IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 20, 2019, accepted July 31, 2019, date of publication September 2, 2019, date of current version September 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939115

Fault-Tolerance in the Scope of Software-Defined
Networking (SDN)

A. U. REHMAN", RUL L. AGUIAR", AND JOAO PAULO BARRACA

Instituto de Telecomunicacdes, P-3810-193 Aveiro, Portugal
Departamento de Eletrénica, Telecomunicagdes e Informatica, Universidade de Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro, Portugal

Corresponding author: A. U. Rehman (asad.rehman@av.it.pt)
This work is funded by Fundagéo para a Ciéncia e a Tecnologia/Ministério da Educagéio e Ciéncia (FCT/MEC) through national funds and

when applicable co-funded by FEDER - PT2020 partnership agreement under the project UID/EEA/50008/2019, and Fundagao para a
Ciencia e Tecnologia under Grant PD/BD/113822/2015.

ABSTRACT Fault-tolerance is an essential aspect of network resilience. Fault-tolerance mechanisms
are required to ensure high availability and high reliability in systems. The advent of software-defined
networking (SDN) has both presented new challenges and opened new paths to develop novel strategies,
architectures, and standards to support fault-tolerance. In this survey, we address SDN fault-tolerance
and discuss the OpenFlow fault-tolerance support for failure recovery. We highlight the mechanism used
for failure recovery in Carrier-grade networks that includes detection and recovery phases. Furthermore,
we highlight SDN-specific fault-tolerance issues and provide a comprehensive overview of the state-of-
the-art SDN fault-tolerance research efforts. We then discuss and structure SDN fault-tolerance research
according to three distinct SDN planes (i.e., data, control, and application). Finally, we conclude enumerating
future research directions for SDN fault-tolerance development.

INDEX TERMS Software-defined networking, fault-tolerance, OpenFlow, failure detection, failure recov-
ery, fault-tolerance issues, network programmability, network softwarization, mission-critical communica-

tions.

I. INTRODUCTION

Due to the lack of software programmability in today’s
networks, it is quite challenging to modify (program) net-
works. Traditionally, there was no underlying programming
abstraction provided to deal with the inherent complexity
of distributed system failures. One of the primary features
that software-defined networking (SDN) provides is data and
control plane separation, laying the ground for simple net-
work programmability. Although there is an extensive set of
SDN research, most of the research performed so far focuses
on exploring SDN as a programmatical technology, without
considering fault-tolerance aspects [1]-[4].

Fault-tolerance is a broad area of knowledge, and cover-
ing all aspects of fault-tolerance concepts in a single paper
is difficult. Hence, in this paper, we briefly discuss key
fault-tolerance concepts and focus more on fault-tolerance in
the scope of SDN. It is important to note that fault-tolerance
and fault-management concepts are different. On the one
hand, fault-tolerance is a characteristic of a system, which is

The associate editor coordinating the review of this article and approving
it for publication was Mubashir Husain Rehmani.

124474

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

designed in such a way that it can minimize service failures in
the presence of system components faults. On the other hand
“Fault management” is a term used in network management,
describing the overall processes and infrastructure associated
with detecting, diagnosing, and fixing faults, and returning to
normal operations in telecommunication systems [5].
Generally, fault-tolerance is an essential part of the design
of any communication system/network. Computer networks
are built on physical infrastructure or virtualized versions of
the physical infrastructure. These infrastructures are critical
because business applications rely on their proper operation
of such infrastructures. However, such infrastructures are
prone to a wide range of challenges and attacks such as
natural disasters or Denial of Service (DoS) attacks and major
issues such as faults, failures, and errors all of which cause
failure and disruption in network service. Therefore, to over-
come these network service issues, resilience procedures and
fault-tolerance mechanisms are essential to identify and heal
the system/network in the presence of such failures [6].
SDN provides network flexibility through a clear separa-
tion of control and data planes, inherently simplifying net-
work management [7], although SDN fault-tolerance is still in

VOLUME 7, 2019

https://orcid.org/0000-0001-5575-2021
https://orcid.org/0000-0003-0107-6253
https://orcid.org/0000-0002-5029-6191

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

Fault-Tolerance in the Scope of Software-Defined Networking

Fault-tolerance Phases

Fault-tolerance Techniques

Fault-tolerance Support
L

Error Detection Detection
Damage Assessment Concre.te
Detection
Error Recovery Preemptive
Service Continuation Detection

Recovery OpenFlow Support

EI’FO(;l_ Data Plane Support
andling

Follt Control Plane Support

Handling Application Plane Support

SDN Architecture Fault-Tolerance Issues

Data Plane

Channel Controller Reliability
Controller Placement and Assignment

LoS of Signal

Bidirectional Forwarding

Control Plane

Inter-Controller Consistency

Application plane

Software Testing

Policies Configuration

Multi-Controller Architecture Fail-over

State of the Art SDN Fault-Tolerance Research Efforts

Data and Control Plane Controller Architecture Application plane
Device Port Failures Resilience Software Tools
vSwitch and Carrier-grade Failures Scalability Troubleshooting

Developing Fault-tolerance System

Consistency

Fault-tolerant Programs

Data Plane Programmability for
Network Softwarization

SDN Fault-tolerance Future Research Directions

Controller Architecture for
Mission Critical Communications

Software Tools for SDN Applications
Development

FIGURE 1. Condensed structure of this survey.

its infancy. SDN is exposed to new sets of failures and issues
at each layer of its architecture, as discussed in Section V. It is
necessary to address these issues and safeguard each layer
of the SDN architecture to provide enhanced fault-tolerance.
We overview fault-tolerance, its techniques, and its typical
phases of fault-tolerance. We then highlight fault-tolerance
issues according to the SDN three main layers (data, control,
and application) and classify SDN fault-tolerance research
according to these three layers. The condensed structure of
this survey is depicted in Fig. 1.

The rest of the paper is structured as follows. Section II
discusses previous studies generic and specific to SDN fault-
tolerance. Section III provides a comprehensive overview
of fault-tolerance. Section IV summarizes the SDN lay-
ered architecture and fault-tolerance support in SDN as
mentioned, Section V discusses briefly SDN architecture
based fault-tolerance issues focusing on three principal
planes of SDN architecture: data plane, control plane, and
application plane. Section VI provides state-of-the-art of
SDN fault-tolerance research efforts. Section VII discusses

VOLUME 7, 2019

perspective SDN fault-tolerance challenges and future
research directions. Section VIII concludes the paper. The list
of abbreviations/acronyms is provided after the conclusion.

Il. RELATED WORK

Some previous surveys have explored fault management [8],
[9] in SDN. We provide further discussions on these efforts
as follows:

Fonseca and Mota [8] addressed fault management in
SDN. They presented an SDN fault management overview
and focused more on issues associated with each layer of the
SDN architecture. They also discussed general approaches,
trade-offs, major contributions, and research gaps. They fur-
ther extended the discussion on SDN fault management issues
to optical and wireless networks.

Yu et al. [9] also addressed SDN fault management and
provided a systematic survey by evaluating existing SDN
fault management solutions. Furthermore, they presented an
in-depth analysis of SDN fault management focusing system
monitoring, fault diagnosis, fault recovery, and repair and

124475

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

TABLE 1. Scope and technical contributions of previous and this work.

Related Work

Scope of the Work

Main Technical Contributions

Fault management in software-
defined networks [8].

Provide a comprehensive review of fault
management in software-defined networks
and address fault-tolerance issues that can
cause faults in each plane of SDN.

Identified main fault management issues in SDN, classified
and discussed research efforts that addressed fault manage-
ment in SDN. Furthermore, highlighted open issues and
identified research gaps in SDN fault management research.

Fault management in software-
defined networking [9].

Provide a systematic literature review by
evaluating existing SDN fault management
solutions as identified through advance-
ments in both the research community and
industry.

Presented an in-depth analysis of SDN fault management
focusing on system monitoring, fault diagnosis, and fault re-
covery and repair. Compared and analyzed existing solutions
in the context of SDN fault management over the period
2008-2017.

When software-defined networks
meet fault-tolerance [31].

Study traditional fault-tolerance approaches
and analyze their connections with SDN.
Briefly discuss and compare data plane
failure detection and recovery mechanisms
(link/node).

Discussed traditional fault-tolerance approaches and com-
pared restoration and protection methods for link/node failure
recovery.

Fault-tolerance in the scope of
software-defined networking (this
work).

Previous studies do not discuss fault-
tolerance phases, techniques or basic topics
in the context of SDN architecture. This
survey addresses fault tolerance specifically
in the context of the SDN architecture.

Structured SDN fault tolerance according to the SDN layer-
based architecture (i.e., data, control, and application planes).
Provided a comprehensive overview of fault-tolerance issues
on each SDN plane and discussed state-of-the-art research
efforts addressing these. Highlighted SDN fault-tolerance

issues and outlined important future research directions.

briefly discussed SDN fault-tolerance. They compared and
analyzed existing solutions in the context of SDN fault man-
agement over the period of 2008-2017.

Chen et al. [31] addressed traditional fault-tolerance
approaches and analyzed their connections with SDN.
Data-plane failure detection and recovery mechanisms
(link/node) were compared and briefly discussed. Further-
more, they discussed traditional fault-tolerance approaches
and compared restoration and protection methods for
link/node failure recovery.

In this paper, we focus on one of the utmost important
disciplines of resilience, namely, fault-tolerance. We char-
acterize it according to the SDN planes (data, control, and
application). Furthermore, Table 2 locates the present work
in the context of other technical contributions.

A. CONTRIBUTION AND SCOPE OF THIS SURVEY

As mentioned in Section II, previous studies have not dis-
cussed fault-tolerance phases, techniques, and basic topics
in the context of SDN architecture. This survey addresses
fault-tolerance specific to SDN. We can distinguish our con-
tribution in this paper in comparison to the other related work
as follows:

. We focus on SDN fault-tolerance rather than
fault-management of SDN.
) We structure SDN fault-tolerance according to the

SDN layer-based architecture (i.e, data, control, and
application planes).

. We discuss in detail SDN fault-tolerance support
in the context of traditional approaches that can
be applied to address fault-tolerance in the data,
control, and application planes.

° We provide and organize a comprehensive overview
of fault-tolerance issues on each SDN plane and
discuss state-of-the-art research efforts addressing
these highlighted SDN fault-tolerance issues.

124476

o We highlight the realization of SDN fault-tolerance
challenges according to the data, control, and appli-
cation planes and outline important future research
directions from the perspective of programmability
and network softwarization.

