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ABSTRACT The persistent increases of wireless terminals have brought about diverse shared networks,
where robust and efficient spectrum reuse among heterogeneous users is of critical importance while still
remains as a challenging task for practical application. In this paper, we study the problem of robust spectrum
access (RSA) in a canonical wireless shared network (WSN) with fully considering the inherent dynamics
of the wireless environment. The non-static features of WSNs result in uncertain channel state information
(CSI) and complicated coupling interference, which can’t be directly formulated as the well-accepted crisp
gamemodel, rendering most existing perfect CSI relied approaches inefficient or even unfeasible. To address
this, by interpreting the estimated CSI with uncertainty as fuzzy number, a novel framework referred to as a
non-cooperative fuzzy game (NC-FG) is adopted, whereby the user utility is mapped as a fuzzy value via the
user-defined fuzzy utility function. Based on the derived property of the NC-FG that fuzzy Nash equilibrium
(FNE) exists, a fuzzy-logic inspired reinforcement learning (FLRL) algorithm is proposed to achieve the
FNE solutions of the constructed NC-FG to obtain the RSA in dynamic WSN, with which both the iterative
learning and decision making procedures are implemented in a fuzzy-space, thus the sensitiveness of our
scheme to environmental variations is alleviated. Finally, numerical simulations are provided to demonstrate
the convergence, effectiveness, and superiority of our proposed FLRL algorithm in dynamic WSNs.

INDEX TERMS Dynamic wireless shared network, robust spectrum access, fuzzy space, non-cooperative
fuzzy game, fuzzy-logic based reinforcement learning.

I. INTRODUCTION
As a crucial driven force of the next-generation communi-
cation system development [1], the explosive increases of
data traffic which are resulted from the unprecedented growth
of mobile devices and versatile applications, pose serious
challenges to the limited spectrum resource. Consequently,
the imminent spectrum shortage has produced a new impetus
to seek practical solutions to improve the utilization effi-
ciency of scarce spectrum resource in a sharedmanner. There-
fore, the emerging 5G communication network [2], which is
expected to possess the advantages of supporting awide range
of broadband accesses with higher data-rate as well as lower
latency and providing ubiquitous connectivity for the advent
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of the Internet of Things (IoT) sector [3], continues to pursue
advanced techniques of spectrum efficiency to fulfill the ever-
increasing wireless service requirements.

In recent years, with sophisticated detection/estimation
algorithms [4], [5] laying the foundation for more
effective spectrum sharing schemes [6], [7], seamless
spectrum shared access (SSA) through real-time channel
perception and intelligent system adaption has become
possible [8]. SSA can enhance the utilization efficiency
of scarce spectrum resources by enabling spectrum reuse
among diverse heterogeneous users and support the prolif-
erating wireless service demands of dramatically growing
mobile terminals, hence plays a paramount role in allevi-
ating the spectrum scarcity and facilitating the deployment
of 5G system [9].
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Triggered by SSA, wireless shared networks (WSNs) is
likely to be the development trend of the next-generation
network and has been attracted extensive attentions from both
academic community and industrial practitioners [10]. The
SSA technique based WSNs (such as small-cell networks
and cognitive radio networks) which are usually installed in
hot spot areas to provide wireless services for dense mobile
users [11], maintain the favorable properties of low-power
and high energy efficiency. Given more and more users are
desired to be served with limited spectrum resource, the
co-channel interference (CCI) [12], unless effectively elim-
inated, may become a major cause of users quality of ser-
vice and system performance deterioration in dense WSNs.
Therefore, efficient SSA schemes with the capacities of
suppressing coupling interferences would become essential
for WSNs.

SSA in diverse wireless communication networks has been
extensively investigated [13]–[20]. With the mature cognitive
radio (CR) concept, a clustering-based SSA scheme for mul-
tiuser orthogonal frequency division multiplexing (OFDM)
CR network is studied in [13], and the authors first present
an evolutionary game for joint spectrum sensing and access
problem in [14], then considering the negative network exter-
nality as well as the sequential decision making structure
of shared users, they propose a Bayesian social learning
method for multi-channel sensing and access problem in [15].
For 5G heterogenous network, a comprehensive survey of
advanced techniques for SSA is addressed in [16], and [17]
specifically presents a distributed inter-cell interference coor-
dination (ICIC) accelerated learning algorithm for SSA in
LTE cellular systems, while [18] concentrates on synergis-
tic SSA with a software defined network (SDN)-enabled
approach. For emerging cloud/fog radio access networks,
the authors develop a D2D-enabled distributed approach
for spectral efficiency improvement in [19], and propose
a deep reinforcement learning method for mode selection
and resource management in [20]. Besides, some researches
about SSA problem with varying environmental informa-
tion have been conducted [21]–[23]. Based on a crisp game
approach, [21] investigates the problem of SSA in time-
varying environments with the help of the expectation and
other-order moments of the channel capacity. The underlay
spectrum sharing between the dynamic drone network and the
traditional cellular network is studied in [22]. A user-centric
paradigm for SSA under uncertain traffic model and dynamic
network architecture is analyzed in [23].

Although SSA has been widely reported in the existing
researches for its great promise in relieving the tension of
spectrum resource requirements to support wireless service,
its implementation for future application is not perfectly
addressed. Since those approaches are generally carried out
in the scenarios of static or quasi-static environments, i.e.
the channel state information (CSI) and the mutual inter-
ference remain unchanged in scheduling slots. However,
taking practical applications into account, the stochastic
and dynamic features of the emerging 5G WSNs would

pose some new formidable challenges to the SSA, and
renders the performance of existing SSA schemes hard to be
harvested.

