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ABSTRACT Scattering and turbulence are the main factors affecting imaging in natural water environment.
A new model for underwater turbulent degradation is obtained by calculating the scattering transfer factors
including the intensity distribution of beam propagation, turbulent fluid medium and suspended particle.
In order to verify the proposed model, a controlled laboratory simulation system of turbulent water is
established, from which the degradation transfer factor is measured and compared by image restoration
and reconstruction. The new model is also applied for field tests in natural ocean water. Experimental results
show that based on the proposed model, effect of image restoration and reconstruction can be substantially
improved, which proves the correctness and validity of the model.

INDEX TERMS Beam propagation, scattering, underwater turbulence, image restoration, image
reconstruction.

I. INTRODUCTION
The light beam transmitted in water will be attenuated due
to the absorption and scattering of water. On the other hand,
it will change its original transmission direction due to the
scattering of suspended particles and turbulence in the water.
In the marine environment, water molecules, soluble organic
substances, inorganic salts, floating plants and other kinds
of suspended particles are the main factors that cause the
scattering of light beams. The turbulence existed in water can
be regarded as the density fluctuation caused by the random
molecular motion, which also has the scattering effect on
the beam propagation. As a result, the degradation factors of
the turbulent water body mainly include the scattering of the
turbulent fluid medium and that of the suspended particles.

The previous degradation models of underwater imaging
are based on the absorption and attenuation of water [1], such
as Duntley model [2], Voss model [3], Wells small angle
approximation model [4]. For studies on the scattering of the
turbulent fluid medium, there exist three models used for
the calculation of ocean turbulence: the κ − ε model [5],
the κ − κL model [6] and the GOTM model (General Ocean
Turbulence Model) [7]. The above models are mainly aimed
at the characteristics of turbulent flow, and it is not aimed
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at the degradation of underwater imaging. For the study of
suspended particle scattering, the theoretical research mainly
includes the statistical method [8] and Monte Carlo simula-
tion methods [9]–[11], most of which are experimental mea-
surements, and the main purpose is the inversion of particle
size [12], [13]. So there exists no specific model for the
degradation of suspended particles in turbulence.

In recent years, the research on underwater image
restoration has mostly focused on the application of math-
ematical methods such as depth neural network to image
processing [14]–[21]. Studies on degenerate models mainly
includes: Professor Hou and his colleagues proposed and
studied the degradation model [22]–[24] and image restora-
tion [25], [26]of undersea turbulence in various ocean
imaging environments; Mohua [27] proposed a new image
formation model for image restoration; In my previous
papers, the underwater imaging degradation model based on
beam propagation is also established for obtaining the point
spread function (PSF) [28]. In above models, particle scat-
tering and path radiance are commonly obtained as constant
or measured factors. As a result, the new model is dedicated
to the study of scattering of suspended particles and fluid in
turbulent water bodies.

In this paper, a new degradation model is proposed, which
considers the scattering degradation factors of beam propaga-
tion, turbulent fluid medium and suspended particle. In order
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to verify the correctness and validity of the model, a water
imaging experiment platform was built, modulation transfer
function (MTF) was measured and applied to image restora-
tion and reconstruction algorithms [29], the result of which
were compared and analyzed. Finally, field tests in sea water
were carried out for further verification.

II. THEORY
Considering the turbulence as an optical system, the opti-
cal transfer function of underwater imaging system can be
obtained by calculating the scattering transfer factors includ-
ing beam propagation, turbulent fluid medium and the sus-
pended particle.

A. BEAM PROPAGATION TRANSFER FACTOR
The distribution of light field and intensity in the three-
dimensional rectangular coordinate system on the imaging
plane can be expressed as [19]:
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where 02
= (pr/k)2, �2

= 4q2r2/k2, p = 1/w0x , q =
1/w0y, w0x ,w0y denote the waist widths of beams in fast and
slow axes, k is wave numbers in vacuum, k = 2π/λ, r is
distance from observation point to origin coordinate. Hm is
the Hermits term, order of which is determined by the actual
measured intensity distribution, cm is Weighting factor and A
is the constant amplitude factor.