In summary, in this paper, we present a fault-tolerance
overview, as well as techniques and phases in the scope of
the SDN and traditional fault-tolerance support for SDN.
We then highlight issues that can affect fault-tolerance in each
layer of the SDN architecture itself, after which we struc-
ture and organize state-of-the-art research efforts addressing
these SDN fault-tolerance issues and opt for solutions to
safeguard fault-tolerance in each layer of the SDN architec-
ture. We also outline important future research directions for
each SDN layer, i.e., the programmable data plane for net-
work softwarization (data plane), controller architecture for
mission-critical scenarios (control plane) and software tools
for fault-tolerant SDN application development (application
plane).

lll. BACKGROUND AND RELATED CONCEPTS

In this section, we discuss fault-tolerance and its techniques
and provide a brief overview of fault-tolerance in traditional
networks and its relationship with dependability.

A. FAULT-TOLERANCE OVERVIEW

Any system is prone to some sorts of threats that affect the
operation of the system. Moreover, in computer networking,
both distributed and centralized network systems are also
prone to three major issues: Failures, Errors, and Faults.

A failure happens if a system is unable to implement
the specified function appropriately. This means the service
deviates from its specifications. An error is caused because
one or more of the sequences of system states deviate from the
specified sequence, and can cause service disruption. Faults
can cause errors and lead to single or multiple failures [10].

VOLUME 7, 2019

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

Activation Propagation No service
Fault Invalid Violation of system
occurrence state specification

FIGURE 2. Relationship: Fault, Error, and Failure.

A fault is the hypothesized cause of an error, for instance,
a software bug, human-made error or hardware power fail-
ure [11]. Relationship between fault, error, and failure is
depicted in Fig. 2 [12].

Fault-tolerance is the outcome of a design process of build-
ing a reliable system from unreliable components [13]. Faults
can be classified into two main categories [14], [15]: Crash
faults and Byzantine faults. Crash faults can cause system
fatal errors (for instance process and machine power-related
failures), while Byzantine faults can cause the system to
deviates from normal operation [14]. Fault-tolerance sys-
tems are equipped with several mechanisms that not only
respond to these issues but also continuously offer and main-
tain correct system operation. However, it is hard to design
a fault-tolerance system that can guarantee flawless com-
munication in practice but, even in worst-case scenarios,
fault-tolerance systems still offer graceful degradation of ser-
vices. Nevertheless, we can always design efficient mecha-
nisms for faults and errors that are most likely to happen and
affect any system. Such approach can improve and enhance
fault-tolerance communication systems.

B. FAULT-TOLERANCE PHASES
The typical four main stages of a fault-tolerance are as fol-
lows [16]:

1) Error Detection: In this stage, faults are first detected
and then reported to determine the root cause of failure
(observing failures).

2) Damage Confinement and Assessment: In this stage,
the damaged or corrupted state of the system is assessed
to determine the extent of the damage caused by faulty
components.

3) Error Recovery: In this stage, recovery strategies are
imposed to restore the system to a consistent and
fault-free state. There are two different kinds of recov-
ery techniques used:

° Backward Recovery: In this technique, system
states are recorded and stored so that a cor-
rupted state can be discarded and the system
can be restored to the previous fault free (cor-
rect) state.

° Forward Recovery: In this technique, the sys-
tem is being brought to a new correct fault-free
state from the current corrupted state.

4) Fault Treatment and Service Continuation: In this
stage, the location of faults are identified first and
then faults are either repaired or the system is recon-

VOLUME 7, 2019

Error Recovery

Backward recovery
e Forward recovery

Damage

Confi and [
Assessment
A

Fault-treatment and
Service Continuation

Latent [Activation|
Fault Error

FIGURE 3. Typical phases in Fault-tolerance.

figured to avoid faults. Service continuation is essen-
tial to ensure that the system will perform its opera-
tion normally and without immediate manifestation of
faults.

C. FAULT-TOLERANCE TECHNIQUES
Several fault-tolerance techniques are being used to avoid
service failure in the presence of faults [17]. Fault-tolerance
is carried out through error detection and system recov-
ery, or simply detection and recovery mechanisms. Error
detection identifies the presence of an error, while ‘““recov-
ery transforms a system state that contains one or more
errors and (possibly) faults into a state without detected
errors and faults that can be activated again [18]. Recov-
ery techniques can be further classified into two main cat-
egories: i) recovery with error handling; which eliminates
errors from the system state; and ii) recovery with fault-
handling; which prevents faults from being activated again.
The choice of error detection and recovery techniques are
being adopted based upon the underlying fault assumption.
In the context of SDN, these fault-tolerance techniques must
be explored in order to enhance fault-tolerance in future SDN
environments.

The taxonomy of fault-tolerance techniques can be seen
in Fig. 4, Table 2 [11] summarizes the details of such
fault-tolerance techniques.

Fault-Tolerance Techniques

| - \

Error Detection

Recovery

Concrete Preemptive Error Fault

Detection Detection Handling Handling
Roll Back Diagnosis
Roll Forward Isolation
Compensation Re-Configuration

Re-Initialization

FIGURE 4. Fault-tolerance techniques.

124477

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

TABLE 2. Details of Fault-tolerance techniques.

Error Detection

Recovery (Error Handling)

Recovery (Fault Handling)

Concurrent Detection: Occur during normal
service delivery

Rollback: Restores system state to a saved
last good known configurations before error
occurrence

Diagnosis: Identify both error localization
and its types

Preemptive Detection: Occur while normal
delivery service is suspended; to check la-
tent errors and dormant faults

Rollforward: Initiate a new system state
without detected errors

Isolation: prevent the participation of faulty
components that can leads to service failure

Compensation: Recover system erroneous
state by enabling error to be masked through

Reconfiguration: Reassigns tasks among
non-failed components

redundancy

Reinitialization: Check and update system
based on new configurations

IV. FAULT-TOLERANCE IN SDN

In this section, we provide an overview of SDN archi-
tecture and discuss SDN fault-tolerance based on the
SDN architecture as divided into three main layers: data
plane, control plane, and application plane.

A. SDN ARCHITECTURE OVERVIEW

SDN is a hot research topic, but there is increasing confu-
sion regarding SDN concepts; architecture, multiple SDN
networking planes, and interaction between layers through
interfaces. Briefly, we discuss the SDN architecture and dis-
cuss the abstracted view of SDN planes.

The SDN architecture is shown in Fig. 5, which com-
prises several abstraction layers (abstraction of well-defined
planes), interfaces (standardized Application Programmable
Interfaces (APIs) between planes) and well-defined planes
(collection of functions and resources with the same func-
tionality) [19].

The three distinct SDN planes are as following:

1) Data Plane: The data plane (also known as forward-

ing plane) is responsible for handling data packets
sent by the end-user through network devices that are
responsible for traffic forwarding (based on instruc-
tions received from control plane).
The Forwarding Information Base (FIB), also known as
forwarding table and Medium Access Control (MAC)
table for routers and switches. FIB is used in the data
plane to perform IP forwarding of unlabeled packets
[20].

2) Control Plane: The control plane is responsible for
deciding on how packets must be handled and for-
warded at network devices to properly cross the net-
work. The primary purpose of the control plane is
to synchronize and update forwarding tables, while
packet handling policies reside in the forwarding
plane.

3) Application Plane: The plane where applications and
services that define network behavior reside. Applica-
tions that directly (or primarily) support the operation
of the forwarding plane (such as routing processes
within the control plane) are not considered part of the
application plane.

124478

B. CONTROLLER

In SDN architectures, the controller is a logically centralized
entity. It is responsible for translating the SDN applications
requirement, via a Northbound API, down to the SDN data
layer. Furthermore, it is also responsible for providing SDN
applications an abstracted view of the network (including
statistics and events).

Networks in SDN are managed by an external controller to
process the flow of packets. This enables the programming
of the network to be centrally controlled. Hence, the entire
network and its devices can be managed efficiently regardless
of the complexity of the underlying infrastructure. Moreover,
SDN offers the flexibility through programming to separate
the data and control planes with the logically centralized
controller and by this, it is possible to modify the packet
forwarding as per the network needs [1]. The OpenFlow
standard has been proposed to manage the communication
flow between the controller and network entities [21].

It is important to understand that different multi-controller
architectures can exist with SDN. Bilal et al. [22] describe
different types of SDN architecture and existing implementa-
tions. They further classify multi-controller SDN architecture
in two broad categories (logically centralized and logically
distributed architecture) and discuss in details with an exam-
ple of implementation of such designs.

SDN controller fault-tolerance issues still exist and are
addressed in current research, but are still far from provid-
ing the optimal solutions. Later in Section VI, we structure
the SDN controller (centralized and distributed architecture)
fault-tolerance research efforts.

C. SOUTHBOUND AND NORTHBOUND APIS

All the SDN networking planes are connected through spe-
cific interfaces, that standardized and simplify intercommu-
nication between them. Intercommunication between SDN
networking planes can be achieved in two different ways
depending on the SDN architecture design, and the location
of network entities. On one hand, if they are placed in a
different location, a network protocol is used to provide
communication interaction between them. On the other hand,
if the network entities reside inside the same physical or vir-
tual location, a communication interaction between network

VOLUME 7, 2019

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

Application Plane

Network Applications

S <

Network Applications

e Network Visualizations
e Network Provisioning
e Application Monitoring

Northbound APIs/
Protocols

Control Plane

ST T

e Load Balancing
e Multipath Routing
e Intrusion Detection System

Controller 1 Controller 2 Controller 3
A
Southbound APIs/
Protocols
\ 4
Data Plane
Switch 1
Switch 2 Switch 3

e Packet Filtering
e Rule Matching
e Policy-based Packet Forwarding

FIGURE 5. SDN high-level architecture: SDN planes and communication interfaces.

entities is possible with APIs. This enables the flexibility to
design and implement intercommunication between network
entities either through network protocols and/or APIs.

The SDN architecture has two primary interfaces (which
use either APIs and/or protocols), as depicted in Fig. 5 [23],
to enable intercommunication between two different SDN
Planes: The Southbound and Northbound. In SDN termi-
nology they are often referred to as Southbound APIs and
Northbound APIs.

The Southbound API is a communication interface
between the data and control plane. Currently, OpenFlow
is a default standard for this communication. Furthermore,
in SDN, OpenFlow is not the only available protocol for
Southbound interface [24]. Other protocols and/or APIs for
Southbound interface are: Forwarding and Control Element
Separation (ForCES) [25], Network Configuration Protocol
(NETCONF) [26], and Extensible Messaging and Presence
Protocol (XMPP) [27], but they are more rarely used.

The Northbound API is a communication interface
between the control plane and the application plane. Cur-
rently, there is no standardized northbound API. Because of
this, the development of network applications for SDN has
not been accelerated [28]. Nevertheless, most implementa-
tions use REpresentational State Transfer (REST)-based API
because it is platform and language independent [29].

VOLUME 7, 2019

D. OPENFLOW FAULT-TOLERANCE SUPPORT IN SDN

This section discusses OpenFlow fault-tolerance from
the point of view of the requirement for Carrier-grade
networks. Carrier-grade networks usually provide faster
recovery against service failure (i.e recover within 50ms)
[30]. If service is not able to recover within this time,
then service providers may be jeopardizing their business.
OpenFlow was developed to support communication with
non-proprietary FIBs. The OpenFlow protocol provides an
abstraction of FIB through the OpenFlow group table con-
cept. Moreover, the OpenFlow protocol communicates with
the controller, which can trigger modifications in packets
forwarding rules. This makes the FIB programmable through
OpenFlow.