To be specific, first, the varying network topology and
the uncertain CSI make the channel quality evaluation tend
to be inaccurate, which may result in a non-optimal chan-
nel selection. More importantly, the dynamic environmental
conditions would severely deteriorate the stability and con-
vergence of the previous learning algorithms [24]. There-
fore, those existing methods relying on the ideal assumptions
(i.e. definite network topology and perfect estimated CSI),
though may lead to mathematical tractability, would be
inadequate even infeasible in the realistic dynamic wireless
environment. Furthermore, for the works concerning envi-
ronmental variation, there still remains some deficiencies
for practical applications, since the crisp game theory is not
generally enough to formulate the SSA with dynamic and
uncertain information. As such, a robust spectrum access
(RSA) scheme for WSNs which possesses the capability of
combating stochastic features of wireless environment should
be further explored.

To address the requirement for a RSA scheme in the
dynamic WSNs, in this paper, we fully consider the inherent
variations and uncertainties of wireless environment. Rather
than assuming the desirable/interference power gains are
static and adopting the crisp game to describe the spec-
trum sharing competition, we model the uncertain CSI as
fuzzy numbers and then introduce a novel non-cooperative
fuzzy game (NC-FG) to formulate the RSA problem.
On this basis, we propose a fuzzy-logic inspired reinforce-
ment learning [25] (FLRL) algorithm to achieve the equi-
librium solution of our formulated NC-FG, with which the
decision is made in an uncertainty immune space, i.e. a fuzzy
space, thereby the vulnerability of environmental variations
can be remedied. Specific contributions of this paper are
listed as follows.
(1) We formulate an optimization problem of RSA in a

dynamic WSN with maximizing the system capacities.
Given the stochastic features of the realistic wireless
environment, the network topology and the CSI will
become uncertain. By taking the heterogeneous interfer-
ence structure into consideration, the objective is obtain-
ing the robust and optimal spectrum access patten with
reliable transmission assurance and imperfect knowledge
constraint.

(2) We develop a NC-FG to characterize the formulated
optimization problem with the dynamic and uncertain
information restriction, and study its property to demon-
strate the existence of fuzzy Nash equilibrium (FNE).
Assisted by the appealing fuzzy logic, we introduce a
fuzzy-logic space, in which the changing and uncertain
CSI is interpreted as a fuzzy number and the fuzzy utility
function (FUF) is defined as the fluctuated user data-rate.

(3) We propose a robust FLRL algorithm to achieve the equi-
librium solution of the NC-FG to optimize the network
performance, i.e. the overall system capacities. For the
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FIGURE 1. System model of the considered dynamic small-cell network.

designed NC-FG involving fuzzy component, we first
apply fuzzy-logic computations to obtain a fuzzy pref-
erence relation (FPR), and then adopt it to calculate the
priority vector of users. On this basis, the network man-
ager can implement a robust decisionmaking to achieve a
FNE in the derived fuzzy space. Therefore, our scheme is
innately resistant to the environmental uncertainties, and
thereby can fulfill the optimal RSA.

The rest of this paper is structured as follows. We present
the system model and the problem formulation in Section II.
In Section III, premised on the preliminaries of fuzzy set
theory, we formulate a NC-FG, and investigate its property.
The FLRL algorithm for RSA in dynamic WSNs is proposed
in Section IV, and its performances are demonstrated via
numerical simulations in Section V. Finally, we make the
conclusion of our work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. DYNAMIC NETWORK MODEL
We study the RSA problem in a 5G small-cell network with
fully considering the inherent dynamics and uncertainties
of wireless environment. Assume that there are N shared
users and M available channels in the cellular network,
then for the purpose of revealing spectrum resource sharing
and competition among users, without loss of generality we
set N > M . For presentation, denote the set of shared users
asN , i.e.N = {1, 2, . . . ,N }, and the set of available channel
resource as M, i.e.M = {1, 2, . . . ,M}.

As shown in Fig. 1, a specific factor causing the non-
negligible uncertainties in a small-cell network is the inde-
terminate positions of users [26], which may result from
their stochasticmovements. To comprehensively describe this
indetermination and remedy the incomplete position informa-
tion, for an arbitrary user n ∈ N , we assume the unknown
exact location ln = {xn, yn} lies in a circular area with the
imperfect estimated location l̂n = {x̂n, ŷn} as center and ϕn as

radius, i.e.,

ln = l̂n +1ln, (1)

1ln ∈ Ln = {1x2n +1y2n 6 ϕ2n}, (2)

where 1ln = {1xn,1yn} is the estimation error, and Ln is
the uncertain region. Notably, due to the stochastic mobil-
ity of users, the uncertain region Ln may be irregular, but
there is always a circle containing this irregular area. Thus,
the formulated uncertain circular region Ln actually provides
a conservative estimation for other irregular forms.

Clearly, the distance dn,S between user n and the small-cell
base station (SBS) as well as the distance dn,n′ between user
n and user n′ are indefinite, which are given by:

dn,S = |ln − lS | = |(l̂n +1ln)− lS |, (3)

dn,n′ = |ln − ln′ | = |(l̂n +1ln)− (l̂n′ +1ln′ )|, (4)

respectively, where | • | represents the Euclidean norm, and
lS is the location of the SBS.

Here, the free space path-loss (PL) model with rayleigh
fading [27] is adopted to describe the propagation of signal
power gain, then the desirable (interference) power gain hmn,S
(hmn,n′ ) between node n and the SBS (another node n′) on
channel m can be given by:

hmn,∗ =

{
hmn,S = d−αmn,S × ϑm = |ln − lS |

−αm × ϑm,

hmn,n′ = d−αmn,n′ × ϑm = |ln − ln′ |
−αm × ϑm,

(5)

where αm is the PL exponent, and ϑm is the instantaneous
random component of the PL on channel m (m ∈M).
It can be observed that the location uncertainty is finally

transformed to the channel state. Therefore, the assumption
of the position uncertainty can be understood from differ-
ent perspectives. Concretely, on the one hand, it initially
characterizes the unideal position estimation. On the other
hand, it also can reflect the transmission/interference link
uncertainty causing by the dynamic wireless environment.

