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ABSTRACT This paper investigates the problem of distributed constrained consensus of utilities for multiple
networked nodes, which is essentially challenging in view of the fact that local constraints may hinder the
global optimization across the network. Focusing on this problem, a generalized framework is developed via a
self evaluation approach, in which each node uses utility evaluations to update individual states by interacting
with neighbors only. Following the framework, the distributed constrained consensus algorithms is derived,
with theoretical analyses presented to show the convergence and stability. In addition, an approximation
method is proposed as well for ease of engineering implementation. Finally, illustrative examples are
provided and analyzed to substantiate the efficacy of the proposed algorithm.

INDEX TERMS Constrained consensus, distributed optimization, heterogeneous constraints, self-
evaluation, utility consensus.

I. INTRODUCTION
Networked distributed systems have been attracting great
interests due to the advantage that a group of simple net-
worked nodes working cooperatively can perform the same
applications as a complex mono system. For such systems,
performance maximization (or cost minimization) arises in
varieties of applications, such as resource allocation, task
scheduling, burden distribution, distributed estimation and
motion planning [1]–[11]. In most instances, the problem of
performance maximization can be equivalent to the problem
of constrained consensus. As defined by Problem Eq. (1),
the objective is to coordinate a series of local utility func-
tions known to individual nodes towards consensus under
constraints. Recently, increasing attention has been focused
on this problem, among which distributed algorithms are
considered to be more feasible and flexible than centralized
ones as network scales grow.

Earlier research mainly concentrates on unconstrained
consensus problems, where states of nodes are allowed to
be processed arbitrarily without any constraints, to study
fundamental rules for guaranteeing information among nodes
to achieve a consensus in a distributed manner [1], [12]–[14].
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Convergence characteristics are also analyzed under vari-
ous conditions, such as higher order dynamics, time-varying
topologies, information delays, communication qualities, and
so on [15]–[18]. Research reveals that neighboring interaction
and local agreement can be utilized as important principles
for global consensus.

In more realistic applications restricted by actual condi-
tions, states of nodes cannot get infinitely large or infinitely
small, and they are subject to constraints in normal. The pres-
ence of local constraints may significantly hinder the interac-
tion of nodes in traditional distributed algorithms and make
optimization fall into local minima. To this end, the problem
of constrained consensus arises and becomes a research chal-
lenge. In [2], a projected consensus algorithm is presented for
the convex constrained optimization where the state of each
node is restricted to lie in a distinct convex set. For achieving
a constrained consensus, each node is designed to optimize
its state by combining the states received from its neigh-
bors, by taking a subgradient step to minimize its objective
function, and by projecting on its individual constraint set.
It is shown that, with a properly-designed stepsize that con-
verges to zero fast enough, the states can be refined towards
an optimal solution. Based on the subgradient method,
some excellent distributed optimization algorithms are devel-
oped from varieties of perspectives, working on improving

125122 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8929-9920
https://orcid.org/0000-0002-2262-969X


X. Wang et al.: Distributed Constrained Consensus of Utilities via a Self Evaluation Approach

convergence accuracy, relaxing stepsize requirement, accel-
erating convergence rate and so on [19]–[23]. In [24], [25],
a stochastic theory based projection method with Gaussian
assumptions is also used to evaluate ambiguous local utilities
instead of exact gradients. These works extend the algorithm
conditions to milder ones. However, the subgradient based
algorithms can hardly guarantee a conservative summation
of the states, because the summation of state derivations is
difficult to keep unbiased. Besides, the stepsizes require an
elaborately design for both the convergence and the equilib-
rium, which in turn destroys the algorithm ability to respond
to dynamical problem inputs. The primal-dual idea, which
reformulates the primal constrained consensus problem prop-
erly to a dual unconstrained one, can be borrowed to develop
distributed algorithms. In [6], [26], [27], distributed subgradi-
ent algorithms for reformulated dual problems are designed.
In [9], a distributed algorithm is proposed based on a gradient
push-sum method to solve an equivalently dual problem
for constrained optimization. Although excellent work has
been presented to solve constrained consensus problems,
these algorithms cannot be used to solve Problem Eq. (1)
because their asymmetric formed equations will cause the
nonconservation of the state summation. Meanwhile, they
often require an elaboratedly-designed sequence of stepsizes
to guarantee convergence. This, however, increases the dif-
ficulty in designing algorithms, imposes a constraint on the
algorithm universality, and loses the rapid responsibility to
the problems with varying parameters. The event-triggered
strategy is used in some research to solve a network optimiza-
tion problem, with requiring that all states be strictly equal to
each other [28], [29]. Each node in this strategy refines itself
according to the sample-data that is periodically triggered to
update. This strategy works well and is inspiring, but it has
not considered the individual constraints or the summation
constraint. As an important branch, game theory based algo-
rithms are often used for distributed optimization by means
of neighboring negotiation. However, global convergence is
not guaranteed by these algorithms, and only Nash equilibria
can be obtained [30]. To the best knowledge of the authors,
the most effective algorithms for solving our problem are the
barrier-based Lagrange methods [8], [31]. In [8], a barrier
function is employed to develop a constrained consensus
algorithm with constraints of lower boundaries. In [31],
likewise, a so-called θ− logarithmic barrier is introduced to
reformulate the problem and then a corresponding algorithm
based on the distributed interior point is proposed for the dual
problem by using the Lagrange function (see i.e., Eq. (18)). It
is shown that, with a properly increasing parameter θ , consen-
sus can be almost achieved with the states strongly restricted
within constraints. However, this logarithmic barrier based
algorithm shows a deep sensitivity to stepsizes and boundary
detections. Meanwhile, the reformulated problem imposes an
additional constraint on the variable positivity of logarithmic
functions. However, once the states are overshot and become
infeasible (i.e., running out of the constraints) in a single iter-
ation, the algorithm will run out immediately and all the rest

iterations will go wrong. Besides, even given perfect param-
eters and conditions, these algorithms can never achieve
the exact global optimum, because the exact global opti-
mum is the algorithm singular point that is not allowed by
mathematics.