In SDN networks, operations rely on the proper function-
ing of the controller. The control plane in SDN manages
the control logic of switches. The control logic is critical
in SDN based networks. This problem is minimized in the
latest version of the OpenFlow protocol by a master-slave
configuration at the control layer: to increase resiliency. How-
ever, we argue that a tight synchronization must be required
between a master and slave configuration to maintain an
identical state of this configuration or the same copy of the
master controller and this causes extra overhead in networks
and sophisticated network management demands. It is quite

124479

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

challenging, to reach the recovery time equivalent to the stan-
dards set by the Carrier-grade networks, therefore, in order
to enhance OpenFlow fault-tolerance support, mechanisms
that not only maintain controller persistent state but also
provides efficient recovery in case of controller fail-over must
be developed. Another research challenge is the optimization
of recovery time as per the Carrier-grade requirement as well
as scalability. Indeed, Carrier-grade networks are a network
of networks and scalability is a critical aspect. This excludes
any solution not scalable, as such solution is not of interest
for such Carriers.

E. SDN DATA PLANE FAULT-TOLERANCE SUPPORT

SDN data plane fault-tolerance is related to the issues already
present in traditional architectures (e.g. Multiprotocol Label
Switching technology). Due to the static nature of traditional
networks, these approaches can achieve good performance
upon link and node failures. However, failure detection and
recovery approaches in dynamic networks such as SDN
must be re-designed to adapt to the dynamics of the rapidly
changing networks. Traditionally, reactive and proactive
approaches were used to provide Fault-tolerance [31]. In the
reactive approach, an alternative path is calculated after the
fault becomes active. In proactive techniques, the resources
and backup paths are pre-programmed before the occurrence
of a fault (when a fault is dormant). If the fault becomes
active, the pre-programmed logic starts to defend immedi-
ately and recover the system from faults. In this section,
we address such failure detection and recovery approaches.

1) FAILURE DETECTION APPROACHES

The high availability of the data plane plays an important
role to maintain the required communication from source to
destination. To achieve high resiliency in the data plane, two
steps are required: first, design and analyze the topology in
the presence of known and unknown failures; and, second,
to design an alternative path according to the type of fail-
ures that occur in the network. In Carrier-grade networks,
two well-known mechanisms exist to detect failures in the
data plane, namely Loss of Signal (LOS) and Bidirectional
Forwarding Detection (BFD) [32]. LOS detect failures in a
specific port of the forwarding device, while BFD can detect
path failure between any two forwarding devices. Both meth-
ods provide failure detection at an accelerated rate, indepen-
dent of the media type and routing protocols (such as Open
Shortest Path First (OSPF) and Enhanced Interior Gateway
Routing Protocol (EIGRP)).

2) FAILURE RECOVERY APPROACHES

In Carrier-grade networks the recovery mechanism must
guarantee the recovery process within 50 ms [33]. For this
purpose, restoration and protection are widely used to recover
from network service failures — methods based on reactive
and proactive approaches. Protection is classified as a reac-
tive technology while restoration is classified as pro-active
technology. In restoration, an alternative path is only

124480

established after the occurrence of failure and resources are
not reserved before the occurrence of the failure, and the paths
are pre-assigned or allocated dynamically. However, in the
case of protection, the alternative paths are already reserved
and assigned before the occurrence of a failure. This needed
no added processing (signaling) to recover from failure.
In restoration, additional signaling is needed to recover from
failure; in large networks, this is not often possible within the
set requirement of Carrier-grade networks, and thus it is not
scalable. However, in protection, as a matter of fact, the addi-
tional signaling is not required, and recovery process is fast
when compared to restoration, with the recovery process pos-
sible within 50 ms and suitable for Carrier-grade networks.

F. SDN CONTROL PLANE FAULT-TOLERANCE SUPPORT
Control plane resilience is a requirement for proper operation
in networks: the controller is vital, which means that the con-
troller must be able to process all required traffic commands
in all situations. There are several approaches to enhance
SDN control plane fault-tolerance. The first approach is to
replicate a controller on a different control network. In the
case of failure, the replicated controller takes over and man-
ages traffic. In another approach, the controller must be
embedded with mechanisms (build-in module) to self-heal
from targeted attacks such as Denial of Service (DoS), flood-
ing and fake traffic routing and other network- related tar-
geted attacks. However, the control plane time to recover from
such attacks is critical, and ideally, recovery mechanisms
must be developed to mitigate failures within the set network
requirements. In addition to these, the recovery process must
be efficient and must be able to self-heal during a failure event
with minimum overhead. In-band and out-of-band signaling
solutions have been adopted to offer SDN control plane
reliability [34]. In practice, most SDN deployments use out-
of-band control, where control packets are managed by a
dedicated management network [35].

G. SDN APPLICATION PLANE FAULT-TOLERANCE SUPPORT
On an SDN network, the Application plane is the layer that
has applications and services that make requests for network
functions provided by the control plane and the data plane.
On traditional networks, security, management, and monitor-
ing devices or applications reside in this layer.

The application layer allows business applications to mod-
ify and influence the way the network behaves in order to
provide services to customers. This requires the definition
of an API, to allow third-party developers to build and sell
network applications to the network operator. The develop-
ment of such an API has not yet properly addressed by the
Open Network Foundation (ONF) but is required in order to
guarantee interoperability between a business application and
network controllers from different suppliers.

Existing SDN programming languages offer several fea-
tures such as flow installation, policy definition, program-
ming paradigm and abstraction for developing and enabling
network and application fault-tolerance in SDN [36]-[39].

VOLUME 7, 2019

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

V. SDN ARCHITECTURE FAULT-TOLERANCE ISSUES

In this section, first, we highlighted SDN fault-tolerance
issues and then provide state-of-the-art research efforts focus-
ing on such fault-tolerance issues in SDN. Furthermore,
we structure them based on three main layers of SDN archi-
tecture. These are later summarized in Table3, Table 4, and
Table 5.

A. DATA PLANE ISSUES

There are two main data plane layer issues namely: network
failure detection and recovery. These issues arise either due
to link or node failure. As discussed, in traditional networks,
to detect network failure, a particular protocol, such as LOS
and BFD, is used [40]. Also, to recover from network fail-
ure, restoration and protection approaches are widely used.
However, resolving these issues in the SDN environment is
challenging due to the centralized nature of the controller. For
instance, in the SDN-based environment, the controller can
take a longer time to detect and recover from link or node fail-
ure due to the rapid changing abstracted view of the network
(dynamic topology). Therefore, there is a need to develop
mechanisms for SDN that can provide faster recovery [40].

B. CONTROL PLANE ISSUES

There are multiple SDN control plane issues. The three main
issues that are critical to SDN control plane fault-tolerance
can be classified as:

1) CONTROLLER CHANNEL RELIABILITY

In SDN controllers, communications with underlying devices
are critical. Therefore, their availability is a must condition
to protect the proper operations of a network. The controller
channel must be fault-tolerant (reliable) in-case of failure
due to loss of switches connection, or error due to the com-
munications protocols between the controller and underlying
devices. These issues can disrupt the network and lead to
several failures in the SDN network. In order to cope with
these issues, controller redundancy [41], [42] and path backup
are considered essential.

2) CONTROLLER PLACEMENT AND ASSIGNMENT

Controller placement (how to choose the location of con-
trollers) and assignment (how to assign the controllers to the
switches) are two significant issues [43], generally known as
the controller placement problem [44].

The controller’s assignment issue (balance of controllers)
in SDN is important, not only from the point of view of
fault-tolerant controller design but also from the point of view
of network optimization. Improper controller assignment can
lead to two main problems: i) under-provisioning: When a
small number of controllers are placed to handle more traffic
than its capacity of processing. In this case, the controller
is overloaded and possibly increases downtime and affects
network performance, and 2) Over-provisioning: When more
than the required controllers are placed to handle comparably
low traffic environment. In this case, costly controllers are
underutilized.

VOLUME 7, 2019

To deal with the controller placement issue, one of the
strategies is to develop algorithms that can provide optimal
controller placement in dynamic SDN-based networks, which
is also challenging in itself [45].

3) INTER-CONTROLLER CONSISTENCY

In order to avoid a single point of failure in SDN networks,
multi-controllers architecture approaches are pursued, (either
in physically centralized and logically distributed, or fully
distributed fashion with the coordination of different SDN
controllers) [46]. It is important to note that these practices
increase resiliency, but there is a strict requirement for con-
trollers consistency [47]. The level of consistency depends
on stateful or stateless backup settings. The controller must
maintain a persistence state to guarantee controller consis-
tency.

4) MULTI-CONTROLLER ARCHITECTURE FAIL-OVER

In SDN, multi-controller architectures can follow the
flat/horizontal or hierarchical/vertical designs. On the one
hand, in a flat architecture, the control plane has just one
layer, and each controller has the same responsibilities [22].
The advantage of such architecture design is that it provides
more resilience against failure, but the task of managing
controllers is difficult. On the other hand, in a hierarchical
architecture, the control plane has multiple layers, and each
controller has different responsibilities (due to multiple level
partitioning). The advantage of such design is that it provides
a more straightforward way to manage controllers. Both of
these multi-controller architecture approaches can be used to
improve switch to controller latency or vice versa. In both
designs, it is important to consider that controllers must
respond to any fail-over [48] request efficiently and without
affecting the performance.

C. APPLICATION PLANE ISSUES

SDN enables programmability to control network devices
more efficiently but this is highly dependent on the quality
of software development. In order to develop reliable SDN
applications, debugging (the process followed to fix bugs)
and testing (verification) tools can not only advance software
quality but also help in fixing software bugs as service evolves
(continuous development process) [49]. To ensure the quality
of software network troubleshooting, debugging and testing
are consider essential [37].

Network visualization, network provisioning, and applica-
tion monitoring can be conceptualized as an SDN application
layer. For this reason, fault-tolerance of both network and
applications can be supported at the application plane. More-
over, in order to develop fault-tolerant network applications,
all the phases from application design to final application
deployments must undergo proper testing. Currently, there
are certain languages proposed that enable the construction
of fault-tolerant programs to write SDN-based fault-tolerant
systems. Since fault-tolerance of both network and applica-

124481

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

tions can be supported at application plane, the two main SDN
application layer issues are as follows:

1) SOFTWARE TESTING

The network behavior in a SDN-based network is con-
trolled by a set of software programs. For proper net-
work troubleshooting support, the SDN applications must be
resilient [50]. Resilient design help to the identify the root
cause of the bug and the administrator can then track and
isolate faults so that the system can be restored to the correct
operating state.

