q∗1 is constant in
σ , and q∗1 = µ; otherwise, q

∗

1 is decreasing in σ , and q
∗

1 < µ.
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(b) Since q∗B = F−1(B) = µ + σ z2 and q∗C = F−1(C) =
µ + σ z3, combined with q∗2 = q∗ − q∗1, it is easy to obtain

q∗2 =
(p−e)q∗B+hrq

∗
C

p+hr−e
. That is, q∗2 = µ+ σ

(p−e)(z2−z1)+hr (z3−z1)
p+hr−e

.

Since z2 > z1 and z3 > z1, (p−e)(z2−z1)+hr (z3−z1)
p+hr−e

> 0, which
implies that q∗2 is strictly increasing in σ , and q∗2 > µ. Thus
the proof is complete.

Proof of Theorem 4: According to Equation (2), with
some algebra, we have πs(Q∗) = q∗ + (w − o)q∗1 + (e −
c)q∗ − eq∗1 − (e − v)

∫ q∗
q∗1
F(x)dx. Further, πs(Q∗) = (o +

e − c)q∗ + (w − o − e)q∗1 + (e − v)
∫ q∗1
q∗ F(x)dx. By taking

the derivative of πs(Q∗) with respect to w, we have
dπs(Q∗)
dw =

q∗1+[(w−o−e)+(e−v)F(q
∗

1)]
dq∗1
dw = q∗1+(o+e−w)(η−1)

dq∗1
dw .

Since w < o + e, η < 1 and
dq∗1
dw < 0, then dπs(Q∗)

dw > 0, i.e,
the optimal expected profit of the supplier is increasing in w.

Proof of Theorem 5: According to the proof of Theo-
rem 4, πs(Q∗) = (o + e − c)q∗ + (w − o − e)q∗1 + (v −
e)
∫ q∗
q∗1
F(x)dx.By taking the derivative of πs(Q∗) with respect

to hr , we have dπs(Q∗)
dhr

= [o + e − (e − v)F(q) − c] dq
∗

dhr
.

By Theorem 3, dq∗

dhr
> 0, so dπs(Q∗)

dhr
’s sign is related to

o + e − (e − v)F(q) − c. If o + e − (e − v)F(q∗) > c, then
dπs(Q∗)
dhr

> 0. If o + e − (e − v)F(q∗) = c, then dπs(Q∗)
dhr

= 0.

Otherwise, dπs(Q
∗)

dhr
< 0.

Proof of Lemma 1: Let g(ξ, q0) = ξ − 1
η
E[ξ −

πr (X , q0)]+, then CVaRη(πr (X , q0)) = maxξ∈R g(ξ, q0). For
any fixed q0, we first maximize g(ξ, q0) over ξ ∈ R. Obvi-
ously, we have

g(ξ, q0) = ξ −
1
η

∫ q0

0
[ξ + (w− v)q0 − x(p− v)]+f (x)dx

−
1
η

∫
∞

q0
[ξ + hrx − (p+ hr − w)q0]+f (x)dx.

If ξ ≤ −(w− v)q0, then g(ξ, q0) = ξ − 1
η

∫
∞
(p+hr−w)q0−ξ

hr

[ξ +

hrx − (p + hr − w)q0]f (x)dx, and
∂g(ξ,q0)
∂ξ

= 1 − 1
η
[1 −

F( (p+hr−w)q0−ξhr
)]. Set ξ0(q0) = (p+ hr −w)q0− hrF−1(1−

η). Obviously, if ξ1(q0) ≤ −(w − v)q0, i.e, (p + hr −
v)q0 ≤ hrF−1(1− η), then ξ0(q0) is the solution of equation
∂g(ξ,q0)
∂ξ
= 0 for fixed q0. Therefore, g(ξ0(q0), q0) = ξ0(q0)−

1
η

∫
∞

(p+hr−w)q0−ξ
0(q0)

hr

[ξ0(q0) + hrx − (p + hr − w)q0]f (x)dx.