We should point out that, for the sake of brevity, our survey
of previous work here is short of complete and only contains
the previous work related to our work. For a more complete
survey we refer to [22], [26], [31] and the references therein.

In this paper, we consider a novel, concise, and nature-
inspired framework along with a derived algorithm for solv-
ing a class of general state-constrained consensus problems in
a fully distributed way. As a further research of the previous
work [32] that only targets the simplified linear homogeneous
problem of state consensus under upper bounded constraints,
this paper solves the more general problem where nonlinear
heterogeneous utilities are allowed and lower bounded con-
straints exist as well. This makes sense because most similar
problems in actual life are not ideally linear or homogeneous.
Although this extension may seem trivial, the nontrivial nov-
elty lies exactly in the improved uniform framework that
guarantees global convergence, and in the ingenious way
by which we package the nonlinear heterogeneous utilities
into the uniform framework. In particular, the significant
contributions are threefold.

1) A novel principle following ‘‘the law of connected ves-
sels’’ in Physics is developed to help design distributed
algorithms, where no Lagrange functions or dual meth-
ods are needed to reformulate the primal problem, and
where a self evaluation approach is proposed to guide
nodes to interact. This principle has great potential to
inspire and simplify the algorithm designs for simi-
lar problems. Furthermore, the proposed principle is
extended to a mild condition so that no time-varying
global information is required and all parameters are
invariant, making the principle fully distributed and be
able to respond to the problems with varying inputs.

2) Existing related algorithms have kinds of flaws that
hinder their applications. They may suffer from step-
sizes (see e.g., [2], [19]–[25], [31]), infeasible solu-
tions and algorithm errors (see e.g., [6], [9], [26], [27],
[31]), and local optima (see e.g., [8], [31]). The algo-
rithm proposed in this paper can overcome all these
drawbacks. Firstly, our continuous formed algorithm
is free of stepsizes. But even if our algorithm is trans-
formed to a discrete form by common discretemethods,
no sequence of variable stepsizes will be required to
guarantee convergence, and a proper constant stepsize
will work. Therefore, the effectiveness of our algo-
rithm is time-invariant. Secondly, infeasible overshot
solutions would never make our algorithm run out,
because our algorithm has no singular point. Thirdly,
our algorithm can achieve an exact global optimum.
By using our algorithm, any local optimum will be
unstable, and the solution will converge to the global
optimum.
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3) To handle the noncontinuous switching problem at
boundaries of constraints, which is a common issue that
embarrasses numerical calculations and engineering
applications severely (see e.g., [8], [31]), an approxi-
mation method is proposed to help nodes evaluate local
utilities in a smooth way, weakening the implementa-
tion requirement of the algorithm greatly.

The remainder of this paper is organized as follows.
In Section II, notations, constraints definitions and the prob-
lem formulation are introduced. In Section III, the novel
framework of distributed constrained consensus is proposed,
which is inspired by ‘‘the law of connected vessels’’.
In Section IV, Algorithm 1 is proposed for utility consen-
sus with state constraints, and an approximation method is
provided as well. In Section V, illustrative examples and the
comparison with the benchmark algorithm are given. Finally,
Section VI concludes this paper.

II. PRELIMINARIES
It is common to model the information interaction among
networked nodes by a graph G, which can be defined by a
2-tuple pair (N , E). N = {1, . . . , n} is a finite nonempty
node set and E ⊂ N × N is an edge set of ordered pairs
of nodes. An edge (i, j) in a directed graph means that node j
can receive information from node i, but not necessarily vice
versa. The adjacency matrix A = [aij]n×n of a weighted
directed graph is defined as aii = 0 and aij > 0 if (j, i) ∈ E ,
where i 6= j. Specially, an undirected graph is said to be
balanced when aij = aji holds for any i 6= j. Node j is said
to be one neighbor of node i if aij > 0. Moreover, a neighbor
set Ni is defined to contain all the neighbors of node i, such
that aij > 0 holds for any j ∈ Ni, ∀i ∈ N .
A directed graph is said to contain a spanning tree if there

is a path consisting of a set of sequential edges that start
from a certain node in the graph and connect all the other
nodes. A connected graph is an undirected graph containing
a spanning tree so that any two nodes are connected to each
other by paths. A component of an undirected graph G is a
subgraph in which any two nodes are connected to each other
nodes, and which is connected to no additional nodes in G.
For a connected undirected graph, cut-vertices refer to a set
of nodes whose removal increases the number of components.

Denote by xi = xi(t) the state of node i, and by fi = fi(xi)
the corresponding utility. The assignment of states of all the
nodes is denoted by X = X (t) = {x1(t), · · · , xn(t)}. For
practical problems, three constraints are assumed as follows
in this paper, and the assignment feasibility is defined.
Constraint 1 (Lower boundedness): States are assumed to

be constrained by a series of constant lower bounds {xi,MIN }.
i.e., for all t ≥ 0, xi ≥ xi,MIN holds for any i ∈ N . Specially,
we only focus on the case where xi,MIN ≥ 0, because any case
with xi,MIN < 0 can always be transformed to it after being
translated/shifted by proper offsets.
Constraint 2 (Upper boundedness): Capacities of nodes

are assumed to be finite and constrained by a series of

constant upper bounds {xi,MAX }, i.e., for all t ≥ 0, xi ≤
xi,MAX holds for any i ∈ N . Note that xi,MAX ≥ xi,MIN ≥ 0.
Constraint 3 (Summation immutability): The summation

of states across the entire network is required to be conserva-
tive and has immutability, i.e., if

∑
i∈N xi(0) = xD, then for

∀t > 0,
∑

i∈N xi(t) ≡ xD.
Definition 1 (Assignment feasibility): An assignment X is

said to be feasible, only if the states of nodes are lower-
bounded, upper-bounded and summation immutable simul-
taneously. Define XF as the set that contains all the feasible
assignments (for a certain problem).