2) POLICIES CONFIGURATION

In SDN, network management becomes more dependent on
software development due to programmability. There is a
risk that policies across the network can be violated due
to untested errors (bugs) in the application, which can be
propagated to affect SDN controllers, protocols and routing
policies and eventually can lead to network service failure.
Therefore, constant application monitoring is essential to
avoid any violation of network policies [51].

V1. SDN FAULT-TOLERANCE RESEARCH EFFORTS

SDN offers greater flexibility and network automation when
compared with traditional distributed systems, at the risk of
the controller being a single point of failure.

Most of the research carried out has been focused on
exploring these technologies rather than evaluating the asso-
ciated reliability aspects. In recent years, a shift is being made
towards the evaluation of SDN fault-tolerance. We reviewed
the research studies carried out that address SDN data, con-
trol, and application planes fault-tolerance. The details are
summarized in Table3, Table 4, and Table 5. Furthermore,
classification of SDN state-of-the-art research efforts accord-
ing to SDN principal planes and controller architecture is
depicted in Fig. 6.

A. DATA AND CONTROL PLANES

In this section, we discuss main research efforts that have
addressed data and control plane fault-tolerance in the context
of SDN.

Current fault-tolerance techniques are not yet proven
to meet Carrier-grade fault-tolerance requirement (50 ms
recovery time) [30]. A research study carried out by
Sharma et al. [33] provided experimental evidence that pro-
tection provides faster recovery as compared to restoration
and is thus more suitable to guarantee resilience in large
scalable networks [52], [53].

Adrichem et al. [40] argued that time was a critical metric
in the recovery process during network failures. It is still diffi-
cult to develop mechanisms that guarantee efficient recovery.
In their research study, they demonstrated that current fail-
ure recovery approaches (restoration and protection) suffered
from long delays. They introduced a failover scheme based
on a per-link BFD approach and showed that implementa-
tion reduced recovery time. They performed experiments to

124482

evaluate different network topologies and showed that recov-
ery time was consistent irrespective of network size.

Mohan et al. [54] carried-out a research study to pro-
vide fault-tolerance in the specific case of Ternary Content
Addressable Memory (TCAM) limited SDN. They argue that
proactive fault-tolerance policies provide faster failure recov-
ery based on restoring the re-routing paths. This requires
large forwarding rules to be installed on the TCAM, but
TCAM has limited memory. Based on these challenges, they
have developed an optimized programming formulation that
determines the set of backup paths to protect a flow and
minimize the number of forwarding rules for the backup paths
to be installed in the switch TCAM. This means that fewer
rules would be required for backup paths. They proposed two
algorithms Backward Local Rerouting (BLR) and Forward
Local Rerouting (FLR) [54] to improves TCAM and band-
width usage efficiency for single link failure in SDN system.

Li et al. [55] carried research studies to enhanced fail-
ure recovery in SDN with customized control. They have
developed a Declarative Failure Recovery System (DFRS)
based on three algorithms backup path construction, add and
subtract. The Backup paths construction algorithm creates
safe backup paths based on the recovery demands. Further,
it adds and subtracts algorithms to find a minimum number
of the paths to be allocated to guarantee network services
during failure with minimum memory overhead [55]. Three
different topologies were evaluated to test the effectiveness
and scalability of DFRS. They achieved similar performance
to the traditional failure protection algorithm, but with 5%
less backup rules. In the event of failure many switches
are allocated hundreds of forwarding rule for backup; this
burden the switch, affects the performance and delays fail-
ure recovery. The authors argue that the DFRS system only
allocates dozens of forwarding rules to switches, as compared
to the usual hundreds of forwarding rules. Thus, this leads to
effective memory utilization and improved stability.

KuZniar et al. [56] proposed Automatic Failure Recov-
ery (AFRO) for SDN, an automated runtime system that
recovers system failure in OpenFlow system. They argue that
they extend the basic functionality of the controller program
with additional controller agnostic modules that provide effi-
cient recovery.

Kim et al. [57] proposed the SDN fault-tolerant system
CORONET, and they argue that their proposed system pro-
vides recovery against multipath failure in a data plane. How-
ever, since the initial published work in 2012, no significant
contribution was made after, although many evolutions rep-
resented on SDN architectures and protocols.

Schiff et al. [58] presented a model to design
self-stabilizing distributed control planes for SDN and argue
that their proposed technique provides a mechanism to deal
with key challenges of a distributed system, such as bootstrap-
ping and in-band control. Further, they implemented a plug
and play SDN distributed control plane to support automatic
topology discovery and management in dynamic networks.
However, it is important to note that the self-stabilizing

VOLUME 7, 2019

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

TABLE 3. Selected work on SDN data and control plane Fault-tolerance efforts.

Fault-Tolerance Efforts by

SDN Plane(s)

Main Purpose

Check device port failures and consistently monitors failure detection

Sharma et al. [30] Data plane between two forwarding links to support standardized failure detection
methods such as BFD and LOS.
Adrichem et al. [40] Data plane Improve the speed of failure detection in Open vSwitch based imple-

mentation.

Sharma et al. [52], Sharma et al. [53]

Control plane

Meet failure recovery requirements for Carrier-grade networks.

Mohan et al. [54]

Control plane

Improve TCAM and bandwidth efficiency for single link failure in
SDN system by reducing number of flow rules.

Li et al. [55]

Control plane

Compute different backup according to source and destination pairs.

Kuzniar et al. [56]

Control plane

Recover system failures in OpenFlow based controller implementa-
tions.

Kim et al. [57]

Control plane

Develop a fault-tolerant system, able to recover from multiple link
failures in the data plane.

Schiff et al. [58]

Control plane

Presented a model to design self-stabilizing distributed SDN control
planes.

Chen et al. [59] Data and Enable faster recovery with low memory using VLAN tagging concept.
Control plane
Jain et al. [60] Data and Evaluate outage and failure in a private SDN WAN.

Control plane

Selected SDN Fault-Tolerance Research Efforts

SDN Data and Control Plane

Port failures detection
[30] [40]

V Switch failure detection

Failure recovery in Carrier-grade
networks [52], [53]

Failure recovery in TCAM based
SDN system [54]

Path computation for source
and destination backup [55]

System failure recovery
in OpenFlow [56]

Fault-tolerant control
system [57]

Self-stabilizing SDN
Control Plane [58]

Recovery using VLAN
tagging [59]

A case study: Failure in a
Private SDN-WAN [60]

SDN Controller Architecture

Controller reliability

Fault-tolerance controller for small and medium
[62] size networks [63], [64]

Controller resilience and
scalability [65]

SDN fault-tolerance using
Petri-nets [66]

Controller tradeoffs
consistency versus performance [68]

Byzantine
fault-tolerant controller [69]

SDN Application Plane

Troubleshooting
System [73]

Application level
bugs [72]

OpenFlow testing tool
for policy configuration [74]

Fault-tolerant
Programming [75]

against application failures [76], [77]

SDN controller resilience

FIGURE 6. SDN state-of-the-art research efforts: Principal Planes and controller architecture.

distributed plane is still at a very early stage, and a lot more
effort is needed to step forward to a proof of concept stage.
The authors also affirm that a feasibility study is needed to
further validate their proposed model of the self-stabilizing
SDN control plane. Formal proofs are required for this
plug and play distributed model to be shown effective in

VOLUME 7, 2019

meeting fault-tolerance requirements for SDN and future
networks.

Chen et al. [59] proposed a method of protection-based
recovery in SDN using Virtual Local Area Network (VLAN)
tags. They argue that their proposed method provides faster
recovery with low memory usage and without the participa-

124483

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

tion of the controller to switch to backup paths. In their sys-
tem, protection takes 20 ms while recovery on average takes
50 ms to restore from failures. Similarly, Thorat et. al. [61]
proposed a proactive policy to achieve fast failure recovery
using VLAN tags and claims that 99 % reduction in flow
storage is achieved as well as fast failure recovery as set in
Carrier-grade networks.

Jain et al. [60] carried out a study to address network
outage and failures. They evaluated three years of produc-
tion experience with B4, their own SDN enabled Wide Area
Network (WAN) that connects Google’s data center. They
implemented fault-tolerance policies such as customized for-
warding and dynamic relocation of bandwidth and alternative
link recovery using OpenFlow. Generally, control plane pro-
tection is achieved through resource replication and replicas
were placed on different physical servers. They have analyzed
in their study that SDN enabled WAN served more traffic than
public WAN and offered cost-effective bandwidth and nearly
100 % link utilization, enabling high availability of resources.
However, they admit that bottlenecks in the bridging protocol
from the control plane to the data plane exists and needs
to be optimized to improve performance further. Improving
this will offer superior fault-tolerance in future SDN based
networks.

B. CONTROLLER ARCHITECTURE

In this section, we discuss key research efforts that have
addressed controller architecture fault-tolerance in the con-
text of SDN.

Katta et al. [62] studied the fault-tolerance of the controller
under crash failures. They argued that to offer a logically
centralized controller, it is necessary to maintain a consistent
controller state and ensure switch states consistently during
controller failure. Therefore, they have proposed Ravana,
an SDN based fault-tolerant protocol that provides an abstrac-
tion of the logically centralized controller. Ravana handles the
entire event processing cycle and ensures total event ordering
across the entire system. This enables Ravana to correctly
handle switch state and replicas without the need of restoring
to rollbacks. Moreover, it mitigates control messages during
controller failures this help in extending the control chan-
nel interface. Ravana provides a reliable distributed control
for SDN. However, it does not provide support for richer

TABLE 4. Selected work on SDN Controller Fault-tolerance Efforts.

fault models such as Byzantine failures, and it is limited
to multithreaded control applications, and the scalability
is also one of the tests that are not evaluated in Ravana
protocol.

Botelho et al. [63], [64] carried-out research studies and
implemented a prototype that integrates a Floodlight based
distributed controller architecture to BFT-SMaRT (Byzantine
Fault-tolerant (BFT) and State Machine Replication (SMR)),
a replicated state machine library. This enables the consis-
tency between an SDN-controller and their redundant back-
ups stored in a shared database. In their work, three SDN
applications (learning switch, load balancer, and device man-
ager), with slight modifications, were tested to analyze the
workloads these applications were generating and measure
the performance. The result of their study shows that the data
store is capable of handling large workloads, but to maintain a
strong consistency of data there was an increase in latency and
this impacted performance. Thus, the solution seems not to be
scalable, they argue that an acceptable level of fault-tolerance
was easy to achieve. Moreover, the authors also proposed a
practical fault-tolerant SDN controller design for small and
medium networks. A shared database is replicated that save
all network state. This database is created using a Replicated
State Machine (RSM), and in their previous research studies,
they argue that the database meets the performance require-
ments for small and medium networks. They incorporate a
cache in the controller that avoids failure smoothly without
any additional coordination service.