For a stack consisting of several light sources, the light
intensity distribution will change due to the correction of the
directivity factor of the array:

Ir (x, y, z) =
n∑
i=1

Ii{(y−1yi) ∗ cosθ} (3)

where 1yi and θ denote the position and angle shift of array
intensity distribution relative to the principal optical axis.

Then the degradation transfer factor of beam propagation
can be calculated by:

MTFbeam =
πF(Ir/Ir=0)

4
(4)

B. TURBULENT FLUID MEDIUM TRANSFER FACTOR
The general form of turbulent fluid medium degrada-
tion transfer function can be expressed by the following
equation [30]:

MTFtur = MTFopt exp[−
1
2
W (λf )] (5)

where MTFopt denotes the Modulation Transfer Function of
optical system, λ is optical wavelength, f is spatial angular
frequency, and W (λf ) denotes the turbulent wave structure
function.

The Modulation Transfer Function of optical system can
be calculated by the diffraction limit of optics and nonlinear
distortion of sensors [31]:
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where fo =
Dp
λ

is the optical cut off frequency at the image
plane, Dp is the diameter of the lens, dp is the size of pixels.

Considering the underwater turbulence as a homogeneous
isotropic transmission medium, the wave structure function
of the optical wave propagating in the underwater turbulence
to the distance of d can be expressed as [32]:

W (λf ) = 8πµ2d

∞∫
0

[1− J0(αη)ψ(α, l,L)]αdα (7)

where µ= 2π /λ is the wave number of the transmission of
waves, J0(αη) is the zero order Bessel function, α is spatial
wave number, η denotes the diameter distribution on the plane
of vertical direction of transmission at distance d , ψ(α, l,L)
is a simplified von Karman refractive index spectrum, and its
expression is [32]:

ψ(α, l,L) = 0.0165α-11/3[exp(-
ε2
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(2π/L)2
)] (8)

where l and L denotes the inner and outer scales of turbulence
respectively.

Using the combined hyper geometric function solutions of
wave structure function, we can get the final expression of
Eq.5 as the turbulent fluid medium degradation factor:
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where 0 is the combined hyper geometric function.

C. SUSPENDED PARTICLE TRANSFER FACTOR
Regarded the tiny suspended particles in the water body as
homogeneous spherical particles, the Stokes vector of the
scattering and absorption of a single particle is [33]:

S = [I Q U V]T (10)
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where S denotes the Stokes vector, I is the total light intensity,
Q, U and V are the different directions and types of polariza-
tion respectively.

Based on the Mueller matrix, the vector relation between
the incident light and the scattered light can be expressed as:

Ss = M4×4 × Si (11)

where Si and Ss denotes the Stokes vector of the incident light
and the scattered light,M4×4 is the Mueller matrix including
16 elements.

The expression of the Mueller matrix can be written
as [32]:

M4×4 =
F4×4
µ2d2

=
1

µ2d2
·


F11 F12 0 0
F12 F22 0 0
0 0 F33 −F34
0 0 F34 F33


(12)

where d is the imaging distance from observer to scattering
point, µ is the wave number, F4×4 is the transformation
matrix.

The size and location of suspended particles with a cer-
tain concentration in turbulent water follow the law of ran-
dom distribution, each of which is not coherent; as a result,
the scattering of suspended particles group can be seen as
linear superposition of single particle scattering, which can be
calculated by using the statistical method. The corresponding
scattering matrix can be calculated by:

S4×4 =


S11 S12 0 0
S12 S22 0 0
0 0 S33 −S34
0 0 S34 S33

 =
4π

r2∫
r1
F4×4n(r)dr

η2
r2∫
r1
σsn(r)dr

(13)

where S4×4 is the volume scattering matrix, each element
of which denotes the relative change amount of amplitude
and phase from incident light to scattering light, r is the
radius of suspended particle, r1 and denotes r2 the lower and
upper bounds of the particle radius respectively, n(r) is the
particle size distribution, σs denotes the particle scattering
cross section.