Therefore, the constrained consensus problem can be con-
cluded as finding/optimizing a feasible assignment target-
ing the consensus of utilities under constraints, i.e.,

Optimize X ∗ = argmin
X∈XF

∑
i,j∈N
|fi − fj| (1a)

s.t.
∑
i∈N

xi = xD; xi,MIN ≤ xi ≤ xi,MAX , ∀i ∈ N . (1b)

In this paper, for each node i, the node utility fi is assumed
to be a strictly monotonic differentiable function of xi in the
definition domain, with ∂fi

∂xi
> 0.

III. FRAMEWORK OF DISTRIBUTED OPTIMAL
CONSTRAINED CONSENSUS
A. INSIGHT AND INSPIRATION
Ordinary unconstrained consensus would fail in optimizing
allocation problems with constraints. To explain the rea-
son behind this, Fig. 1 is taken as an example to high-
light the effects of the presence of local constraints, where
xA = xB = · · · = xE = 2 6= xG = xH = · · · =
xL = 100, xF = xF,MAX = 1. The mechanism in ordinary
unconstrained consensus algorithms is to drive the state of
each node towards the mean value of its neighbors. However,
since xF has reached its boundary xF,MAX , xF cannot increase,
although xF < xE and xF < xI. As a result, xI cannot
decrease, either (otherwise, the conservative summation will
be destroyed). Likewise, xE cannot increase. It is then clear

FIGURE 1. Example of a constrained resource allocation. Suppose all
nodes have unconstrained boundaries except for node F, whose upper
boundary is constrained by xF,MAX = 1. Initial states are given as
xA = xB = · · · = xE = 2, xF = 1, and xG = xH = · · · = xL = 100. It can be
seen that node F acts as a cut-vertex that cuts the graph into two
independent components, and significantly blocks the interaction across
it under ordinary unconstrained consensus algorithms. As a result,
the left and right components will achieve consensus on two local
agreements separately, but cannot achieve a global optimization.
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that the consensus is trapped in a local minimum even if the
two components on both sides of node F have not achieved
a global agreement. In general, since the flow across the net-
workmay be blocked by the saturated nodes that have reached
their boundaries andwhose states can not increase or decrease
anymore, ordinary algorithms would only lead the optimiza-
tion to local optima.

Towards global optimization, a novel principle of inter-
action is required. As a natural law, ‘‘the law of connected
vessels’’ in Physics is enlightening in developing the princi-
ple. As shown in Fig. 2, the connected-vessel system consists
of three vessels, among which only B is covered by a lid
while neither A nor C is. Suppose that the vessel B is full
of water initially. Although water tends to flow from high
level to low level in normal, the water in Fig. 2 will actually
flow from B towards C, regardless of that the water level
in B is lower than that in C. As a matter of fact, the water
pressure in B has no relation with its own water level, but
is equivalent to that in A, which is the maximal water level
of the system. Therefore, the example system would get a
constrained consensus finally. Inspired by this natural law,
one can design a novel framework.

FIGURE 2. A three-connected-vessel system with the vessel B being
covered by a lid. Given such an initial state, the water will flow across B,
along the direction from A to C.

B. FUNDAMENTAL PRINCIPLE
The nature-inspired principle for solving constrained consen-
sus can be concluded as follows

1) Each node should update its state not by comparing its
utility with those of neighbors, but by comparing the
‘‘utility evaluations’’.

2) For every individual node, its utility evaluation should
be such a piecewise function that the evaluation equals
to the its utility only when the state of node doesn’t
touch the boundaries of constraints, and equals to some
properly-designed values otherwise.

C. NOVEL UNIFORM FRAMEWORK
The above principle could yield various frameworks for solv-
ing constrained consensus problems. In this part, we propose
one such framework as the basis of the formal algorithm.

First of all, we simplify Problem Eq. (1) by assuming
fi = xi, and then the full problem will be considered in
Section IV.

Before going on, some denotations are made for concision.
With respect to the relationship between the state and the
boundaries, nodes are clustered into three dynamic status sets,
termed as N�, N	, and N⊕, respectively:
• i ∈ N� if xi,MIN < xi < xi,MAX ,
• i ∈ N	 if xi = xi,MIN , and
• i ∈ N⊕ if xi = xi,MAX .
Denote the evaluation of xi by x̂i for each node. Refer

to the (time-varying) maximal state among nodes as x̄, and
to the minimal state among nodes as x, respectively, i.e.,
x̄ = max{x1, x2, . . . , xn}, and x = min{x1, x2, . . . , xn}.
Temporarily, x̄ and x are assumed to be available to every
node. With this assumption, each node obtains its evalua-
tion x̂i locally following

x̂i =


x if i ∈ N	
xi if i ∈ N�
x̄ otherwise (i ∈ N⊕)

(2)

The framework is then proposed as

ẋi = −γ
∑
j∈Ni

aij(x̂i − x̂j) (3)

where γ is a positive scaler.
To see the convergence of the framework, some lemmas

are needed.
Lemma 1: Framework Eq. (3) keeps lower boundedness,

i.e., if xi(0) ≥ xi,MIN for any i ∈ N , then for any t > 0,
xi(t) ≥ xi,MIN .