A master and slave controller configuration is implemented
by Fonseca et al. [65] in which the solution to offer control
plan resilience is provided by integrating a Control Plane
Recovery (CPR) module into a standard OpenFlow controller
build upon NOX OpenFlow controller. CPR is a two-phase
process, consisting of replication and recovery, and offer
resilience against several types of failure in an SDN enabled
centrally controlled networks. Similarly, the research stud-
ies carried-out by Tootonchain and Ganjali [67] introduce
HyperFlow to provide control plane resilience. HyperFlow
is a distributed event-based control plane, which is physi-
cally distributed but logically centralized. This enables the
scalability, as well as ensure the benefits of centralized net-
work control. They argue that HyperFlow [70] offers a scal-
able solution for control plane resilience in SDN enabled
network.

Fault-Tolerance Efforts by Controller Architecture Main Purpose

Katta et al. [62] Centralized Develop reliable distributed Control plane for SDN controller.

Botelho et al. [63], [64] Centralized Develop fault-tolerant controller for small and medium size networks.

Fonseca et al. [65] Centralized Enable Control plane resilience and scalability.

Aly et al. [66] Centralized Petri-net based mathematical framework to enhance SDN fault-
tolerance.

Tootoonchian et al. [67] Distributed Enable Control plane resilience and scalability.

Gonzalez et al. [68] Distributed Evaluate trade-off between consistency and performance in a fault-
tolerant SDN platform.

ElDefrawy and Kaczmarek [69] Distributed Develop SDN controller that can tolerates Byzantine faults.

124484

VOLUME 7, 2019

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

Aly and Kotb [66] used SDN-centralized architecture
in which a master controller is connected to a set of
slave-controllers. Based on this set-up, they proposed a
new Petri-net based mathematical framework for SDN
fault-tolerance and named the model FTPNgpn. They claim
that, in order to avoid service disruption, Petri-net capability
functions were used to identify the next back-up controller in
the event of controller failure. They also showed that transi-
tion time needed to take over another controller was reduced
by 10%. They evaluated the performance of their proposed
model, comparing it with the HyperFlow reference model,
and claim that they were able to reduce the 12% packet delay.

Clearly, a single controller point of failure limits scalability
and we argue that the several recent research studies carried
out do not yet provide a mechanism to achieve high-level per-
formance or fault-tolerance at scale in SDN based networks.

To deal with the challenge of SDN controller consistency
and performance, Gonzalez et al. [68] proposed a method
to improve consistency and performance by using some of
the approaches from the recent study carried out by Katta
et al [62]. They design a mechanism to provide better consis-
tency and performance in master-slave SDN configuration.
They consider the performance metric for the SDN controller
based on controller latency and throughput. Their proposed
solution provides consistency and performance close to the
offered by a single SDN controller. However, they emphasize
that a very reliable communication channel is a must between
the master controller and the data store.

ElDefrawy and Kaczmarek [69] proposed a fault-tolerance
SDN controller design that tolerates Byzantine faults. How-
ever, their controller design has not yet achieved high-level
performance for large-scale deployments. Further, they
argued that their controller design is feasible for constructing
resilient networks. In this research study, they have designed
and prototyped a Byzantine-fault-tolerant distributed SDN
controller to tolerate malicious faults both in control and in
data plane as described in Kreutz et al. [2]. Further, they
integrated the two existing SDN byzantine vulnerable con-
troller with the BFT-SMaRt, a tool for creating byzantine
fault-tolerant system [71].

C. APPLICATION PLANE
In this section, we discuss key research efforts that have

addressed application plane fault-tolerance in the context of
SDN.

TABLE 5. Selected work on SDN application plane Fault-tolerance efforts.

SDN offers the flexibility of network programmability but
this raised an issue of software-based troubleshooting and
debugging which need to be addressed, as discussed.

Heller er al. [72] proposed a structured troubleshooting
approach by exploiting the SDN layered architecture. They
aim to develop a tool that would identify bugs by systemati-
cally tracking the root cause of detected failures. This would
save time in diagnosing and enable the network administrator
to directly fix the problems. However, they have not proposed
any system or framework. In a similar way, Scott et al. [73]
also studied SDN troubleshooting and proposed the SDN
troubleshooting system (STS). This system aims to optimize
the debugging time by filtering events not correlated to the
source of failure. They have demonstrated the feasibility
of their proposed system and have tested five SDN control
open-source platforms: ONOS (Java) [78], POX (Python)
[79], NOX (C++) [80], Pyretic (Python) [81], and Floodlight
(Java) [82]. They were able to identify seven new bugs in real-
time, and debugged them using their proposed STS system,
and showed that STS enhances the time-consuming process
for debugging in SDN. Likewise, Canini et al. [74] built
NICE, a troubleshooting tool for SDN. The state-space of the
entire SDN system is explored through model checking. This
approach provides a systematic way to test unmodified con-
troller programs. This tool automates the testing of OpenFlow
application based on model checking and concocts execution
efficiently.

Reitblatt er al. [75] proposed FatTire, a high-level declar-
ative language for writing fault-tolerant network programs in
SDN. This high-level language aims to provide policy-based
network management where SDN programmers can construct
specific policies (for instance, data security and customized
forwarding). Earlier work of Lui et al. [83] emphasize that
connectivity must be realized as data plane service. This work
fits together with FatTire for implementing policy abstrac-
tions. Similarly, a study by Suchara er al. [84] based on
integrating fault-tolerance and traffic engineering possibly
be used with FatTire. Likewise, the Flow-based Manage-
ment Language (FML) [85] specify policies using a declar-
ative language to enforce policies within the enterprise. For
instance, Access Control Lists (ACLs), Virtual Local Area
Networks (VLANSs) and policy-based routing. This differs
from FatTire as it does not provide fault-tolerance policy.
Similarly, Kazemian et al. [S1] introduce NetPlumber, a real-
time tool for policy checking based on Header Space Analysis

Fault-Tolerance Efforts by SDN Plane(s) Main Purpose

Heller et al. [72] Application plane Develop a tool to identify bugs based on the root cause of actual bugs.

Scott et al. [73] Application plane Develop troubleshooting system and framework for SDN.

Canini et. al. [74] Application plane Develop a testing tool for OpenFlow based SDN to detects any
violation of network correctness policies.

Reitblatt et al. [75] Application plane Develop high level language to write fault-tolerant programs to im-

plement network policies.

Chandrasekaran and Benson [76], | Application plane
Chandrasekaranet et al. [77]

Make SDN controller and network resilient to SDN application fail-
ures.

VOLUME 7, 2019

124485

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

(HSA). The authors argue that they have applied this tool to
Google’s SDN and Stanford backbone and analyzed that 50-
500 s on average were required for a rule update against a
single policy.

Chandrasekaran et al. [76], [77] claim that they have
developed a fault-tolerant SDN controller framework called
LegoSDN. The authors aim to achieve recovery of SDN
application against both deterministic and non-deterministic
service failures. Extending this work further, the authors
develop a prototype which isolates SDN application from one
and another, as well as from controller, by running each appli-
cation securely in a sandbox. Thus, all failures are restricted
to its virtual isolated space.

VII. SDN FAULT-TOLERANCE: CHALLENGES AND FUTURE
RESEARCH DIRECTIONS

In this section, we outline future directions for SDN
fault-tolerance development from the perspective of its role
in future intelligent programmable networks. The term pro-
grammability refers to control the set of action, rules or to
enforce a policy by software intelligently. The programma-
bility empowers to utilize multi-vendor hardware/devices
with enhanced flexibility. Moreover, it enables customized
scripting through programming languages to facilitate net-
work administrators to enforce policy-based configuration
on network devices/functions through APIs. Therefore, pro-
grammability is a pre-requisite for enabling network automa-
tion (a practice in which software automatically configure and
test network devices) in a communications network [86].

A programmable network is flexible and re-configurable
because most of the protocol stacks are implemented in soft-
ware. Therefore, network upgrades to replace or configure the
network protocols is possible without the interruption of the
network operations [87], [88].

The term Network softwarization refers to the “‘network-
ing industry transformation for designing, deploying, imple-
menting and maintaining network devices/network elements
through software programming” [89].

A. DATA PLANE PROGRAMMABILITY FOR NETWORK
SOFTWARIZATION

A few research studies included in Table 3 focused on
SDN data plane fault-tolerance using traditional failure
detection approaches (i.e., BFD and LOS) and recovery
approaches (i.e., restoration and protection), that were able
to ensure Carrier-grade reliability. However, due to the emer-
gence of new data plane specifications such as Program-
ming Protocol Independent Packet Processors (P4) [90], and
Protocol-Oblivious Forwarding (POF) [91] new paths toward
the development of novel strategies and standards to support
fault-tolerance opened up. Data plane programmability in
SDN is the next step towards supporting a fast-growing trend
of network programmability [92] and network softwariza-
tion (softwarization of future networks and services) [93].
Traditionally, the network data plane was designed to be
configurable but with fixed forwarding logic (packet pro-

124486

cessing with pre-defined logic). However, the SDN pro-
grammable data plane should provide the flexibility to modify
forwarding logic (customized packet processing). Concern-
ing the SDN data plane, there are still error detection and
recovery issues, which require careful consideration. For
instance, the current probe-based testing solution takes a long
time to generate probe packets, [94], [95] making consistency
between control plane policies and data plane forwarding
behaviors difficult. Furthermore, additional new pipelines are
required in the switch data path for collecting traffic statistics
[96]; this process itself can cause errors.

Due to these challenges, the idea towards data plane
programmability has attracted significant interest from
both academia and industry [97]. Recent research studies
addressed SDN data plane programmability. New data plane
specification (eg., P4 and POF) has been evolved which
extend the feature of SDN beyond OpenFlow specifica-
tions [98]. These new data plane specification can optimized
fault-management in SDN, thus improve SDN architecture
fault-tolerance and reliability aspects. we believe that data
plane programmability is an important area for future SDN
development.

B. CONTROLLER ARCHITECTURE FOR MISSION CRITICAL
COMMUNICATIONS

Controller fault-tolerance research studies included in Table 4
were focused on designing fault-tolerant SDN controller
in scenarios where parameters such as throughput, packet
loss, latency, jitter, and redundancy are more flexible than
mission-critical communications (industrial networks and
intelligent systems) [99], [100], where these parameters
have more stringent demands. Mission-critical applications
are common in different sectors including military, hospi-
tal, automotive safety, and air-traffic control systems [101].
Unfortunately, the research and development of fault-tolerant
SDN controller for mission-critical applications have been
overlooked. Not even the SDN fault-tolerant controller
research efforts (other than mission-critical communica-
tion) are still not yet fully developed. Scalability, perfor-
mance, and data consistency in SDN multi-controller archi-
tectures is still an area of intense investigation [70], [102].
There is a need to develop fault-tolerant SDN control net-
work for mission-critical applications, where designing SDN
controller for mission-critical applications is of significant
importance and quite challenging hence, we believe that
this topic should be addressed comprehensively in future
research.