Hence, we can redescribe the uncertainties of the dynamic
WSNs in the aspect of CSI, which can be expressed as:

hmn,∗ = {ĥ
m
n,∗ +1h

m
n,∗ : |1h

m
n,∗| < ρmn,∗}, (6)

where ĥmn,∗ is the imperfect estimation of the power
gain hmn,∗ [28], and 1h

m
n,∗ is the uncertain estimation error,

which is limited by a boundary ρmn,∗ of the uncertainty.

B. DIRECTED INTERFERENCE MODEL
Considering the finite emission power of users, the transmis-
sion signal of one specific user only affects the users who
are located in its interference region. Denote the transmission
power of node n asPn, and the interference rangeAn of node n
is defined as the range within which the received signal power
from node n is higher than a threshold Pth, i.e.,

An = maxn′∈N {dn,n′ : Pnh
m
n,n′ > Pth}. (7)

Due to the diverse communication demands, the transmis-
sion powers of users are different, which leads to a hetero-
geneous interference range. That is to say, if node n′ lies in
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FIGURE 2. The indefinite interference graph.

the interference area of node n, whereas the converse may not
hold. Therefore, we introduce a directed interference model,
where two nodes n and n′ are connected by a directed line
from n to n′, denoted by n → n′, if the distance dn,n′ is
less than An, which means n′ suffers from the interference of
node n. In this case, the edge set of the directed interference
graph is given by:

E = {(n→ n′) : dn,n′ 6 An}, (8)

and the interference set of user n is denoted as:

In = {n′ ∈ N : (n′→ n) ∈ E}. (9)

Note that the distance dn,n′ would become changeable
and uncertain, when we take the realistic dynamics and the
incomplete information of users’ position into consideration.
As such, both the directed edge set E and the interference
set In tend to be varying and indeterminate. For the network
model shown in Fig. 1, the corresponding indefinite directed
interference graph is drawn in Fig. 2, in which the dotted lines
indicate the uncertain potential interference among users.

C. PROBLEM FORMULATION
Let sn (sn ∈ Sn = M) denote the channel selection of
user n, Bm denote the set of users who select channel m for
competition, i.e. Bm = {n ∈ N : sn = m}, and the number
of these users is represented as βm, i.e. βm = ‖Bm‖, where
‖X‖ indicates the number of elements in the setX . Then with
channel reuse in a WSN, the CCI In of user n is given by:

In =
∑

i∈In∩Bsn
Pih

sn
n,i. (10)

To ensure the reliable communication quality, the suffered
CCI of nodes should be below an interference threshold Ith,
and a transmission of user n is successful if In is no more than
the predefined Ith, i.e. In 6 Ith.
Then the instantaneous data-rate Rn of node n accessing

channel m can be expressed as:

Rn = θnB log(1+
Pnhmn,S
In + σ 2 ), (11)

where B represents the bandwidth of channel, σ 2 is the vari-
ance of the additive white Gauss noise (AWGN), and θn is
a Bernoulli random variable indicating whether the channel
competition of user n is successful or not, i.e.,

θn =

{
1, In 6 Ith,
0, In > Ith.

n ∈ N

In addition, the total capacities Cm of channel m can be
defined as the sum of the data-rate of users who choose
channel m for transmission, i.e.,

Cm =
∑

n∈Bm
Rn. (12)

Based on the above descriptions, the aggregate network
throughput, which can be calculated from the perspective of
user data-rate or from the perspective of channel capacity,
is given by:

U (s) =
∑

n∈N
Rn =

∑
m∈M

Cm, (13)

where s = {s1, s2, . . . , sN } is the channel selection pattern of
all users.
To this point, the main purpose of this paper is to find a

reliable and optimal spectrum access profile to maximize the
aggregate network throughput, i.e.,

P1 : s∗ = argmaxU (s). (14)

The RSA problem in a dynamic WSN is formulated as
eq. (14), which, intuitively, is an extremely challenging task
for its intrinsic NP-hard nature, and more importantly for
the concerned uncertain environmental information as well
as non-static wireless network restrictions. On this basis,
an effective learning scheme for RSA, one that can efficiently
combat the uncertain wireless environment and steadily
achieve the optimum solution is essential to be developed.

III. FUZZY GAME FOR RSA
Due to the definite information dependence, the conventional
crisp-game only captures the channel competition problem
with ideal environment assumptions (i.e. the CSI and the
interference relationship remain unchanged), hence would
lose effectiveness for the application in the considered real-
istic dynamic WSNs with uncertainties. Instead of adopting
the crisp-game where all elements are definite, in this section,
a game involving fuzzy factor-fuzzy game-is formulated to
characterize the RSA problem with dynamic and uncertain
information. Specifically, we first summarize some related
definitions and notions of the fuzzy set theory [29]. Then,
by projecting the uncertain CSI as fuzzy number, we establish
a fuzzy space, in which the data-rate serves as a FUF of
players. On this basis, a NC-FG [30] is developed, and its
properties are investigated. Note that, thanks to the capabili-
ties of formulating the spectrum access problem with uncer-
tain information and combating the unpredictable stochastic
features of WSNs, the fuzzy game based scheme is naturally
more appropriate for the uncertain scenarios.

A. FUZZY SET THEORY
Definition 1 (Fuzzy Number): A real fuzzy number ã is

precisely described as any fuzzy subset on the space of real
numbers R, whose membership function µã(x) satisfies the
following conditions:
• µã(x) is a continuous mapping from R to the closed
interval [0, 1].
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FIGURE 3. The membership function of TriFN ã.

FIGURE 4. The membership function of TraFN ã.

• µã(x) is constant on [−∞, al − l] ∪ [ar + r,+∞] and
[al, ar ]. Specifically, µã(x) = 0, ∀x ∈ [−∞, al − l] ∪
[ar + r,+∞] and µã(x) = 1, ∀x ∈ [al, ar ].