Proof: Suppose that, without loss of generality, the node
setN	 is empty until a certain moment t = Tk . Therefore, for
any time t < Tk , all nodes i ∈ N keep lower boundedness.
At t = Tk , it follows from Eq. (2) that x̂i = x holds for

every i ∈ N	 since xi = xi,MIN . Meanwhile, for any i /∈ N	,
x̂i ≥ x. Hence, for any i ∈ N	, one can yield the derivative of
xi along Eq. (3) and obtain ẋi = −γ

∑
j∈Ni

aij
(
x − x̂j

)
≥ 0.

It means that for any node with xi = xi,MIN , its state xi will
stop decreasing immediately.

Considering the arbitrariness of Tk , one can conclude that
for any t > 0, xi(t) ≥ xi,MIN holds if xi(0) ≥ xi,MIN . This
completes the proof. �
Lemma 2: Framework Eq. (3) keeps upper boundedness,

i.e., if xi(0) ≤ xi,MAX for any i ∈ N , then for any t > 0,
xi(t) ≤ xi,MAX .

Proof: This proof is similar to that of Lemma 1.Without
loss of generality, suppose that the node setN⊕ is empty until
a certain moment t = Tk . Therefore, for any time t < Tk , all
nodes i ∈ N keep upper-boundedness.
At t = Tk , it follows from Eq. (2) that x̂i = x̄ holds for

any i ∈ N⊕. Meanwhile, for any i /∈ N⊕, x̂i ≤ x̄. Hence, for
any i ∈ N⊕, the derivative of xi along Eq. (3) yields ẋi ≤ 0.
It means that for any node with xi = xi,MAX , its state xi will
stop increasing immediately.

Considering the arbitrariness of Tk , one can conclude that
for any t > 0, xi(t) ≤ xi,MAX holds if xi(0) ≤ xi,MAX . This
completes the proof. �
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Lemma 3: Framework Eq. (3) is conservative and
keeps summation immutability for a balanced G, i.e., if∑

i∈N xi(0) = xD, then for any t > 0,
∑

i∈N xi(t) = xD.
Proof: For any time t ≥ 0, we consider the growth

rate ẋi of all nodes along the trajectory of our algorithm,
which yields∑
i∈N

ẋi

=

∑
i∈N

[
− γ

∑
j∈Ni

aij(x̂i − x̂j)
]

= − γ
∑
i∈N

∑
j∈N

aij(x̂i − x̂j)

= −
1
2
γ
∑
i∈N

∑
j∈N

aij(x̂i − x̂j)−
1
2
γ
∑
j∈N

∑
i∈N

aji(x̂j − x̂i)

= −
1
2
γ
∑
i∈N

∑
j∈N

aij(x̂i − x̂j)+
1
2
γ
∑
i∈N

∑
j∈N

aij(x̂i − x̂j)

= 0. (4)

Here we have used Eq. (3) to obtain the first equality, have
used the fact

∑
j∈Ni

aij(·) ≡
∑

j∈N aij(·) to obtain the second
equality, have switched the symbols of i and j to obtain the
third equality, and have used the fact that aij = aji and
have switched the order of the summation signs to obtain the
fourth equality. Given the initial condition

∑
i∈N xi(0) = xD,

we complete the proof. �
Lemma 4 ([12]): Suppose that a networked system con-

sisting of node set N is described by a graph G. If G is undi-
rected connected, γ > 0, and all xi have the same variable
domain, then with the protocol ẋi = −γ

∑
j∈N aij

(
xi − xj

)
,

xi→ xj holds for any i and j as t →∞.
Theorem 1: With Eq. (2), Framework Eq. (3) drives all xi

in a connected G to a constrained consensus with xi both
lower and upper bounded. In addition, if G is balanced, all
xi keep summation immutability.

Proof: At any arbitrary time t > 0, the situation of
states xi must belong to one of the following two cases:
1) N� = N , and 2) N� 6= N . At first, we look into
these cases respectively. Note that for any i, x̂i may not be
smooth but would be differentiable almost everywhere. By
using nonsmooth analysis [13], [33] and terming differential
inclusions [34] by the symbol ‘‘

a.e.
= ’’ with a.e. standing for

‘‘almost everywhere’’, the convergence of the state evalua-
tions x̂1, x̂2, . . . , x̂n is studied as follows.

Case 1 (N� = N ). Since N� = N , it is clear that for
all i ∈ N , x̂i = xi holds according to Eq. (2).
Therefore, Framework Eq. (3) can be rewritten as
˙̂x i = −γ

∑
j∈Ni

aij(x̂i − x̂j). It then follows from
Lemma 1 that all x̂i will be driven asymptotically to
achieve a consensus, i.e., x̂i→ x̂j, as t →∞.

Case 2 (N� 6= N ). Since N� 6= N , it implies that
N	 ∪N⊕ 6= ∅. Without loss of generality, assume
that N	 6= ∅ and N⊕ 6= ∅. Besides, the existence
of a common overlap among the state domains of

all the nodes is assumed for concise expression (see
Remark 1). Refer to the very node whose state is
the maximum as node k1, and refer to the very node
whose state is theminimum as node k2, i.e., x̄ = xk1 ,
x = xk2 (Actually, there can be more than one node
that has the same maximal state. In this case, k1
can be designated as a combined node that consists
of the set of all the nodes with the maximal state.
Likewise, k2 can be designated as a combined node
that consists of the set of all the nodes with the
minimal state. By making such a designation, one
can always convert the analysis to that with single
node). According to Eq. (2), one has that x̂i = xk1 =
x̂k1 for i ∈ N⊕, x̂i = xk2 = x̂2 for i ∈ N	, and
x̂i = xi for i ∈ N�. It is then clear that, by denoting
� = N	 ∪ {k1} ∪ {k2}, Framework Eq. (3) yields
the updating protocol for x̂i, following