C. SOFTWARE TOOLS FOR SDN APPLICATIONS
DEVELOPMENT

SDN fault-tolerance research studies included in Table 5
were focused on developing software tools for troubleshoot-
ing, writing fault-tolerant programs, and detect any network
policy violations in application plane. However, the devel-
oped fault-tolerant software tools are still having many
shortcomings, for instance, incomplete repair mechanisms,

VOLUME 7, 2019

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

and high overhead for recovery [9]. Due to the diversity
of network protocols for SDN Southbound and Northbound
APIs, and underway standardization of these diverse proto-
cols, the new SDN applications development has not been
accelerated. Hence, the developed software tools have not
been comprehensively tested and developed to support the
diversity of network protocols used in SDN networks. There
is aneed to develop improved software tools in order to enable
application plane fault-tolerance in future SDN deployments.

VIIl. CONCLUSION

This work presents a survey on fault-tolerance in the
scope of SDN. Also, we provided a simple background on
fault-tolerance and related concepts to develop a complete
understanding of the topic. Our goal was to identify SDN
fault-tolerance requirements specific to the SDN architec-
ture and discuss approaches that can be used to improve
fault-tolerance in SDN.

Current SDN research efforts were structured according to
the three main layers of SDN architecture and categorized
them according to data, control, and application planes.

While exploring the topic of fault-tolerance in SDN,
we have identified that each layer has its faults and
fault-tolerance issues. This means that in order to achieve
fault-tolerance different aspects and features are needed to
be targeted, and no single-focused technology will be able
to provide the reliability expected in commercial networks.

Recent research studies show that SDN can play a pivotal
role in shaping and managing future dynamic networking
environments, such as cloud-native networks, Fifth Genera-
tion (5G) mobile networks [103], wireless networks [104] and
optical networks [105]. However, SDN fault-tolerance is still
in its infancy, and there is a broad spectrum of opportunities
for the research community to develop new fault-tolerance
mechanisms, standards, monitoring, debugging and testing
tools to enforce fault-tolerance in such dynamic networking
environments, able to ensure Carrier-grade reliability.

LIST OF ABBREVIATIONS/ACRONYMS

ACLs Access Control Lists

AFRO Automatic Failure Recovery

APIs Application Programmable Interfaces
BFD Bidirectional Forwarding Detection
BFT Byzantine Fault-tolerant

BLR Backward Local Rerouting
CPR Broadband Forum

DFRS Business Support System

DoS Denial of Service

EIGRP Enhanced Interior Gateway Routing Protocol
FIB Forwarding Information Base

FLR Forward Local Rerouting

FML Flow-based Management Language
ForCES orwarding and Control Element Separation
HAS Header Space Analysis

LOS Loss of Signal

VOLUME 7, 2019

MAC Medium Access Control

NETCONF Network Configuration Protocol

ONF Open Network Foundation

OSPF Open Shortest Path First

P4 Programming Protocol Independent Packet

Processors

POF Protocol-Oblivious Forwarding

REST REpresentaional State Transfer

RSM Replicated State Machine

SDN Software-defined Networking

SMR State Machine Replication

STS SDN Troubleshooting System

TCAM Ternary Content Addressable Memory

VLAN Virtual Local Area Network

WAN Wide Area Network

XMPP Extensible Messaging and Presence Protocol
REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617-1634, 3rd Quart., 2014.

[2] D.Kreutz, F. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network

and OpenFlow: From concept to implementation,” IEEE Commun. Surv.

Tuts., vol. 16, no. 4, pp. 2181-2206, Nov. 2014.

T. Bakhshi, “State of the art and recent research advances in software

defined networking,” Wireless Commun. Mobile Comput., Jan. 2017,

Art. no. 7191647. doi: 10.1155/2017/7191647.

G. Stanley. (2019). Fault Management—The Overall Process and

Life Cycle of a Fault, Accessed: Dec. 12, 2019. [Online]. Available:

https://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/Fault-

Management/fault-management.htm

[6] K. Ngrvag, “An introduction to fault-tolerant systems,” Dept. Com-
put. Inf. Sci., Norwegian Univ. Sci. Technol., Trondheim, Norway,
Tech. Rep. 6/99, 2000.

[7]1 A. Lara, A. Kolasani, and B. Ramamurthy, “Simplifying network man-

agement using software defined networking and OpenFlow,” in Proc.

IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS), Dec. 2012,

pp. 24-29.

P. C. daRocha Fonseca and E. S. Mota, ““A survey on fault management in

software-defined networks,” IEEE Commun. Surveys Tuts., vol. 19, no. 4,

pp. 2284-2321, 4th Quart., 2017.

Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang,

K. Cheng, and X. Xiao, “‘Fault management in software-defined network-

ing: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 349-392,

1st Quart., 2018.

[10] M. van Steen and A. S. Tanenbaum, Distributed Systems, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2017.

[11] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE Trans.
Depend. Sec. Comput., vol. 1, no. 1, pp. 11-33, Jan. 2004.

[12] S. Hukerikar and C. Engelmann, “Resilience design patterns—A struc-
tured approach to resilience at extreme scale (version 1.0),” 2016,
arXiv:1611.02717. [Online]. Available: https://arxiv.org/abs/1611.02717

[13] J. H. Saltzer and M. F. Kaashoek, Principles of Computer System Design:
An Introduction. San Mateo, CA, USA: Morgan Kaufmann, 2009.

[14] R. Jhawar and V. Piuri, “Fault tolerance and resilience in cloud com-
puting environments,” in Computer and Information Security Handbook,
J. R. Vacca, Ed., 3rd ed. Boston, MA, USA: Morgan Kaufmann, 2017,
ch. 9, pp. 165-181. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/B9780128038437000090

[15] M. Hasan and M. S. Goraya, “Fault tolerance in cloud com-
puting environment: A systematic survey,” Comput. Ind., vol. 99,
pp. 156-172, Aug. 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0166361517304438

[4

[l

[5

=

[8

—

9

124487

http://dx.doi.org/10.1155/2017/7191647

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(2018). Fault Tolerant Software Systems: Techniques (Part 4a).
[Online]. Available: https:/slideplayer.com/slide/10093304/[Accessed:
12-Dec-2018]

A. Bucchiarone, H. Muccini, and P. Pelliccione, “Architecting fault-
tolerant component-based systems: From requirements to testing,”
Electron. Notes Theor. Comput. Sci., vol. 168, pp. 77-90, Feb. 2007.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1571066107000291

J. Dobson, I. Sommerville, and G. Dewsbury, Introduction: Dependability
and Responsibility in Context. London, U.K.: Springer, 2007, pp. 1-17.
doi: 10.1007/978-1-84628-626-1_1.

E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and
O. Koufopavlou, Software-Defined Networking (SDN): Layers and
Architecture Terminology, document RFC 7426, Internet Requests for
Comments, RFC Editor, Jan. 2015. [Online]. Available: https://www.
rfc-editor.org/rfc/pdfrfc/rfc7426.txt.pdf

G. Warnock and A. Nathoo, Alcatel-Lucent Network Routing Specialist I1
(NRS 11) Self-Study Guide: Preparing for the NRS Il Certification Exams.
Hoboken, NJ, USA: Wiley, 2011.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, Apr. 2008.

O. Blial, M. Ben Mamoun, and R. Benaini, “An overview on SDN
architectures with multiple controllers,” J. Comput. Netw. Commun.,
Apr. 2016, Art. no. 9396525. doi: 10.1155/2016/9396525.

A. S. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-Filho,
“Resilience support in software-defined networking: A survey,” Com-
put. Netw., vol. 92, pp. 189-207, Dec. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128615003229
W. Braun and M. Menth, “Software-defined networking using Open-
Flow: Protocols, applications and architectural design choices,” Future
Internet, vol. 6, no. 2, pp. 302-336, 2014. [Online]. Available:
https://www.mdpi.com/1999-5903/6/2/302

E. Haleplidis, J. H. Salim, J. M. Halpern, S. Hares, K. Pentikousis,
K. Ogawa, W. Wang, S. Denazis, and O. Koufopavlou, “Network pro-
grammability with ForCES,” IEEE Commun. Surveys Tuts., vol. 17, no. 3,
pp. 1423-1440, 3rd Quart., 2015.

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, Network
Configuration Protocol (NETCONF), document 6241, IETF, 2011.

P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP):
Core, document RFC 2779, IETF, 2011.

R. Jain and S. Paul, “Network virtualization and software defined net-
working for cloud computing: A survey,” IEEE Commun. Mag., vol. 51,
no. 11, pp. 24-31, Nov. 2013.

W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE,
10T, and Cloud, 1st ed. Reading, MA, USA: Addison-Wesley, 2015,
pp. 80-85.

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting carrier-grade recovery requirements,” Comput.
Commun., vol. 36, no. 6, pp. 656-665, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S01403664 12003349
J. Chen, J. Chen, F. Xu, M. Yin, and W. Zhang, ‘““When software defined
networks meet fault tolerance: A survey,” in Algorithms and Architec-
tures for Parallel Processing, G. Wang, A. Zomaya, G. Martinez, and
K. Li, Eds. Cham, Switzerland: Springer, 2015, pp. 351-368.

D. Katz and D. Ward, Bidirectional Forwarding Detection (BFD), docu-
ment RFC 5880, Internet Requests for Comments, RFC Editor, Jun. 2010.
[Online]. Available: https://www.rfc-editor.org/rfc/pdfrfc/rfc5880.txt.pdf
D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,” in
Proc. 18th IEEE Workshop Local Metropolitan Area Netw. (LANMAN),
Oct. 2011, pp. 1-6.

A. U. Rehman, R. L. Aguiar, and J. P. B. Barraca, “A proposal for
fault-tolerant and self-healing hybrid SDN control network,” in Proc. 9th
Simpdsio de Informdtica (INForum), Oct. 2017, pp. 47-52.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization with
software-driven WAN,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 15-26, 2013. doi: 10.1145/2534169.2486012.

C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello, “‘A survey
on SDN programming languages: Toward a taxonomy,” IEEE Commun.
Surveys Tuts., vol. 18, no. 4, pp. 2687-2712, 4th Quart., 2016.

124488

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

G. N. Nde and R. Khondoker, “SDN testing and debugging tools: A sur-
vey,” in Proc. 5th Int. Conf. Informat., Electron. Vis. (ICIEV), May 2016,
pp. 631-635.

J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with pyretic,” in Proc. USENIX, 2013, pp. 1-7.

R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker,
“An assertion language for debugging SDN applications,” in Proc. 3rd
Workshop Hot Topics Softw. Defined Netw. (HotSDN). New York, NY,
USA: ACM, 2014, pp. 91-96. doi: 10.1145/2620728.2620743.

N. L. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, ‘“Fast recov-
ery in software-defined networks,” in Proc. IEEE EWSDN, Sep. 2014,
pp. 61-66.