• µã(x) is strictly increasing and continuous over [al −
l, al], and strictly decreasing and continuous over
[ar , ar + r].

Here al , ar , l and r are all real numbers, satisfying al 6 ar ,
l, r > 0.
The membership function µã(x) presents a quantitative

description of the fuzzy number ã, which is a basic concept
of fuzzy mathematics. A general membership function can be
given by the following equation, i.e.,

µã(x) =



x − al + l
l

, x ∈ [al − l, al],
ar + r − x

r
, x ∈ [ar , ar + r],

1, x ∈ [al, ar ],
0, else.

(15)

Note that, when al = ar holds, eq. (15) presents a mem-
bership function of triangular fuzzy number (TriFN) i.e. ã =
(a−l, a, a+r), which is illustrated in Fig. 3; andwhen al < ar
holds, eq. (15) shows a membership function of trapezoid
fuzzy number (TraFN) i.e. ã = (al − l, al, ar , ar + r), which
is drawn in Fig. 4.

Here, we take a TriFN as an example, i.e. al = ar ,
the operations of fuzzy numbers obey the following lemma.
Lemma 1: Let ã1 = (a1 − l1, a1, a1 + r1), ã2 = (a2 −

l2, a2, a2 + r2) represent TriFNs, and ν is a real number.
It holds that:
• ã1+ ã2 = (a1+a2− l1− l2, a1+a2, a1+a2+ r1+ r2);
• νã1 =

(
ν(a1 − l1), νa1, ν(a1 + r1)

)
;

• ã2 dominates ã1 (denoted by ã2 ' ã1) if and only if
max{l2−l1, 0} 6 a2−a1 and max{r1−r2, 0} 6 a2−a1.

It is noted that due to the ambiguous numeric values
involving, ranking the fuzzy numbers just according to their
magnitudes tends to be difficult. Therefore, multiple ranking
approaches have been researched to fully explore the ambigu-
ous characteristics of fuzzy numbers. Here, we adopt the
method proposed in [31]. To facilitate the description, some
relative conceptions and definitions are introduced as follows.
Definition 2 (Satisfaction Function): The SF between two

fuzzy number ã and b̃ is defined as:

SF(ã < b̃) =

∫
+∞

−∞

∫ y

−∞

µã(x)× µb̃(y)dxdy∫
+∞

−∞

∫
+∞

−∞

µã(x)× µb̃(y)dxdy
, (16a)

SF(ã > b̃) =

∫
+∞

−∞

∫
+∞

y
µã(x)× µb̃(y)dxdy∫

+∞

−∞

∫
+∞

−∞

µã(x)× µb̃(y)dxdy
, (16b)

where SF(ã < b̃) represents the possibility that ã is smaller
than b̃. Similarly, SF(ã > b̃) represents the possibility that ã
is larger than b̃.
Definition 3 (Viewpoint): For a fuzzy number ã, a fuzzy

number b̃ which satisfies the following conditions is a view-
point:
• sup(ã) ⊆ sup(b̃), where sup(ã) = {x|µã(x) 6= 0};

•

∫
+∞

−∞

µb̃(x)dx exists and it is not zero.

Without loss of generality, the defined viewpoint can be
broadly divided into three categories: optimistic, neutral and
pessimistic, with which the fuzzy numbers can be evaluated.
The second condition is added to make sure that a viewpoint
can be applicable to the SF.
Definition 4 (Evaluation Value): Based on the above

defined SF and viewpoint, the evaluation value of the fuzzy
number ã in the viewpoint b̃, Eb̃(ã) can be given by:

Eb̃(ã) = SF(ã > b̃). (17)

Definition 5 (Relative Index): The relative index of the
fuzzy number ã in the viewpoint b̃, Tb̃(ã), which shows how
close ã is to the one having the best evaluation in viewpoint b̃,
is defined as:

Tb̃(ã) =
Eb̃(ã)

maxã∈Ã Eb̃(ã)
, (18)

where Ã is the set of the sorted fuzzy numbers.

B. NON-COOPERATIVE FUZZY GAME
As shown by the previous explanations and subsequent sim-
ulations, a non-cooperative crisp game G ,

(
N ,S,U

)
,

where N = {1, 2, . . . ,N } is the set of players (users), S =
⊗Sn = MN is the set of strategy space of the game G,
and U = {u1, u2, . . . , uN } is the set of utility functions
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for the players, is inadequate to characterize the spectrum
sharing problem with dynamic and uncertain information for
its variation-susceptible feature. Therefore, by extending the
utility component U to a fuzzy set, we resort a NC-FG to
reformulate the challenging problem of RSA in the dynamic
WSN with uncertain environmental information.

Specifically, based on the above elaborated fuzzy set the-
ory, we build a fuzzy space to map the uncertain link infor-
mation, in which a fuzzy number h̃mn,∗ is employed to describe
the stochastic and uncertain CSI, i.e.,

hmn,∗→ h̃mn,∗ = (ĥmn,∗ −1h
m,l
n,∗, ĥ

m
n,∗, ĥ

m
n,∗ +1h

m,l
n,∗), (19)

where 1hm,ln,∗ and 1h
m,r
n,∗ are the left deviation and the right

deviation of the fuzzy number h̃mn,∗, indicating a random
fluctuation of the uncertain channel gain.