˙̂x i
a.e.
= −γ

∑
j∈Ni

aij(x̂i − x̂j), i ∈ � (5a)

x̂i = x̂k1 , i ∈ N⊕ (5b)

x̂i = x̂k2 , i ∈ N	. (5c)

With the equations of Eqs. (5b) and (5c), Eq. (5a)
can be rewritten as

˙̂x i
a.e.
= −γ

∑
j∈Ni

aij(x̂i − x̂j)

= − γ
∑
j∈N

aij(x̂i − x̂j)

= − γ
∑
j∈N�

aij(x̂i − x̂j)

− γ
∑
j∈N⊕

aij(x̂i − x̂k1 )− γ
∑
j∈N	

aij(x̂i − x̂k2 )

= − γ
∑
j∈N�

aij(x̂i − x̂j)

− γ (
∑
j∈N⊕

aij)(x̂i − x̂k1 )

− γ (
∑
j∈N	

aij)(x̂i − x̂k2 )

= − γ
∑
j∈N�

aij(x̂i − x̂j)

− γ (
∑
k∈N⊕

aik )(x̂i − x̂k1 )

− γ (
∑
k∈N	

aik )(x̂i − x̂k2 )

= − γ
∑
j∈�

ãij(x̂i − x̂j). (6)

Here
i) ãij = aij for any i, j ∈ N�;

ii) ãik1 = aik1 +
∑

k∈N⊕
aik ≥ aik1 for any j ∈ N⊕,

ãk1i = ak1i for any i ∈ �;
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iii) ãik2 = aik2 +
∑

k∈N	
aik ≥ aik2 for any j ∈ N	,

ãk2i = ak2i for any i ∈ �.
Therefore, if G(A) is undirected connected, G̃(Ã)
will be also undirected connected. With the notice
that the domains of x̂i are the same for all i, it then
follows from Lemma 4 that x̂i→ x̂j asymptotically
as t → ∞ for any i, j ∈ �. Once again, since
x̂i = x̂k1 for i ∈ N⊕ and x̂i = x̂k2 for i ∈ N	, one
finally obtains that, for all nodes i, j ∈ N , x̂i → x̂j
asymptotically as t →∞.

One can conclude that the convergence of each case is
consistent such that x̂i→ x̂j asymptotically as t →∞ almost
all the time, for ∀i, j ∈ N . This implies in turn that x̄ → x
as t →∞ under constraints. The converged equilibrium will
be x̂i = x̂j almost all the time. Observing Eq. (3) with this
knowledge, one would obtain ẋi = 0 for all i at the equi-
librium, implying that the equilibrium is stable. Furthermore,
with respect to the relationship between x̂i and xi, one can
also obtain the equivalent converged equilibrium that, for all
nodes, xi = xmean , mean{xj|j ∈ N�} for any i ∈ N�,
xi = xi,MIN ≥ xmean for any i ∈ N	, and xi = xi,MAX ≤ xmean
for any i ∈ N⊕. It is obvious that, by making an observation
to V =

∑
i,j∈N |xi − xj|, the equilibrium strictly corresponds

to the goal of constrained consensus because V reaches the
minimum at this equilibrium, upon which any perturbation to
the states would cause an increase of V . Therefore, the proof
is completed. �
Remark 1: It is worthy of noting that the proof is pro-

cessed in the sense of ‘‘almost everywhere’’ and under the
assumption of the existence of a common overlap among the
domains of all the nodes. Actually, exceptions may occur in
the case where no common overlap exists. In this situation,
the statement x̂i → x̂j would not be always true, because
lim
t→∞

(x̂i − x̂j) does not always equal to 0 but may equal to
a constant that is determined by the constraints, and in this
case, the symbol ‘‘→’’ stands for ‘‘is driven towards’’ instead.
However, the global convergence of the proposed framework
would not suffer from the possible exceptions, because x̂i
is always driven towards x̂j almost everywhere, except for
some finite time instants that occur momentarily along with
the continuous time progress (that consists of infinite time
instants). For example, consider a special two-node system
consisting of A and B with constraints 0 ≤ xA ≤ 2 and
3 ≤ xB ≤ 5, and given the initial values xA(0) = 1 and
xB(0) = 4. Although the constrained consensus made by the
proposed framework is lim

t→∞
(x̂B − x̂A) = 1 6= 0, the global

convergence remains such that xA and xB are driven towards
each other almost all the time under constraints. Since the
exceptions do not matter in analyzing the global convergence,
the proof is performed under general situations for making
the expression concise.

The mechanism of the proposed framework can be illus-
trated by taking Fig. 1 as an example once again. In the
beginning, since node F reaches its upper boundary as xF = 1,
one obtains x̂F = x̄ = 100 following Eq. (2). As a result, with

x̂E = 2 and x̂I = 100, xF decreases and xE increases following
Eq. (3). After that, as soon as xF decreases, it becomes that
x̂F = xF < 1 < x̂I, which leads xI to decrease and leads xF to
increase. As one can observe, the overall effect is equivalent
to that the resource on node I flows to node E across the
saturated node F. Since this process will continue until both
sides of node F achieve a consensus, the global optimization
of the constrained consensus will be made.

Note that although Framework Eq. (3) using Eq. (2)
guarantees the constrained consensus, the assumption is over-
strict, i.e., it’s not easy for each node to track the time-
varying x̄ and x in realtime. The reason lies in that there
is no model to describe the varying of x̄ and x. Therefore,
tracking by using locally neighboring synchronization will be
always lagging behind global signals x̄ and x. One may use
an inner-loop tracking protocol to do this, but it would cost
much communication and calculational bandwidths. To this
end, we extend the framework to a feasible one with a mild
assumption, so that each node evaluates its state following

x̂i =


xMIN if i ∈ N	
xi if i ∈ N�
xMAX otherwise (i ∈ N⊕)

(7)

where xMAX and xMIN are the maximal upper bound-
ary and minimal lower boundary among nodes, respec-
tively, i.e., xMAX = max {x1,MAX , · · · , xn,MAX }, xMIN =
min {x1,MIN , · · · , xn,MIN }.
Theorem 2: With Eq. (7), Framework Eq. (3) drives all xi

in a connected G to a constrained consensus with xi both
lower and upper bounded. In addition, if G is balanced, all
xi keep summation immutability.