The incident light in the scattering plane of the azimuth
angle of ϕ can be divided into two vibration components
along the X axis and the Y axis, the parallel vibration com-
ponent Exi and the vertical vibration component Eyi of which
can be expressed by [34]:

Ehi = cosϕExi+ sinϕEyi

Evi = sinϕExi− cosϕEyi (14)

The Stokes vector of Ehi is (1,1,0,0), while the Stokes
vector of Evi is (1, -1,0, 0). The intensity of light is the square
of the amplitude, so we have:

Ihs = (S11 + S12)Ihi
= (S11 + S12) |cosϕExi+ sinϕEyi|2

Ivs = (S11 − S12)Ivi
= (S11 − S12) |sinϕExi− cosϕEyi|2 (15)

where S11, S12 are Muller matrix elements.
The scattered light intensity in the specific scattering direc-

tion can be expressed by:

Is(θ, ϕ) = Ihs(θ, ϕ)+ Ivs(θ, ϕ) (16)

As a result, the volume scattering function of sus-
pended particles can be calculated as:

β(θ, ϕ) = (S11 + S12) |cosϕExi+ sinϕEyi|2

+ (S11 − S12) |sinϕExi− cosϕEyi|2 (17)

The broadening pulse time caused by the scattering of
particles can be calculated by the following formula [35]:

δT = t1−t0 =
1
c
{

1/3

s · d · θ20
[(1+ 2sdθ20 )

3/2
− 1]− 1} (18)

where c is the speed of light in water; d is the transmission
distance, s is the scattering coefficient of the water body;
θ0 denotes the root mean square scattering angle of the phase
function which can be calculated as follows:

θ0 = (

π∫
0

θ2·
β(θ, ϕ)

s
dθ )1/2 (19)

The time broadening of the light beam can be regarded
as the point spread distance, which is the point spread func-
tion (PSF) after normalization, and theMTF can be calculated
by the Fourier transform of the PSF:

MTFpar

= F(PSFpar) = F
(
log10(π (c · δT )

2)
)

= F

(
log10<π ({

1/3

s · d · θ20
[(1+ 2sdθ20 )

3/2
− 1]− 1})2 >

)
(20)

Then the total MTF of the turbulent degradation can be
expressed as:

MTFimage = MTFbeam ·MTFpar ·MTFtur (21)

The formulas for calculating the three MTF components
are Equations 4, 9, and 20.

The PSF of the imaging system can be obtained from the
MTF by Hankel transform in the form of [36]:

h = 2π
∫
J0(2πθϕ)MTFimage(ϕ)ϕdϕ (22)

where θ is the spatial angle, ϕ is the spatial frequency, J0 is
the Bessel function.

Using PSF as prior knowledge, the main principle of the
blind restoration and total variation regularization super-
resolution reconstruction can be generally described as the
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following iterative equations which is studied by previous
works [31], [37]:

min
f
J (f ) = min

f
(
1
2

∥∥∥f ∗ h− f ′∥∥∥2 + σJσ (f )) (23)

fn+1 = P[fn +
j∑

i=1

λP(gi − hfi)] (24)

where f
′

and f represent the observation image and the
original image respectively, h is the PSF of the system which
can be derived from the proposed model, ∗ is the convolution
operation. The purpose of restoration is to solve f from the
equation. To solve this problem, the point spread function can
be used as a priori knowledge and regularization technique
as a constraint. Jσ (f ) is the penalty factor. Eq.23 is a regu-
larized algorithm to end iteration. If the algorithm is applied
directly and alone, the image will be restored. If the algorithm
is applied to eq.24, it will be part of the super-resolution
reconstruction. fn+1 and fn are the iteration results of the
n+1th and nth iterations, gi is the observed low resolution
image sequence, λ is the simple operator, fi is the starting esti-
mate which can be obtained by interpolation, i = 1, 2, . . . j is
the number of limit sets, P is the projection operator. The gi is
interpolated to form fi, then the point spread function h and fi
are computed by Convolution Multiplication to simulate gi,
and the set is formed by recording the closest points of
gi and hfi. Then, the h is iterated over the high-resolution
mesh fn to finish the iteration by regularization.