As stated before, in our constructed NC-FG, the players
set N and the strategy profiles S are definite, while the
utility of each player which is related with the mapped fuzzy
number h̃mn,∗ is accordingly a fuzzy number. The definition of
the FUF is presented as follows.
Definition 6 (Fuzzy Utility Function): The FUF of each

player is defined as the uncertain instantaneous data-rate R̃n
of user n, which is mapped by the fuzzy number h̃mn,S , i.e.,

ũn(sn, s−n, h̃
sn
n,S ) , R̃n. (20)

With the formulated FUF, the mathematical description of
the NC-FG [32] is provided as follows.
Definition 7 (Non-Cooperative Fuzzy Game): The NC-

FG is defined as:

G̃ ,
(
N ,S, Ũ(s, h̃)

)
, (21)

where N and S are identical with that in the crisp game G,
Ũ(s, h̃) = {ũn(s, h̃snn,S )|n ∈ N } is the FUF set, and h̃ =
{h̃snn,S |n ∈ N } is the vector of the uncertain CSI which is
modeled by fuzzy number in the fuzzy space.

Based on the above analysis, the problem on eq. (14) can
be reformulated as a NC-FG, in which the players attempt
to attain a reliable and appropriate spectrum reuse pattern to
maximize their fuzzy utility, i.e.,

P2 : s∗ = arg max
sn∈Sn

ũn(sn, s−n, h̃
sn
n,S ), ∀n ∈ N . (22)

C. ANALYSIS OF FUZZY NASH EQUILIBRIUM
It is known to all that Nash Equilibrium (NE) is a stable
solution to non-cooperative crisp games. Similarly, a stable
solution to non-cooperative fuzzy games is called fuzzy Nash
equilibrium (FNE) [33], which is defined as follows.
Definition 8 (Fuzzy Nash Equilibrium): A strategy pat-

tern s∗ ∈ S is called a FNE of the fuzzy game G̃ if,

ũn(s∗n, s
∗
−n, h̃

s∗n
n,S ) ' ũn(sn, s∗−n, h̃

sn
n,S ),

∀n ∈ N , ∀sn, s∗n ∈ Sn, s∗−n ∈ S−n. (23)

For our formulated fuzzy game, the following theorem is
presented to validate the existence of a FNE.

Theorem 1: There exists a FNE solution for the formulated
NC-FG in eq. (21).

Proof: In order to demonstrate the existence of the FNE,
we first present the definition and the property of a fuzzy
bi-matrix game.
Definition 9 (Fuzzy Bi-matrix Game): A fuzzy bi-matrix

game G̃B is defined as a bi-matrix game, which involves two
players with fuzzy utilities [34], i.e.,

G̃B =
(
I, II,SI,SII, ũI, ũII

)
, (24)

where SI and SII are the strategies sets of Player I and
Player II, respectively.

ũn =


ũ11 ũ12 · · · ũ1M
ũ21 ũ22 · · · ũ2M
...

...
...

...

ũM1 ũM2 · · · ũMM


M×M

n = I, II, (25)

is the utilities matrix of the players. Each element ũm,m′
denotes the obtained fuzzy utility, when Player I adopts the
strategy m while Player II adopts the strategy m′.
One key property of the fuzzy bi-matrix game is character-

ized by the following lemma.
Lemma 2: A fuzzy bi-matrix game has at least one FNE

solution, if there exists a subset N0 ⊂ N such that the
function

∑
n∈N0

ũn(sn, s−n, h̃mn,S ) is convex on µh̃mn,S
(x) [35].

The attractive feature of fuzzy bi-matrix games provides a
perspective to analyze the formulated NC-FG, i.e. exploiting
mathematical induction (MI) to resolve it, with which the
existence of FNE can be ensured.

The most fundamental situation in which the fuzzy game
consists of two players is firstly investigated.
Theorem 2: There exists at least one FNE solution for the

fuzzy game G̃2 with two players.
Proof: For the first constraint in Lemma 2, intuitively,

G̃2 =
(
1, 2,S1,S2, ũ1, ũ2

)
, (26)

is a fuzzy bi-matrix game.
For the second constraint, here, we chooseN0 = {1}, then

we have∑
n∈N0

ũn(sn, s−n, h̃mn,S ) = ũ1(s1, s2, h̃
s1
1,S ). (27)

To analyze the concave-convex property of the function
ũ1(s1, s2, h̃

s1
1,S ), its second derivative ũ′′1 is given by:

ũ′′1 =
d2ũ1(s1, s2, h̃

s1
1,S )

d(h̃s11,S )
2

= −
θ1BP21
ln 2

×
1

(I1 + σ 2 + P1h̃
s1
1,S )

2
6 0. (28)

Therefore, the function
∑

n∈N0
ũn(sn, s−n, h̃mn,S ) is convex

on µh̃mn,S
(x).

Based on Lemma 2 and the above elaborations,
Theorem 2 can be proved. �
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Moving forward, we study a more general case and present
the following theorem.
Theorem 3: Assuming that the fuzzy game G̃N with N play-

ers has FNE solutions, then there exists at least one FNE
solution for the fuzzy game G̃N+1 with N + 1 players.

Proof: Based on the assumption that the FNE of the
fuzzy game G̃N exists, the players setN can be regarded as a
whole unity. Denote the N + 1th player as n0, then the fuzzy
game G̃N+1 can be expressed as:

G̃N+1 =
(
n0,N ,Sn0 ,SN , ũn0 , ũN

)
. (29)

Therefore, the fuzzy game G̃N+1 clearly can be treated as
a fuzzy bi-matrix game, in which n0 acts as Player I, and
N acts as Player II.
After establishing the G̃N+1 as a fuzzy bi-matrix game,

we analyze the concave-convex property ũn0 and ũN .
For the utility function ũn0 (sn0 , sN , h̃

sn0
n0,S

) of Player I, let
N0 = {n0}, by performing the same steps in Theorem 2,
the following equation can be obtained, i.e.,

ũ′′n0 = −
θn0BP

2
n0

ln 2
×

1

(In0 + σ 2 + Pn0 h̃
sn0
n0,S

)2
6 0, (30)

which demonstrates the convexity of ũn0 on µh̃sn0n0,S
(x).