L. Sidki, Y. Ben-Shimol, and A. Sadovski, “Fault tolerant mechanisms
for SDN controllers,” in Proc. IEEE Conf. Netw. Function Virtualization
Softw. Defined Netw. (NFV-SDN), Nov. 2016, pp. 173-178.

K. Kuroki, N. Matsumoto, and M. Hayashi, “Scalable OpenFlow
controller redundancy tackling local and global recoveries,” in
Proc. 5th Int. Conf. Adv. Future Internet, Barcelona, Spain, 2013,
pp. 25-31.

Y. Tingting, H. Xiaohong, M. Maode, and Y. Jie, ‘““Balance-based SDN
controller placement and assignment with minimum weight matching,”
in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1-6.

G. Wang, Y. Zhao, J. Huang, and W. Wang, “The controller placement
problem in software defined networking: A survey,” IEEE Netw., vol. 31,
no. 5, pp. 21-27, Sep./Oct. 2017.

Y. Jiménez, C. Cervell6-Pastor, and A. J. Garcia, “On the controller
placement for designing a distributed SDN control layer,” in Proc. [EEE
Netw. Conf. (IFIP), Jun. 2014, pp. 1-9.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, ‘“Onix:
A distributed control platform for large-scale production networks,” in
Proc. 9th USENIX Conf. Operating Syst. Design Implement. (OSDI).
Berkeley, CA, USA: USENIX Association, 2010, pp. 351-364. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924968

A. S. Muqaddas, P. Giaccone, A. Bianco, and G. Maier, “Inter-controller
traffic to support consistency in ONOS clusters,” IEEE Trans. Netw.
Service Manage., vol. 14, no. 4, pp. 1018-1031, Dec. 2017.

V. Pashkov, A. Shalimov, and R. Smeliansky, ““Controller failover for
SDN enterprise networks,” in Proc. Int. Sci. Technol. Conf., Modern Netw.
Technol. (MoNeTeC), Oct. 2014, pp. 1-6.

F. Németh, R. Steinert, P. Kreuger, and P. Skoldstrom, ‘“Roles of
DevOps tools in an automated, dynamic service creation architecture,”
in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May 2015,
pp. 1153-1154.

N. Handigol, B. Heller, V. Jeyakumar, and D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?”” in Proc. Ist
Workshop Hot Topics Softw. Defined Netw. (HotSDN). New York, NY,
USA: ACM, 2012, pp. 55-60. doi: 10.1145/2342441.2342453.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “‘Real time network policy checking using header space analy-
sis,” in Proc. 10th USENIX Conf. Netw. Syst. Design Implement. (NSDI).
Berkeley, CA, USA: USENIX Association, 2013, pp. 99-112. [Online].
Available: http://dl.acm.org/citation.cfm?id=2482626.2482638

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, ‘‘Fast
failure recovery for in-band OpenFlow networks,” in Proc. 9th Int. Conf.
Design Reliable Commun. Netw. (DRCN), Mar. 2013, pp. 52-59.

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “‘In-
band control, queuing, and failure recovery functionalities for Open-
Flow,” IEEE Netw., vol. 30, no. 1, pp. 106-112, Jan./Feb. 2016.

P. M. Mohan, T. Truong-Huu, and M. Gurusamy, ‘““Fault tolerance in
TCAM-limited software defined networks,” Comput. Netw., vol. 116,
pp. 47-62, Apr. 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389128617300476

H. Li, Q. Li, Y. Jiang, T. Zhang, and L. Wang, “A declarative failure
recovery system in software defined networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1-6.

M. Kuzniar, P. Peresini, N. Vasié, M. Canini, and D. Kosti¢, “Automatic
failure recovery for software-defined networks,” in Proc. 2nd ACM SIG-
COMM Workshop Hot Topics Softw. Defined Netw. (HotSDN). New York,
NY, USA: ACM, 2013, pp. 159-160. doi: 10.1145/2491185.2491218.
H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and
N. Feamster, “CORONET: Fault tolerance for software defined net-
works,” in Proc. 20th IEEE Int. Conf. Netw. Protocols (ICNP),
Oct./Nov. 2012, pp. 1-2.

VOLUME 7, 2019

http://dx.doi.org/10.1007/978-1-84628-626-1_1
http://dx.doi.org/10.1155/2016/9396525
http://doi.acm.org/10.1145/2534169.2486012
http://doi.acm.org/10.1145/2620728.2620743
http://doi.acm.org/10.1145/2342441.2342453
http://doi.acm.org/10.1145/2491185.2491218

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

IEEE Access

[58]

[59]

[60]

[61]

[62]

[63]

[64

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

L. Schiff, S. Schmid, and M. Canini, “Ground control to major faults:
Towards a fault tolerant and adaptive SDN control network,” in Proc. 46th
Annu. IEEF/IFIP Int. Conf. Dependable Syst. Netw. Workshop (DSN-W),
Jun./Jul. 2016, pp. 90-96.

J. Chen, J. Chen, J. Ling, and W. Zhang, “Failure recovery using
vlan-tag in SDN: High speed with low memory requirement,” in Proc.
IEEE 35th Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2016,
pp. 1-9.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle,
S. Stuart, and A. Vahdat, ‘““B4: Experience with a globally-deployed soft-
ware defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pp. 3-14, 2013.

P. Thorat, S. M. Raza, D. T. Nguyen, G. Im, H. Choo, and
D. S. Kim, “Optimized self-healing framework for software defined
networks,” in Proc. 9th Int. Conf. Ubiquitous Inf. Manage. Com-
mun. (IMCOM). New York, NY, USA: ACM, 2015, pp. 7:1-7:6. doi:
10.1145/2701126.2701235.

N. Katta, H. Zhang, M. Freedman, and J. Rexford, ‘“Ravana: Con-
troller fault-tolerance in software-defined networking,” in Proc. 1st ACM
SIGCOMM Symp. Softw. Defined Netw. Res. (SOSR). New York, NY,
USA: ACM, 2015, pp. 4:1-4:12. doi: 10.1145/2774993.2774996.

F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On the
feasibility of a consistent and fault-tolerant data store for SDNs,” in Proc.
2nd Eur. Workshop Softw. Defined Netw. (EWSDN). Washington, DC,
USA, Oct. 2013, pp. 38-43. doi: 10.1109/EWSDN.2013.13.

F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira, ““On the design
of practical fault-tolerant SDN controllers,” in Proc. 3rd Eur. Workshop
Softw. Defined Netw. (EWSDN), Sep. 2014, pp. 73-78.

P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication com-
ponent for resilient OpenFlow-based networking,” in Proc. IEEE Netw.
Oper. Manage. Symp., Apr. 2012, pp. 933-939.

W. H. F. Aly and Y. Kotb, “Towards SDN fault tolerance using
Petri-nets,” in Proc. 28th Int. Telecommun. Netw. Appl. Conf. (ITNAC),
Nov. 2018, pp. 1-3.

A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. Internet Netw. Manage. Conf. Res.
Enterprise Netw. (INM/WREN). Berkeley, CA, USA: USENIX
Association, 2010, p. 3. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1863133.1863136

A.J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski, “A fault-
tolerant and consistent SDN controller,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1-6.

K. ElDefrawy and T. Kaczmarek, “Byzantine fault tolerant software-
defined networking (SDN) controllers,” in Proc. IEEE 40th Annu.
Comput. Softw. Appl. Conf. (COMPSAC), vol. 2, Jun. 2016,
pp. 208-213.

S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136141, Feb. 2013.

A. Bessani, J. Sousa, and E. E. P. Alchieri, ‘‘State machine replication for
the masses with BFT-SMaRt,” in Proc. 44th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2014, pp. 355-362.

B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarifis, and
P. Kazemian, “Leveraging SDN layering to systematically troubleshoot
networks,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw. (HotSDN). New York, NY, USA: ACM, 2013, pp. 37-42.
doi: 10.1145/2491185.2491197.

C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock, H. B. Acharya, K. Zarifis, and
S. Shenker, ““Troubleshooting blackbox SDN control software with mini-
mal causal sequences,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 395-406, 2014. doi: 10.1145/2740070.2626304.

M. Canini, D. Venzano, and P. Peresini, D. Kosti¢, and J. Rexford,
“A NICE way to test OpenFlow applications,” presented at the
9th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012,
pp. 127-140.

M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declara-
tive fault tolerance for software-defined networks,” in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN).
New York, NY, USA: ACM, 2013, pp. 109-114. doi: 10.1145/
2491185.2491187.

VOLUME 7, 2019

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

B. Chandrasekaran and T. Benson, “Tolerating SDN application fail-
ures with LegoSDN,” in Proc. 13th ACM Workshop Hot Topics Netw.
(HotNets-XIII). New York, NY, USA: ACM, 2014, pp. 22:1-22:7. doi:
10.1145/2670518.2673880.

B. Chandrasekaran, B. Tschaen, and T. Benson, “Isolating and toler-
ating SDN application failures with LegoSDN,” in Proc. Symp. SDN
Res. (SOSR). New York, NY, USA: ACM, 2016, pp. 7:1-7:12. doi:
10.1145/2890955.2890965.

Open Network Foundation. Open Network Operating System
(ONOS). Accessed: Jun. 20, 2019. [Online]. Available: https://www.
opennetworking.org/onos/

The POX Network Software Platform. Accessed: Jun. 20, 2019. [Online].
Available: https://github.com/noxrepo/pox

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
Scott Shenker, “NOX: Towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105-110, 2008.
doi: 10.1145/1384609.1384625.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming lan-
guage,” in Proc. 16th ACM SIGPLAN Int. Conf. Funct. Program.
(ICFP). New York, NY, USA: ACM, 2011, pp. 279-291. doi: 10.1145/
2034773.2034812.

Project Floodlight. Accessed: Jun. 20, 2019. [Online]. Available:
http://www.projectfloodlight.org/floodlight/

H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” SIGCOMM Com-
put. Commun. Rev., vol. 44, no. 4, pp.527-538, Aug. 2014. doi:
10.1145/2740070.2626314.

M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford, “Net-
work architecture for joint failure recovery and traffic engineering,” in
Proc. ACM SIGMETRICS Joint Int. Conf. Meas. Modeling Comput. Syst.
(SIGMETRICS). New York, NY, USA: ACM, 2011, pp. 97-108. doi:
10.1145/1993744.1993756.

T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. 1st ACM Work-
shop Res. Enterprise Netw. (WREN). New York, NY, USA: ACM, 2009,
pp. 1-10. doi: 10.1145/1592681.1592683.

S. Lowe, J. Edelman, and M. Oswalt, Network Programmability and
Automation, 1st ed. Champaign, IL, USA: O’Reilly Media, 2017,
pp. 1-35.

D. E Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira, and
M. Nogueira, “Programmable Networks—From Software-Defined
Radio to Software-Defined Networking,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 2, pp. 1102-1125, 2nd Quart., 2015.