III. EXPERIMENTS AND DISCUSSION
A. CONTROLLED LABORATORY SIMULATION
A laboratory turbid water environment with controlled sim-
ulated turbulence is established for experiments. The exper-
imental system consists of a water pump as power, a flow
meter and other equipment connected with a water tank to
form a water circulation system. Experimental suspended
particles are added into the tank water to form turbidity. The
532nm green semiconductor laser is used as light source with
spot size of 10-20mm; CMOS (Complementary Metal Oxide
Semiconductor) image sensor is used to capture underwater
turbulence images. The experimental water tank is made of
high-transmittance acrylic plates, in order to allow more than
90% of the laser source to shine on the target plate. The size
of the water tank is 1.5m ∗ 0.5m ∗ 0.5m, and the two ends are
provided with a water inlet and a water outlet with a cross
section size of 0.04m ∗ 0.04m to connect the water pump
and the flow meter respectively, a circulating pump with a
maximum lift of 5m and a maximum flow of 7.8m3/h is used
to provide water power.

A turbulent flow will be produced when the inlet flow
reaches a certain speed. The laser and CMOS image sensors
are packaged under water and arranged with the target board
at the two ends of the long side of the water tank respec-
tively. The structure and photograph of experimental system
are shown in Fig.1 and Fig.2. The physical properties for
calculating PSF are listed in Table. 1.

FIGURE 1. Structure diagram of experimental system.

FIGURE 2. Photograph of experimental system.

TABLE 1. Physical properties of experimental system.

The water pump drives the flow of water, and the water
valve controls the size of the water flow, Then the flow meter
can read the flow velocity in real time, and then calculate the
turbulent Reynolds number and turbulence intensity. The tar-
get images used are sinusoidal fringe images with frequency
of various lines, the vertical stripes in the center of which
is used for obtaining MTF information, while the horizontal
stripes are for calibrating the shot angle and height of the
camera. Line number of sine fringe marked in the center of
the target is used to check the results of the experiment. The
MTF of an optical system can be calculated as the ratio of
the modulation of the image and the object at a given spatial
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FIGURE 3. Sample images used for measuring MTF.

frequency which is calculated by themaximum andminimum
values of the light intensity [26].

Image decomposition through multi-channel wavelet
transform is applied, in which appropriate wavelet basis is
chosen according to the turbulencemodel. The low-frequency
part of image is simplified using matrix theory, then restored
by iterative blind restoration equation using PSF as prior
knowledge, while edge information of the high-frequency
part is enhanced by the optimization algorithm, and then the
wavelet reconstruction is processed with the restored low
frequency part.

FIGURE 4. The PSF curves of underwater models.

PSF is calculated and applied as prior knowledge in image
processing, the correlation curve is shown in the Fig. 4.

When the water velocity of the inlet is 5 m/s, the target
object is photographed 60 times by CCD sensor in 5 seconds,
the captured image sequences are processed and compared.
Based on the measured MTF [26] and proposed model in this
paper, the processing results of image restoration and super
resolution reconstruction algorithms are shown in Fig.6. The
core algorithm for restoration is blind deconvolution algo-
rithm, and that for super resolution reconstruction is total
variation POCS (Projections onto Convex Sets) algorithm.
Meanwhile, Hou’s model [25], the Robust model [38], are
also added to the comparative experiments. When the water
velocity of the inlet is 20 m/s, the original captured sample
image and processed results are shown in Fig.7 and Fig.8.

Peak Signal to Noise Ratio (PSNR) and structural similar-
ity index (SSIM) are selected as the evaluation criteria for
the images compared with the clear images on the shore of
the target board. At the same time, blind, objective image
quality metrics are applied to evaluate the performance of
the image enhancement algorithms [39]. According to the

FIGURE 5. Original captured image of underwater object (size
2766×2074 pixels).

FIGURE 6. Restoration results (size 2766×2074 pixels) by: (a) Hou’s
model (HOU), (b) robust model ROB), (c) measured model (MEA),
(d) proposed model (PRO), and reconstruction results (size
4608×3456 pixels) by: (e) Hou’s model (HOU), (f) robust model ROB),
(g) measured model (MEA), and (h) proposed model (PRO).