The utility function ũN of Player II is the sum utilities of
all player n, n ∈ N , i.e.,

ũN =
∑

n∈N
ũn(sn, s−n, h̃

sn
n,S ). (31)

Obviously, ũN is a convex function on µh̃(x), since
ũn(sn, s−n, h̃

sn
n,S ) is convex on µh̃snn,S

(x), n ∈ N . Recall that

h̃ denotes the vector of the uncertain CSI.
On the basis of Lemma 2 and the above analysis,

Theorem 3 can be proved. �
Finally, combining Theorem 2 and Theorem 3,

Theorem 1 can be proved. �
With the above favorable property of our formulated

NC-FG, we attempt to achieve the FNE solution to opti-
mize the network performance with dynamic information
constraint. It is noted that the procedure of finding the equi-
librium pattern of a fuzzy game is far more different from
that of a crisp game, which involves fuzzy number analysis
and processing, rendering most existing learning methods
no longer applicable. Therefore, a robust learning algorithm
which can cope with the fuzzy parameters and achieve the
optimal spectrum reuse in dynamic WSNs is required to be
designed.

IV. FUZZY-LOGIC INSPIRED REINFORCEMENT LEARNING
ALGORITHM
To achieve the FNE of our formulated NC-FG, in this section,
we introduce a robust FLRL algorithm for the reliable trans-
mission ensured RSA problem with uncertain information,
and then demonstrate its convergence performance.

FIGURE 5. The framework of the FLRL algorithm.

A. DESCRIPTION OF THE FLRL ALGORITHM
In the considered future 5G WSNs, due to the random move-
ment of nodes and the complex changing of environments,
the link quality and the coupling interferences would become
time-varying and uncertain, which can not be adopted directly
as a metric to optimize the network performance. Conse-
quently, existing crisp-game based learning methods, which
rely on the definite utilities to make decisions and update
strategies, would lose effectiveness to ensure convergence for
lacking the ability to confront the encountered uncertainties.

To address the above issue, we propose a FLRL algorithm,
whose key idea is to exploit the fuzzy space to handle the
uncertain information. The algorithm framework is shown
in Fig. 5, which involves interactions of users, network man-
ager and dynamic wireless environment. Specifically,
(1) users take their channel selection actions in the dynamic

wireless environment;
(2) the network manager acquires the uncertain utilities of

the shared users and represents them as fuzzy utilities in
the projected space. Assisted by the fuzzy logic, a pri-
ority vector is derived, with which the definite spectrum
sharing decision can be obtained;

(3) users receive their reward based on the decision pat-
tern, and adjust the channel selection probabilities
accordingly.

To facilitate the elaboration on this algorithm, we denote
the mixed strategy profile of G̃ as P, i.e.,

P =


p11 p12 · · · p1M
p21 p22 · · · p2M
...

... pnm
...

pN1 pN2 · · · pNM

 , (32)

where pnm is the probability of user n choosing channel m.
Then the strategy probability vector of user n is denoted as:

pn = (pn1, . . . , pnm, . . . , pnM |m ∈M), n ∈ N , (33)

and obviously we have
∑M

m=1 pnm = 1.
At the beginning of each period k , every user n chooses

a channel sn ∈M to access according to its current strategy
probability vector pn(k).With the aid of fuzzy spacemapping,
the fluctuant utility with uncertain information is denoted as
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the fuzzy utility ũn(sn, s−n, h̃
sn
n,S ), and then the robust and reli-

able spectrum sharing decision is made based on the derived
priority vector wm(k) = (wnm(k)|n ∈ Bm,m ∈M). With the
fuzzy-space implementation, the updating strategy of each
user obeys the following rule:

pn,m(k + 1) =



pn,m(k)−
pn,m(k) exp

(
ηwnm(k)

)
∑

j∈Bm exp
(
ηwjm(k)

) , m 6= sn(k), (34a)

pn,m(k)+

[
1− pn,m(k)

]
exp

(
ηwnm(k)

)
∑

j∈Bm exp
(
ηwjm(k)

) , else, (34b)

where η > 0 is the learning step parameter.
It is seen that, instead of the direct measurement, the updat-

ing rule of our designed FLRL scheme is executed based on
the decision result wnm(k) acquired in the fuzzy space. Obvi-
ously, the priority vectorwm is a principal parameter of fuzzy-
space for decision making, which satisfies the normalizing
condition

∑
n∈Bm w

n
m = 1, wnm > 0. Quite a number of

methods have been proposed to assess the priority vector of
fuzzy numbers. Here, based on a fuzzy preference relation
(FPR), we resort to a least deviation algorithm [36], with
which a stable priority matrix W = {wm|m ∈ M} of the
users can be derived. The FPR matrix of users who attempt
to access channel m is defined as ϒm = [γi,j]βm×βm with
complementary matrix properties, i.e.,

γij + γji = 1,
γij > 0,
γii = 0.5,

∀i, j ∈ Bm,m ∈M, (35)

where γij denotes the preference degree of the network man-
ager between ith user and jth user. For our specific situation,
the γij (i, j ∈ Bm) is given by:

γij =


min

{
δHi,j + (1− δ)Ki,j + 0.5, 1

}
, Hi,j > 0,

0.5, Hi,j = 0,

1−min
{
δHj,i + (1− δ)Kj,i + 0.5, 1

}
, Hi,j < 0.

(36)

where

Hi,j , Tṽ
[
ũi(si, s−i, h̃

si
i,S )
]
− Tṽ

[
ũj(sj, s−j, h̃

sj
j,S )
]

(37)

is the absolute difference, and

Ki,j ,
Tṽ
[
ũi(si, s−i, h̃

si
i,S )
]
− Tṽ

[
ũj(sj, s−j, h̃

sj
j,S )
]

Tṽ
[
ũj(sj, s−j, h̃

sj
j,S )
]

=
Hi,j

Tṽ
[
ũj(sj, s−j, h̃

sj
j,S )
] (38)

is the relative difference. The δ is used to fluctuate the weight
of the absolute difference Hi,j and the relative difference Ki,j.
ṽ is the viewpoint of the network manager.