However, ∂g(ξ
0(q0),q0)
∂q0

= p + hr − w > 0, which indicates
that ξ0(q0) is not the solution of maxξ∈R g(ξ, q0). Thus (p +
hr − v)q0 > hrF−1(1− η).

If (p − w)q0 < ξ , then g(ξ, q0) = ξ − 1
η

∫ q0
0 [ξ + (w −

v)q0− x(p− v)]f (x)dx − 1
η

∫
∞
(p+hr−w)q0−ξ

hr

[ξ + hrx − (p+ hr −

w)q0]f (x)dx, and
∂g(ξ,q0)
∂ξ
= 1− 1

η
< 0.

If −(w − v)q0 < ξ ≤ (p − w)q0, then g(ξ, q0) =

ξ − 1
η

∫ ξ+(w−v)q0
p−v

0 [ξ + (w − v)q0 − x(p − v)]f (x)dx −
1
η

∫
∞
(p+hr−w)q0−ξ

hr

[ξ + hrx − (p + hr − w)q0]f (x)dx, and

∂g(ξ,q0)
∂ξ

= 1 − 1
η
[F( ξ+(w−v)q0p−v ) + 1 − F( (p+hr−w)q0−ξhr

)].

It is noted that ∂g(ξ,q0)
∂ξ

|ξ=−(w−v)q0= 1 − 1
η
[1 −

F( (p+hr−w)q0−ξhr
)] > 0 and ∂g(ξ,q0)

∂ξ
|ξ=(p−w)q0= 1 −

1
η

< 0. Therefore, there must exist ξ
′

(q0) satisfying
∂g(ξ,q0)
∂ξ

= 0, i.e, ξ
′

(q0) = argmaxξ∈R g(ξ, q0). Then

CVaRη(πr (x, q0)) = g(ξ
′

(q0), q0). To facilitate analysis,

denote B
′

= F( ξ
′
(q0)+(w−v)q0

p−v ) and C
′

= F( (p+hr−w)q0−ξ
′
(q0)

hr
),

then C
′

− B
′

= 1 − η. Taking the first and second par-
tial derivatives of g(ξ

′

(q0), q0) with respect to q0, we have
∂g(ξ

′
(q0),q0)
∂q0

=
1
η
[(v − w)B

′

+ (p + hr − w)(1 − C)] =
−1
η
[(p + hr − v)B

′

− (p + hr − w)η] and ∂2g(ξ
′
(q0),q0)

∂2q0
=

−1
η
[ (p+hr−v)(w−v)p−v f (F−1B

′

)] < 0, which indicates that

g(ξ
′

(q0), q0) is strictly jointly concave in q0. According to
the first order optimality condition, the optimal solution is
∂g(ξ

′
(q0),q0)
∂q0

=
−1
η
[(p+hr − v)B

′

− (p+hr −w)η] = 0. Com-

bining C
′

− B
′

= 1− η, we obtain B
′

= F( ξ
′
(q0)+(w−v)q0

p−v ) =
(p+hr−w)η
(p+hr−v)

and C
′

= F( (p+hr−w)q0−ξ
′
(q0)

hr
) = 1− (w−v)η

(p+hr−v)
. Fur-

ther, we can obtain optimal order quantity q∗ = 1
p+hr−v

[(p−

v)F−1(B
′

)+ hrF−1(C
′

)].
Proof of Theorem 6: From Theorem 1 and Lemma 1,

B = (p+hr−o−e)η
p+hr−e

, C = 1 − oη
p+hr−e

, B
′

=
(p+hr−w)η
p+hr−v

and C
′

= 1 − (w−v)η
p+hr−v

. Since o <
(w−v)(p+hr−e)

p+hr−v
, then

B = (p+hr−o−e)η
p+hr−e

= η −
oη

p+hr−e
> η −

(w−v)η
p+hr−v

=

(p+hr−w)η
p+hr−v

= B
′

and C = 1 − oη
p+hr−e

> 1 − (w−v)η
p+hr−v

= C
′

.