X. Foukas, M. K. Marina, and K. Kontovasilis, “Software defined
networking concepts,” in Software Defined Mobile Networks (SDMN):
Beyond LTE Network Architecture. Hoboken, NJ, USA: Wiley, 2015,
ch. 3, pp. 21-44. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781118900253.ch3

A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Network functions
virtualization: The long road to commercial deployments,” IEEE Access,
vol. 7, pp. 60439-60464, 2019.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and
D. Walker, ‘“P4: Programming protocol-independent packet processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87-95, Jul. 2014. doi:
10.1145/2656877.2656890.

H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw. (HotSDN). New York, NY,
USA: ACM, 2013, pp. 127-132. doi: 10.1145/2491185.2491190.

R. Tischer and J. Gooley, Programming and Automating Cisco
Networks, 1st ed. Indianapolis, IN, USA: Cisco Press, 2016,
pp. 1-64.

A. Galis, S. Clayman, L. Mamatas, J. R. Loyola, A. Manzalini,
S. Kuklinski, J. Serrat, and T. Zahariadis, ‘“Softwarization of future net-
works and services-programmable enabled networks as next generation
software defined networks,” in Proc. IEEE SDN Future Netw. Services
(SDN4FNS), Nov. 2013, pp. 1-7.

P. Peresini, M. KuZniar, and D. Kosti¢, “Monocle: Dynamic, fine-grained
data plane monitoring,” in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technol. (CoNEXT). New York, NY, USA: ACM, 2015, pp. 32:1-32:13.
doi: 10.1145/2716281.2836117.

124489

http://doi.acm.org/10.1145/2701126.2701235
http://doi.acm.org/10.1145/2774993.2774996
http://dx.doi.org/10.1109/EWSDN.2013.13
http://doi.acm.org/10.1145/2491185.2491197
http://doi.acm.org/10.1145/2740070.2626304
http://doi.acm.org/10.1145/2491185.2491187
http://doi.acm.org/10.1145/2491185.2491187
http://doi.acm.org/10.1145/2670518.2673880
http://doi.acm.org/10.1145/2890955.2890965
http://doi.acm.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/2034773.2034812
http://doi.acm.org/10.1145/2034773.2034812
http://doi.acm.org/10.1145/2740070.2626314
http://doi.acm.org/10.1145/1993744.1993756
http://doi.acm.org/10.1145/1592681.1592683
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2491185.2491190
http://doi.acm.org/10.1145/2716281.2836117

IEEE Access

A. U. Rehman et al.: Fault-Tolerance in the Scope of SDN

[95] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every flow
on the right track?: Inspect SDN forwarding with RuleScope,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp- 1-9.

[96] P. Zhang, H. Li, C. Hu, L. Hu, L. Xiong, R. Wang, Y. Zhang, “Mind
the gap: Monitoring the control-data plane consistency in software
defined networks,” in Proc. 12th Int. Conf. Emerg. Netw. Exp. Tech-
nol. (CoNEXT). New York, NY, USA: ACM, 2016, pp. 19-33. doi:
10.1145/2999572.2999605.

[97] H. Farhad, H. Lee, and A. Nakao, “Data plane programmability in
SDN,” in Proc. IEEE 22nd Int. Conf. Netw. Protocols, Oct. 2014,
pp. 583-588.

[98] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, “Data
plane programmability beyond OpenFlow: Opportunities and challenges
for network and service operations and management,” J. Netw. Syst.
Manage., vol. 25, no. 4, pp. 784-818, Oct. 2017. doi: 10.1007/s10922-
017-9423-2.

[99] M. Bouet, K. Phemius, and J. Leguay, “Distributed SDN for mission-
critical networks,” in Proc. IEEE Mil. Commun. Conf., Oct. 2014,
pp. 942-948.

[100] V. Gkioulos, H. Gunleifsen, and G. K. Weldehawaryat, “A sys-
tematic literature review on military software defined networks,”
Future Internet, vol. 10, no. 9, p. 88, 2018. [Online]. Available:
https://www.mdpi.com/1999-5903/10/9/88

[101] R. Carreras Ramirez, Q.-T. Vien, R. Trestian, L. Mostarda, and P. Shah,
““Multi-path routing for mission critical applications in software-defined
networks,” in Industrial Networks and Intelligent Systems, T. Q. Duong
and N.-S. Vo, Eds. Cham, Switzerland: Springer, 2019, pp. 38-48.

[102] M. Karakus and A. Durresi, “A survey: Control plane scalability
issues and approaches in software-defined networking (SDN),” Com-
put. Netw., vol. 112, pp. 279-293, Jan. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138912861630411X

[103] A. Hakiri and P. Berthou, Leveraging SDN for the 5G Networks.
Hoboken, NJ, USA: Wiley, 2015, ch. 5, pp. 61-80. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118900253.ch5

[104] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined network-
ing: A survey and taxonomy,” IEEE Commun. Surveys Tuts., vol. 18,
no. 4, pp. 2713-2737, 4th Quart., 2016.

[105] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and
W. Kellerer, “Software defined optical networks (SDONs): A com-
prehensive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4,
pp. 2738-2786, 4th Quart., 2016.

A. U. REHMAN received the bachelor’s degree
(Hons.) in telecommunications engineering from
Mohammad Ali Jinnah University, Pakistan,
in 2009, and the master’s degree (Hons.) in
telecommunications engineering from The Uni-
versity of Sunderland, U.K., in 2011. He is
currently pursuing the Ph.D. degree in telecom-
munications with MAP-tele (a joint Doctoral
Program of the Universidade do Porto, the Uni-
versidade de Aveiro, and the Universidade do
Minho, Portugal, all three universities with a strong tradition in the area
of telecommunications engineering). He was a Visiting Instructor with
Telecom Foundation, Pakistan. He was a Teaching Assistant with Moham-
mad Ali Jinnah University, for several years. He is currently involved in
the research areas of telecommunications and the Internet at the Instituto
de Telecomunicacdes, Portugal, where he is currently an Active Member
of the Network Application and Services Group. His research interests
include software-defined networking (SDN), network functions virtualiza-
tion (NFV), and the reliability and resilience of future networks. He is also a
member of the Communications Society (ComSoc) and the IEEE Software
Defined Networks Community.

124490

RUL L. AGUIAR received the degree in telecom-
munication engineering and the Ph.D. degree in
electrical engineering from the Universidade de
Aveiro, in 1990 and 2001, respectively, where he
is currently a Full Professor and is responsible for
networking area. He has been an Adjunct Profes-
sor with INI, Carnegie Mellon University, and a
Visiting Research Scholar with the Universidade
Federal de Uberlandia, Brazil. He is coordinat-
ing a research line in the area of networks and
multimedia nationwide with the Instituto de Telecomunicagdes. His current
research interests include the implementation of 5G networks and the future
Internet. He has over 450 published articles in his research areas, including
standardization contributions to the IEEE and the IETF. He is also a Senior
Member of the Portugal ComSoc Chapter Chair and a member of the ACM.
He has served as the Technical and General Chair of several IEEE, ACM,
and IFIP conferences and as an IEEE ComSoc Distinguished Lecturer. He is
the current Chair of the Steering Board of the Networld 2020 ETP. He is
regularly invited for keynotes on 5G and the future Internet subjects. He sits
on the TPC of most major IEEE ComSoc conferences. He is also an Associate
Editor of ETT (Wiley) and Wireless Networks (Springer). He has helped in
the launch of ICT Express (Elsevier).

JOAO PAULO BARRACA received the Ph.D.
degree in informatics engineering from the Uni-
versidade de Aveiro, in 2012, where he is cur-
rently an acting Assistant Professor. He conducts
research with the Instituto de Telecomunicacdes,
having led the TN-AV Group, from 2015 to 2016.
He has close to 100 peer-reviewed publications
and reports related to solutions for the Internet
of Things and software for cloud environments,
with a focus on software-defined networking and
5G Networks. Having participated in many review panels, he has also
organized workshops and conferences. He has participated in more than
20 projects, either developing novel concepts or applying these concepts
in innovative products and solutions. He leads the FCT/CAPES DEVNF
Project in Portugal devoted to NFV orchestration, the local teams of EU
LIFE-PAYT, participates in European Science Cloud for Astronomy (EU
AENEAS), the local team in the P2020 (CRUISE Project), the security team
at P2020-Social, participates in the EU Interreg CISMOB smart cities pilot,
the Engage SKA research infrastructure, and the Square Kilometer Array
System (SKA) Team, and having lead activities for TM-LINFRA, among a
dozen other innovation projects. Recently, he received the third place from
the INCM Innovation Challenge, for the development of a project targeting
smarter environments for public transports in smart cities, using blockchain
technologies.

VOLUME 7, 2019

http://doi.acm.org/10.1145/2999572.2999605
https://doi.org/10.1007/s10922-017-9423-2
https://doi.org/10.1007/s10922-017-9423-2

	INTRODUCTION
	RELATED WORK
	CONTRIBUTION AND SCOPE OF THIS SURVEY

	BACKGROUND AND RELATED CONCEPTS
	FAULT-TOLERANCE OVERVIEW
	FAULT-TOLERANCE PHASES
	FAULT-TOLERANCE TECHNIQUES

	FAULT-TOLERANCE IN SDN
	SDN ARCHITECTURE OVERVIEW
	CONTROLLER
	SOUTHBOUND AND NORTHBOUND APIS
	OPENFLOW FAULT-TOLERANCE SUPPORT IN SDN
	SDN DATA PLANE FAULT-TOLERANCE SUPPORT
	FAILURE DETECTION APPROACHES
	FAILURE RECOVERY APPROACHES

	SDN CONTROL PLANE FAULT-TOLERANCE SUPPORT
	SDN APPLICATION PLANE FAULT-TOLERANCE SUPPORT

	SDN ARCHITECTURE FAULT-TOLERANCE ISSUES
	DATA PLANE ISSUES
	CONTROL PLANE ISSUES
	CONTROLLER CHANNEL RELIABILITY
	CONTROLLER PLACEMENT AND ASSIGNMENT
	INTER-CONTROLLER CONSISTENCY
	MULTI-CONTROLLER ARCHITECTURE FAIL-OVER

	APPLICATION PLANE ISSUES
	SOFTWARE TESTING
	POLICIES CONFIGURATION

	SDN FAULT-TOLERANCE RESEARCH EFFORTS
	DATA AND CONTROL PLANES
	CONTROLLER ARCHITECTURE
	APPLICATION PLANE

	SDN FAULT-TOLERANCE: CHALLENGES AND FUTURE RESEARCH DIRECTIONS
	DATA PLANE PROGRAMMABILITY FOR NETWORK SOFTWARIZATION
	CONTROLLER ARCHITECTURE FOR MISSION CRITICAL COMMUNICATIONS
	SOFTWARE TOOLS FOR SDN APPLICATIONS DEVELOPMENT

	CONCLUSION
	REFERENCES
	Biographies
	A. U. REHMAN
	RUI. L. AGUIAR
	JOÃO PAULO BARRACA