With the established FPR, we define the following function

G(γi,j,wim,w
j
m) = 92γi,j−1

wjm
wim
, m ∈M (39)

which serves as a metric to evaluate the priority vector wm.
For G(γi,j,wim,w

j
m), we introduce the evaluation difference

and the evaluation ratio, which are given by:

Di =
∑
j∈Bm

[
G(γi,j,wim,w

j
m)− G(γj,i,w

j
m,w

i
m)
]
, ∀i ∈ Bm,

(40)

Q =

√√√√√
[∑

j∈Bm\λ G(γλ,j,w
λ
m,w

j
m)
]

[∑
j∈Bm\λ G(γj,λ,w

j
m,wλm)

] , (41)

where λ = argmaxj∈Bm{|Dj|}.
Then the priority vector wm is updated as:

wnm =


Q× wnm∑

j∈Bm\λ w
j
m + Q× wλm

, n = λ,

wnm∑
j∈Bm\λ w

j
m + Q× wλm

, n 6= λ.
(42)

Based on the above elaborations, we show the pseudocode
of a least deviation algorithm in Algorithm 1. With the
Algorithm 1 severing as a subfunction, the pseudocode of
our proposed FLRL algorithm is presented in Algorithm 2.
By introducing the fuzzy space to analyze the uncertain infor-
mation and adopting the fuzzy-logic to quantify the mapped
fuzzy utilities, the learning algorithm can intrinsically resist
the non-static environments and thereby stably update to the
FNE solution to optimize the network performance.

B. CONVERGENCE OF THE FLRL ALGORITHM
The convergence performance of the FLRL algorithm is
discussed as follows. We concentrate on characterizing the
long-term behavior of the matrix P and analyzing the
dynamic mean of the FLRL algorithm. Based on the stochas-
tic approximation theory [37] and the ordinary differential
equation (ODE), the following theorem is presented.
Theorem 4: For our proposed FLRL algorithm for RSA in

the dynamic WSNs, when the learning parameter η is suffi-
ciently small, the FLRL algorithm asymptotically converges.

Proof: First, we rewrite the updating rule in eq. (34) as:

pn(k + 1) = pn(k)+2(k)
(
1{m=sn} − pn(k)

)
, (43)

where 2(k) = exp
(
ηwnm(k)

)
/
∑

j∈Bm exp
(
ηwjm(k)

)
, and

1{m=sn} is an unit vector with m = sn element being one,
otherwise being zero.

We define the mapping from the mixed strategies P(k) to
the conditional expectation as:

8(P) , E
[
F
(
P(k), s(k),W (k)

)
|P(k)

]
, (44)
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Algorithm 1 A Least Deviation Algorithm

Input: fuzzy utilities Ũm = {ũn|n ∈ Bm(k)}, viewpoint ṽ,
threshold parameters ε.

Output: a stable priority vector wm.
1 Initialize the priority vector wm = ( 1

βm
, . . . , 1

βm
),

m ∈M;
2 for n=1:βm(k) do

3 calculate the relative index Tṽ
[
ũn(sn, s−n, h̃mn,S )

]
for

the fuzzy utility ũn(sn, s−n, h̃mn,S ) using eq. (18);
4 end
5 for i=1:βm(k) do
6 for j=1:βm(k) do
7 calculate the FPR ϒm for the relative index

Tṽ
[
ũi(si, s−i, h̃mi,S )

]
, i ∈ Bm(k) using eq. (36);

8 end
9 end
10 for n=1:βm(k) do
11 calculate the evaluation difference Dn using eq. (40);
12 end
13 while maxj∈Bm{|Dj|} > ε do
14 λ == argmaxj∈Bm{|Dj|};
15 calculate the evaluation ratio Q according to

eq. (41);
16 for n=1:βm(k) do
17 update the priority vector wnm(k + 1) according

to eq. (42);
18 end
19 end

where the F
(
P(k), s(k),W (k)

)
= P(k+1). Then the follow-

ing lemma holds.
Lemma 3: With a sufficiently small step size η,

the sequence P(k), ∀k > 0 will weakly converge to the
limiting point of the following ODE [38], i.e.,

dP
dk
= 8(P), P0 = P(0), (45)

where P0 is the initial value of the ODE, which is equal to the
initial channel selection probability matrix P(0).
The dynamicmean in eq. (44) indicates that for a user n, if a

channel sn offers a better payoff, then the user will increase
this channel access probability pn,sn , while decrease others
access probability pn,m, m 6= sn in future updating. Based
on the stochastic approximation in eq. (45), the convergence
of the FLRL algorithm can be obtained. Based on the above
statements, Theorem 4 is proved. �

V. SIMULATION RESULTS
In this section, numerical simulations are provided to demon-
strate the performances of our proposed FLRL algorithm
for RSA problem in dynamic and uncertain WSNs. In the
following simulations, we configure the size of the square
as 150 × 150m2. The uncertain positions of users randomly

Algorithm 2 The FLRL Algorithm for RSA
Input: player nodes N , strategy profile S, positive

constant C , learning parameter η > 0.
Output: a stable channel selection pattern s∗.