FIGURE 7. Original captured image of underwater object (size
2766×2074 pixels).

FIGURE 8. Restoration results (size 2766×2074 pixels) by: (a) Hou’s
model (HOU), (b) robust model ROB), (c) measured model (MEA),
(d) proposed model (PRO), and reconstruction results (size
4608×3456 pixels) by: (e) Hou’s model (HOU), (f) robust model ROB),
(g) measured model (MEA), (h) proposed model (PRO).

characteristics of image restoration and image reconstruction,
the blur metric (BM) [28], [31], the gray mean grads (GMG),
and Laplacian sum (LS) [28] are chosen. The smaller the BM
value means clearer image, while higher the GMG and LS
values means the higher image quality. The evaluation results
of Fig.6 and Fig.8 are shown in Table.2 and Table.3. The
processing time of the algorithms are shown in Table.4.
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TABLE 2. Evaluation results of Fig.6.

TABLE 3. Evaluation results of Fig.8.

TABLE 4. Comparison of algorithm running time (min).

From the subjective point of view, in the case of restoration
in micro-turbulence, the Hou model and the model proposed
in this paper perform better than the other two models, in
which robust model has a serious ringing effect. Because
Robust model is also proposed by our group, it is found that
this method can only be applied to the degradation caused by
the beam transmission, but cannot solve the turbulence prob-
lem. In the case of restoration in strong turbulence, the Hou
model also does not perform well. But the model based on
measurement and the model proposed in this paper have
better performance. In the case of reconstruction, the model
based on measurement and the model proposed in this paper
have better performance both in micro and strong turbulence
circumstances.

From the values of PSNR and SSIM, in the case of restora-
tion in micro-turbulence, robust model also has the lowest

FIGURE 9. Original captured image of underwater object in shallow sea
water (size 2766×2074 pixels).

values, while the Hou model has the highest values, which
is slightly higher than the proposed model. In the case of
restoration in strong turbulence, the proposed model has the
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FIGURE 10. Restoration results (size 2766×2074 pixels) by: (a) Hou’s model (HOU), (b) Robust model ROB), (c) Measured model (MEA),
(d) Proposed model (PRO), and reconstruction results (size 4608×3456 pixels) by: (e) Hou’s model (HOU), (f) Robust model ROB), (g) Measured
model (MEA), (h) Proposed model (PRO).

highest values which is slightly higher than the Hou model.
In the case of reconstruction in micro-turbulence, both the
measured model and proposed model performs better than
other two models, while in the case of strong turbulence, only
the proposed model performs better.

In addition, it is found that the proposed method has advan-
tages in SSIM, but it has limitations in PSNR, which is found
to be the influence of image noise. If the image is denoised
firstly, the value of PSNR will be significantly improved.
Therefore, the proposed model has a low tolerance to noise.

From the perspective of other evaluation indicators,
the clearness by image restoration can be seen in the BM
values of restored results, in which the restoration using
measured model performs best, the effect of proposed model
is also better than the Hou and robust model.

The magnification enhancement by image super resolu-
tion reconstruction can be seen in the GMG and LS values,
in which the reconstruction using proposed model performs
best.

From the above experimental results, we can see that
robust model cannot be applied to turbulence degradation,
Houmodel can be applied to micro-turbulence, and measured
model can be applied to strong turbulence. The model pro-
posed in this paper can be applied to both micro-turbulence
and strong turbulence circumstances.

As can be seen from Table 4, Hou’s model and
measurement-based model are faster while the Robust model
is the slowest. The proposed model is slower, but within the
acceptance range. Since the focus of this paper is on the
validity of the model, the speed of the algorithm will be
further studied for practical use in the future.

FIGURE 11. Original captured image of underwater object in deep sea
water (size 2766×2074 pixels).

As a result, the PSF calculated by proposed model can
effectively enhance the performance of image restoration
and reconstruction, and shows advantage compared to other
models, which verifies the correctness and effectiveness of
the proposed model.