It follows that F−1(B) > F−1(B
′

) and F−1(C) > F−1(C
′

).
Since 1

p+hr−e
[(p − e)F−1(B) + hrF−1(C)] > 1

p+hr−v
[(p −

v)F−1(B) + hrF−1(C)] = 1
p+hr−e

[(p − e)F−1(B
′

) +

hrF−1(C
′

)], then q∗ > q∗0. Since B
′

< C
′

, then F−1(B
′

) <
F−1(C

′

), and q∗0 =
1

p+hr−v
[(p− v)F−1(B

′

)+ hrF−1(C
′

)] >

F−1(B
′

). SinceA = (e+o−w)η
e−v <

(e−w)η
e−v +

η
e−v

(w−v)(p+hr−e)
p+hr−v

<

η −
(w−v)η
p+hr−v

=
(p+hr−w)η
p+hr−v

= B
′

then F−1(A) < F−1(B
′

).

It follows that q∗0 > F−1(B
′

) > F−1(A) = q∗1, so
q∗ > q∗0 > q∗1.

Proof of Theorem 7: Since both q∗1 and q∗2 are the opti-
mal solutions of CVaRη(πr (X , q1, q2)), we can easily obtain
that CVaRη(πr (X , q∗1, q

∗

2)) > CVaRη(πr (X , q1, 0)), where
CVaRη(πr (X , q1, 0)) is the retailer’s risk measure with the
wholesale price-only contract. Obviously, the retailer with
only a wholesale price contract is a special case of the retailer
with the portfolio contract. Thus CVaRη(πr (X , q∗1, q

∗

2)) >
CVaRη(πr (X , q∗0)).

Proof of Theorem 8: From the proof of Theorem 4,
πs(Q∗) = (o+ e− c)q∗+ (w−o− e)q∗1+ (e− v)

∫ q∗1
q∗ F(x)dx.

Since πs(Q∗0) = (w − c)q∗0, then πs(Q
∗) − πs(Q∗0) = (o +

e− c)q∗ + (w− o− e)q∗1 + (e− v)
∫ q∗1
q∗ F(x)dx − (w− c)q∗0.

Clearly, from Theorem 1 and Corollary 1(a), q∗2 = q∗ − q∗1
and

dq∗2
dw > 0. Assuming w = w0, then q∗2 = 0, which

means that if wholesale price w is a sufficiently small, then
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the retailer orders products only with the wholesale price
contract. It follows that if w > w0, then q∗2 > 0. Otherwise,
q∗2 = 0, q∗1 = q∗0, and πs(Q

∗) = πs(Q∗0). By taking the
derivative of πs(Q∗) − πs(Q∗0) with respect to w, we have
dπs(Q∗)
dw |w=w0 −

dπs(Q∗0)
dw |w=w0= q∗1 + (o + e − w)(η −

1)
dq∗1
dw − q∗0 − (w − c)

dq∗0
dw . Since

dq∗1
dw < 0 and

dq∗0
dw < 0,

then (η − 1)
dq∗1
dw > 0 and −(w − c)

dq∗0
dw > 0, it follows that

dπs(Q∗)
dw |w=w0 −

dπs(Q∗0)
dw |w=w0> 0. Since w > w0, we obtain

that πs(Q∗) > πs(Q∗0).
Proof of Theorem 9: Since Q∗ = q∗ and the opti-

mal production quantity of the SC is q∗c = F−1
(
p+hr−c
p+hr−v

)
,

to coordinate the SC, it is sufficient for the supplier to offer
wholesale price and call option portfolio contracts to motivate
the retailer to pursue total order quantity q∗c . FromTheorem 1,
the retailer’s optimal total order quantity is q∗ = 1

p+hr−e
[(p−

e)F−1(B)+ hrF−1(C)], which implies that when Q∗ = q∗ =
q∗c , the SC can be coordinated by portfolio contracts. That is,

1
p+hr−e

[(p − e)F−1(B) + hrF−1(C)] = F−1
(
p+hr−c
p+hr−v

)
, i.e,

(p+ hr − e)F−1(D) = (p− e)F−1(B)+ hrF−1(C).
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