Proof: Obviously, the proof is similar with that of
Theorem 1. By copying the process and replacing the symbols
x̂k1 and x̂k2 with xMAX and xMIN , respectively, one can obtain
the proof likewise. �
Remark 2: In Theorem 2, Framework Eq. (3) using Eq. (7)

relaxes the assumption of Eq. (2) to amild requirement, where
each node no longer needs to track either time-varying signal
(i.e., x̄ or x). Instead, two global but static variables xMAX and
xMIN are used for self evaluation, and each node only needs
to acquire the two variables once aforehand. In particular,
the acquisition can be achieved by using a traditional dis-
tributed consensus protocol, e.g., ei(t) = max

j∈Ni
xj,MAX . There-

fore, the framework can work in a fully distributed manner.
It can be also seen that the framework has no singular point
that will cause errors in mathematics.

IV. CONSTRAINED CONSENSUS ALGORITHM
Considering the problem Eq. (1), this part studies the
constrained consensus algorithm that is built upon our
framework.

A. ALGORITHM
The algorithm follows the basic idea of the framework such
that each node uses evaluations of utilities to interact with

VOLUME 7, 2019 125127



X. Wang et al.: Distributed Constrained Consensus of Utilities via a Self Evaluation Approach

neighbors. With f̂i denoting the utility evaluation, each node i
obtains f̂i according to

f̂i =


fMIN if i ∈ N	
fi if i ∈ N�
fMAX otherwise (i ∈ N⊕)

(8)

where fMAX = max {f1(x1,MAX ), · · · , fn(xn,MAX )}, fMIN =
min {f1(x1,MIN ), · · · , fn(xn,MIN )}.
With the self utility evaluation, the algorithm is proposed

as

ẋi = −γ
∑
j∈Ni

aij(f̂i − f̂j) (9)

where γ > 0.
Theorem 3: If a connected graph G is balanced, the algo-

rithm Eq. (9) using Eq. (8) will optimize Problem Eq. (1) to a
global optimization.

Proof: Since the connected graph G is balanced, one can
obtain in the same way as presented in Lemmas 1-3 that by
using the algorithm Eq. (9), all xi keep lower boundedness,
upper boundedness and summation immutability for any
t > 0. This implies that the assignments are guaranteed to
be optimized within XF.
Next, one can obtain the derivative of fi along Eq. (3) as

ḟi =
∂fi
∂xi

ẋi

= − γ
∑
j∈Ni

∂fi
∂xi
· aij(f̂i − f̂j)

= − γ
∑
j∈Ni

ăij(f̂i − f̂j) (10)

where ăij ,
∂fi
∂xi
· aij. Since

∂fi
∂xi

> 0, it follows that for any
i, j ∈ N , ăij and aij have the same sign. If G(A) is connected,
Ğ(Ă) will be connected as well.

Therefore, one can obtain from Theorem 2 and the proof of
Theorem 1 that, with noting the consistency in form, Eq. (10)
using Eq. (8) will drive all fi in a connected Ğ to achieve a
consensus under constraints. Since it obviously corresponds
to the optimal assignment X ∗ that minimizes the maximal
difference between any fi and fj, the proof is completed. �
Remark 3: Algorithm Eq. (9) extends Framework Eq. (3)

to a more general case, where the utility is allowed to be
any monotonic increasing functions of the state for each
node. Likewise, this algorithm is fully distributed since the
obtainment of utility evaluation works locally and relies on
no realtime communication.

B. ENGINEERING APPROXIMATION
It is worthwhile to note that, due to the noncontinuous switch-
ing, using Eq. (7) and Eq. (8) to obtain evaluations still puts
rigorous requirements on threshold detection and numerical
accuracy for actual applications. To relax the requirements
and improve the algorithm usability, an approximation for
obtaining noncontinuous evaluations is presented in this part.

First, consider a two-state logical function σ (u, τ ) and a
continuous differentiable function s(u, τ ), which are

σ (u) =

{
0, if u < τ

1, if u ≥ τ
(11)

and

s(u, τ ) = 0.5 [tanh (β(u− τ ))+ 1] (12)

with β > 0, respectively.
It is then clear that, as β increases, s(u, τ ) will approximate

to σ (u, τ ) more closely (e.g., see Fig. 3). One may obtain this
conclusion as Lemma 5.

FIGURE 3. The shapes of s(u, τ ) with varied β.

Lemma 5: If the parameter β is large enough, s(u, τ ) can
be used to approximate σ (u, τ ) with an excellent accuracy.

Next, consider a general three-state switching function
σ 3−state(u, τl, τh) as

σ 3−state(u) =


y1, if u ≤ τl
y2, if τl < u < τh

y3, if u ≥ τh

(13)

with y1, y2, y3 being arbitrary output quantities. Therefore, by
doubly applying Lemma 5, one can obtain

z(u, τl, τh) = (1− ω1)(1− ω2)y1 + ω1(1− ω2)y2 + ω2y3
ω1 = s(u, τl)

ω2 = s(u, τh) (14)

Lemma 6: If the parameter β is large enough, Eq. (14)
can be used to approximate a three-state switching function
σ 3−state(u, τl, τh)with an excellent accuracy (see e.g., Fig. 4).