B. FIELD TESTS IN OCEAN WATER
The MTF of nature water can be measured by the turbu-
lent velocity field using a Particle Image Velocimetry (PIV)
method in which small bubbles are seeded into the water
as non-polluting tracing particles. The velocity field distri-
bution in the flow field can be obtained by auto correlation
and cross-correlation algorithms using flow particle images
captured in the vertical direction of laser beam which illumi-
nating a thin film layer in the flow field [40].
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FIGURE 12. Restoration results (size 2766×2074 pixels) by: (a) Hou’s model (HOU), (b) robust model ROB), (c) measured model (MEA),
(d) proposed model (PRO), and reconstruction results (size 4608×3456 pixels) by: (e) Hou’s model (HOU), (f) robust model ROB),
(g) measured model (MEA), and (h) proposed model (PRO).

TABLE 5. Evaluation results of fig.10.

TABLE 6. Evaluation results of fig.12.

The experimental data were obtained by an underwater
imaging system which consists of a LD laser operated at
532-nm as light source, and two CMOS sensor as image
sensor, in which one sensor is used for capturing the images
of bubbles, while the other one for the images of underwater
object, the bubbles was generated by bubble generator at a
distance of 0.5m from laser and CMOS sensor.

In order to verify the practical role of the proposed model,
MTF based restoration and reconstruction algorithms are
applied to the images captured in ocean with turbulence. The
original image obtained in Shallow South China Sea and
enhanced images are shown in Fig.9 and Fig.10, while the
sample image captured in deep sea and its processing results
are shown in Fig.11 and Fig.12.
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TABLE 7. Comparison of algorithm running time (min).

FIGURE 13. Original images and Restoration results (size 3630×2723 pixels) by: (a) Hou’s model (HOU), (b) robust model ROB), (c) measured model
(MEA), (d) proposed model (PRO).

As there is no clear picture of the target board, only BM,
GMG and LS can be used as evaluation criteria. The eval-
uation results of Fig.10 are shown in Table.5, while that
of Fig.12 are shown in Table.6. The processing time of the
algorithms are shown in Table.7.

From the subjective and objective point of view,
the restoration and reconstruction results of shallow sea are
similar to those of strong turbulence, while that of deep sea
are similar to those of micro-turbulence.

As can be seen in Table.5 and Table.6, The proposed model
also shows effective improvement in image quality.

In order to further verify the validity of the model, two
sets of the TURBID Dataset [41] with the turbidity of I10 are
used for image restoration. The processing results are shown
in Fig.13 and evaluation results are shown in Table.8.

TABLE 8. Evaluation results of fig.13.

It can be seen from the experimental results that Hou’s
model and measured model are inferior, and the proposed
model and Robust model show good results, especially in the
Deep blue data set, the effect of proposed model is better than
other models. This is because the data set is mainly produced
for turbidity. According to the paper of the dataset, the gener-
ation of turbidity mainly affects the scattering. Therefore, the
Robust model for light scattering and the proposed model
considered particle scattering will achieve better recovery
effects. The Hou model for turbulence and the measured
model dependent on measured parameters cannot achieve
good results. The model proposed in this paper can be used
for both turbulence and particle scattering conditions, so it is
more applicable.

The new model can provide guidance on how to mitigate
the effects of turbulence impacts on underwater imaging in
various turbulent environments.

IV. CONCLUSION
The presented effort proposed a new degradation model for
underwater imaging, including the beam propagation trans-
fer factor calculated by intensity distribution, turbulent fluid
medium transfer factor calculated by wave structure function
and the suspended particle scattering transfer factor calcu-
lated by Muller matrix. The experiments are conducted in
turbulent water of both controlled laboratory simulation and
natural environments. The degradation transfer function is
measured in laboratory simulation and compared with the
theoretical model by their application in image restoration
and reconstruction. The result of comparison shows that in
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laboratory and field tests, the model proposed in this paper
show advantages in both micro-turbulence and strong tur-
bulence circumstances. The model proposed in this paper
has broad application prospects in underwater exploration,
geomorphological detection and water quality researches.
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