Finally, one can obtain the following approach to approxi-
mate f̂i in a smooth continuous way.
Theorem 4: With a large enough β, zi in Eq. (15) is an

excellent approximation to f̂i in Eq. (8).

zi = (1− ω1)(1− ω2)fMIN + ω1(1− ω2)fi + ω2fMAX
ω1 = 0.5

[
tanh

(
β(xi − xi,MIN )

)
+ 1

]
ω2 = 0.5

[
tanh

(
β(xi − xi,MAX )

)
+ 1

]
(15)

Proof: The proof is completed by combining Lemma 6
and Eq. 8 together. �
Remark 4: Theorem 4 provides a continuous, smooth, and

differentiable approach of approximation to evaluate self util-
ity, reducing the accuracy requirements on both the hardware
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FIGURE 4. The shapes of z(u, τl , τh) with varied β.

and software of each node greatly. It can be seen that when
β is large enough, zi = f̂i holds perfectly. In this sense,
algorithm convergence remains guaranteed by using zi to
replace f̂i. As a matter of fact, the β should be chosen as a
constant that is several orders of magnitude larger than other
variables. Also note that, a large β has little influence on the
system performance because it is only an intrinsic parameter
of the tanh function.
Remark 5: On the one hand, our algorithm is given in a

continuous form and needs no time stepsize in fact. On the
other hand, if necessary, our algorithm can be transformed
to a discrete form by using proper discrete methods easily,
because the algorithm is in a smooth form without any sin-
gular point. However, no matter which form it takes, our
algorithm imposes a mild requirement on the stepsize factor
(which is γ ). To show this, we take θ− logarithmic barrier
algorithm Eq. (18) as an example to illustrate the stepsize
drawback of other algorithms. First of all, one can make
such an observation that the stepsize factor θ in Eq. (18)
cannot be a constant, because the feedback term 1 ,(

1
xi−xi,MIN

−
1

xi,MAX−xi

)
will become extremely large as xi gets

closer either to xi,MIN or to xi,MAX , and a constant θ will
make the optimization diverge. Secondly, θ needs to be elab-
oratedly designed to keep xi strictly constrained, because the
feedback term1 is actually the derivative of ln(xi−xi,MIN )+
ln(xi,MAX − xi), which is the unconstrained reformulation by
using Lagrange function. As a result, an overshot xi makes
ln(xi − xi,MIN ) + ln(xi,MAX − xi) go wrong, and makes its
solving principle invalid. On the contrary, the feedback term
of our algorithm is a linear combination of node states.
To this end, our algorithm allows the stepsize factor γ to be
a constant, and does not suffer from the overshot states.

Finally, as a summary, the proposed algorithm is concluded
as Algorithm 1.

V. ILLUSTRATIVE EXAMPLES
To illustrate the effectiveness of the algorithm, some exam-
ples are presented in this part. In the simulations, the general
gradient is used as the default gradient descent method.

A. EXAMPLE 1: SIMPLE LINEAR UTILITIES
Consider a most common allocation case, where fi(xi) simply
equals to xi for each node, targeting the minimization of the

Algorithm 1 Distributed Constrained Consensus Algorithm
Input: xi(0), xi,MIN , xi,MAX , fi(xi). Output: x∗i
Each node i ∈ N behaves in the same manner as follows.
·At t ≤ 0: By communication once, obtains fMAX and fMIN
·For any t > 0 (Our algorithm runs here):

1) obtains zi, following Eq. (15) with β large enough.
2) updates xi, following Eq. (9) with f̂i = zi.
·At t = T , with T large enough: x∗i = xi(T )

consensus metric V =
∑
i,j∈N
|xi − xj|. The number of nodes

is n = 6. The nodes networking is supposed to has a chain
topology, i.e., 1–2–3–4–5–6, because this kind of topology
is most challenging for testing a distributed algorithm. The
constraints are limited as

xD =
∑
1≤i≤6

xi = 41

{xi,MIN for i = 1 : 6} = {2, 1, 5, 2, 3, 3}

{xi,MAX for i = 1 : 6} = {10, 3, 8, 3, 5, 20} (16)

Given an arbitrary initial state for each node, for instance,
X (0) = {10, 1, 6, 2, 4, 18} with corresponding V (0) = 222,
the global optimal assignment can be known obviously as
X ∗ = {10, 3, 8, 3, 5, 12} with corresponding V ∗ = 138,
by using an elaborately-designed global optimization algo-
rithm (e.g., Particle Swarm Optimization [35]) from a global
centralized perspective.

We then use Algorithm 1 to optimize X (0) in a fully
distributed way and compare it with the global optimum.
Let β = 1e6 to ensure an excellent approximation, use
xi,MIN = xi,MIN + ε and xi,MAX = xi,MAX − ε to further
ease the numerical computation with tolerance ε = 1e − 6
(small amount), and let γ = 1. The result is as follows.
Trajectories of the states are shown in Fig. 5 and indicate
that the optimization has convergence by using Algorithm 1.
Trajectories of the errors between X and X ∗ are figured
in Fig. 6, showing that the errors can converge to zero,
i.e., Algorithm 1 can converge to the global optimum. The
trajectory of the consensusmetricV is figured in Fig. 7, which
also indicates that the consensus metric can be optimized to
the global optimumV ∗. We should point out that this example

FIGURE 5. Trajectories of the states in Example 1.
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FIGURE 6. Trajectories of the errors between the states and
corresponding benchmark optima in Example 1.

FIGURE 7. Trajectory of the consensus metric V in Example 1.

is complex enough for distributed optimization. Traditional
unconstrained consensus algorithms would fail to solve it.

B. EXAMPLE 2: NONLINEAR UTILITIES
Consider a more complex allocation case, where fi(xi) is a
nonlinear function of xi for each node, targeting the min-
imization of V =

∑
i,j∈N
|fi − fj|. The number of nodes is

n = 8, and once again, suppose that the nodes networking
has a chain topology, i.e., 1–2–3–4–5–6–7–8. The utilities
and constraints are defined as

fi = xi(ci − xi), i = 1, 2, 3, 4

fi = cixi ln xi, i = 5, 6, 7, 8

{ci for i = 1 : 8} = {27, 25, 15, 18, 12, 10, 15, 25}

xD =
∑
1≤i≤8

xi = 42

{xi,MIN for i = 1 : 8} = {6, 5, 2, 3, 4, 1, 2, 1}

{xi,MAX for i = 1 : 8} = {11, 10, 7, 9, 8, 5, 6, 5} (17)

Suppose that the initial states are given by X (0) =
{10, 6, 5, 3, 6, 4, 4, 4}. with corresponding V (0) = 3139.27.
Likewise, let β = 1e6 and γ = 1 for Algorithm 1, and use
xi,MIN = xi,MIN+ε and xi,MAX = xi,MAX−ε, with ε = 1e−6.
We use Algorithm 1 for each node for 2 seconds, record the
key variables at t = 0 and t = 2 in Table 1, and figure related
trajectories in Fig. 8 to Fig. 11.

Trajectories of the states are plotted in Fig. 8, show-
ing the convergence where the states converge to X (2) =
{6.00, 5.00, 7.00, 7.76, 4.44, 4.96, 3.90, 2.94} with corre-
sponding V ∗ = 1185.4. Note that nodes 1, 2 have arrived

TABLE 1. Results of example 2 at t = 0 and t = 2 by using Algorithm 1.

FIGURE 8. Trajectories of the states in Example 2.

at their lower boundaries, node 3 has arrived at its upper
boundary, and nodes 4, 5, 6, 7 lie within their open con-
straints. Trajectories of the utilities are figured in Fig. 9,
from which one can see that each fi converges individually
but the converged utilities are not consistent for all nodes.
This is because nodes {1, 2, 3} have reached their limits when
attempting to coordinate their utilities consistent with the oth-
ers. Fortunately, as a main feature of our algorithm, the utility
evaluations do converge to consensus as Fig. 10 shows, where
the violent fluctuation during 0 < t < 0.5 indicates the
frequent status-switching of nodes. Therefore, the full agree-
ment of the utility evaluations guarantees that ẋi = 0 holds

FIGURE 9. Trajectories of the utilities in Example 2.

FIGURE 10. Trajectories of the utility evaluations in Example 2.
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FIGURE 11. Trajectory of the consensus metric V in Example 2.

for all nodes at the stable equilibrium. Fig. 11 shows that V is
decreasing with time and reaches the minimum. As analyzed
in Theorem 1, it is clear that this equilibrium corresponds to
the global minimization of V since any variation will cause
V to increase. One can concludes finally that this example
allocation problem has been optimized to the globally optimal
assignment. It is worthwhile to mention that this example is
complex enough for distributed optimization so that very few
distributed algorithms can obtain the global optimum.

C. EXAMPLE 3: COMPARISON WITH θ− ALGORITHM
In this example, we compare Algorithm 1with the benchmark
algorithm, which refers to the θ− algorithm targeting the
same problem in [31], to show the effectiveness and advan-
tage of the former. For clarity, θ− algorithm is summarized
here as Eq. (18), where the parameters of the benchmark are
set to their best as given in [31].

ẋi = −
∑
j∈Ni

aij(φi − φj)

φi = fi −
1
θ

(
1

xi − xi,MIN
−

1
xi,MAX − xi

)
θ ← 1.1θ, when xi = xi,MIN || xi = xi,MAX (18)

The same problem in Example 2 is used for testing the
benchmark algorithm. The result converges to X θ

= {6.02,
5.05, 6.96, 7.83, 4.50, 4.79, 3.90, 2.95} with corresponding
V θ = 1251.5. Fig. 12 shows the trajectories of V by using
Algorithm 1 and the benchmark respectively as a comparison.
With V ∗ = 1185.4, it is obvious that V θ is still larger than V ∗

FIGURE 12. Trajectories of the consensus metric V by using
Algorithm 1 and θ− algorithm, respectively.

by 5.6%, indicating the advantage of Algorithm 1. In fact, this
is almost a best performance that the benchmark algorithm
could achieve. As a matter of fact, the benchmark algorithm
would even diverge in some cases. Although our algorithm
can beat the benchmark with a much more enormous supe-
riority by using more complex networks or setting different
parameters, we would like to beat its best performance, and
results show that this comparison is sufficient. The analysis
of the failure of the benchmark can be made here once
again. The reason lies exactly in the increasing variable θ .
As mentioned previously, an enlarged θ in the benchmark
algorithm will reduce the updating step and is harmful to
global convergence. However, θ has to increase for avoiding
divergence, overshooting, and algorithm errors. Furthermore,
the benchmark algorithm will lose the ability to optimize
a dynamical problem after θ gets large. On the contrary,
our Algorithm 1 uses invariant parameters independent of
time. This feature guarantees the invariant effectiveness of the
algorithm.More similar examples can be performed likewise,
but the conclusions are consistent and therefore we omit them
for short.

VI. CONCLUSION
This paper investigates the problem of distributed constrained
consensus of utilities for multiple networked nodes. Towards
this goal, a generalized framework is developed via a self
evaluation approach, in which each node uses individual
evaluation to interact with its neighbors and drives its state to
global optimization. This proposed framework is flexible for
helping solve a class of general state-constrained consensus
problems in a fully distributed way. A distributed algorithm
is then built on this framework to solve utility consensus
problem with constraints of states. Theoretical analyses are
presented showing the convergence and stability. In addition,
an approximation method is proposed for ease of engineering
implementation as well. Finally, three illustrative examples
are provided and analyzed to substantiate the efficacy of the
proposed algorithm.
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