1 Set k = 1, and initialize the channel selection probability
vector pn(k) = ( 1

M , . . . ,
1
M ), M = |M|, n ∈ N ;

2 while min{max pn(k)|n ∈ N } < 0.99 do
3 for n=1:N do
4 sn(k)=randsrc(1,1,[Sn;pn(k)]);
5 end
6 for m=1:M do
7 Bm(k) =

{
n ∈ N : sn(k) == m

}
;

8 βm(k)=length
(
Bm(k)

)
;

9 end
10 for n=1:N do
11 calculate the fuzzy utility ũn(sn, s−n, h̃

sn
n,S )

according to eq. (20);
12 end
13 for m=1:M do
14 for n=1:βm(k) do
15 using Algorithm 1 calculate the priority

vector wnm of user n choosing channel m;
16 end
17 end
18 for n=1:N do
19 for m=1:M do
20 if m 6= sn(k) then
21 update selection probability pn,m(k + 1)

according to eq. (34a);
22 else
23 update selection probability pn,m(k + 1)

according to eq. (34b);
24 end
25 end
26 end
27 k = k + 1;
28 end

locate in their circle regions with a radius ϕ = 5m. Trans-
mission power and interference range of users are Pn ∈
[20, 30]dBm and An ∈ [30, 50]m, respectively. The variance
of AWGN and the PL exponent of channel link m are set
as σ 2

m = −80dBm and αm = 2.5, m ∈ M. Moreover,
other constant parameters for carrying out the designed FLRL
algorithm are set as δ = 0.5, ε = 0.8 and η = 0.2. The
viewpoint of the network manager is assumed to be neutral.
In the following studies, firstly we illustrate the simulation

diagrams of the dynamic network model. Then we present
the convergence performance of the FLRL algorithm. Finally,
the system performances are demonstrated via different mea-
surement standards. Note that all the results are obtained
by independently simulating 50 network topologies, and
200 trials are implemented for each network topology.
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FIGURE 6. Simulation diagrams of the considered dynamic network
model.

FIGURE 7. Evolution of the channel selection probabilities for an arbitrary
user in dynamic WSN. (a) FLRL scheme; (b) conventional method.

A. DYNAMIC NETWORK SIMULATION
The simulation diagrams of our considered dynamic network
model with multiple shared users are shown in Fig. 6. Here,
for simplicity, we set An = 40m, (n ∈ N ). The solid
circles represent the movement scope of each user, and the
dots bounded in the circles are the random instantaneous
position of users. The broken circles with the users’ positions
as centers represent the interference regions of users, and the
red lines indicate the edges of the directed interference graph.
It is intuitively seen from Fig. 6 that the generated directed
interference graph would be different as the dynamics and
uncertainty of wireless environment taking into account.

B. CONVERGENCE PERFORMANCE
To confirm the feasibility of our proposed FLRL algorithm
for combating the dynamic environment, it is essential to
demonstrate its convergence performance. To tackle this
issue, first the evolution curves of the channel selection
probability for an arbitrary user under uncertain environment
with both our proposed algorithm and the conventional algo-
rithm, are illustrated in Fig. 7(a) and Fig. 7(b), respectively.
At the beginning, the user randomly selects the channels with
equal probabilities. From Fig. 7(a), it is noted that with the

FIGURE 8. Evolution of the number of users selecting each channel in the
considered dynamic WSN. (a) FLRL scheme; (b) conventional method.

algorithm iterating, the channel selection probability vector
evolves from {1/3, 1/3, 1/3} to {0, 0, 1} in about 20 itera-
tions, which demonstrates this user finally achieves a steady
channel selection. On the contrary, as shown in Fig. 7(b),
when the number of iteration is significantly large (approach-
ing 1000), the selection probability fluctuates severely and no
stable channel selection state can be obtained. Therefore, with
the fuzzy space implementation, our approach can handle the
uncertain information and guarantee convergence.

Besides, the evolution curves of the number of users select-
ing each channel in dynamic WSNs are shown in Fig. 8,
which also include the proposed algorithm and the conven-
tional method shown in Fig. 8(a) and Fig. 8(b), respectively.
Since the users update their channel selection strategies con-
tinuously based on the selection probabilities, the number
of users on each channel varies accordingly. It is revealed
that when the proposed algorithm converges, all the users
maintain their current channel selection strategies, and their
number on each channel keeps unchanged, for example the
result is β1 = β2 = β3 = 2 in this specific case. Whereas the
conventional algorithm can’t reach a stable channel selection
pattern, and the number of users on different channels is
constantly changing, which further verifies its limitation for
application in dynamic wireless environment.

For our designed FLRL algorithm, as the existence of
convergence state has been certificated, we further assess the
performance of convergence speed. Determined by the inher-
ently stochastic nature of learning algorithms, the iterations
needed to converge are random variables. Therefore, we com-
pare the convergence speed from a statistical perspective.
Specifically, the cumulative distribution functions (CDF) of
the iterations needed for convergence of our proposed FLRL
algorithm with uncertain environmental knowledge is shown
in Fig. 9. It is noted that the iterations needed for conver-
gence is positively related with the total user number, and the
mean values of the required iteration number under different
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FIGURE 9. The convergence speed of the FLRL algorithm with different
network scales.

network sizes (N = 5, 10, 15, 20) are about 15, 24, 53
and 91, respectively. Besides, we notice that, as the network
size scale, the convergence rate (i.e. the required iteration
number per users) is basically unchanged, which further
demonstrates the stability and scalability of our designed
mechanism in the dynamic WSN with uncertain information.

C. SYSTEM PERFORMANCE
In this subsection, we consider the system performance of
our proposed FLRL algorithm for RSA in dynamic WSNs.
Specifically, first we present the performance comparisons of
network throughput and interference level with our proposed
FLRL algorithm and the other two counterparts (the improved
Q-learning method in [17] and the random access algorithm).
Then we evaluate the influences of the membership function
(triangle membership function and trapezoid membership
function) to the convergence speed and the network perfor-
mance of our proposed FLRL algorithm.

1) DIFFERENT ALLOCATION SCHEMES
First we show the performance gap of different spec-
trum access schemes, i.e. the proposed FLRL algorithm,
the improved Q-learning method in [17] and the ran-
dom selection approach. The number of available channels
is M = 8. The comparison results of the expected net-
work throughput and the aggregate interference level of the
three spectrum access schemes with varying user number are
shown in Fig. 10.

It is noted from the figure that, the performance (both
the network throughput and the interference level) achieved
by our proposed FLRL algorithm is superior to that of
the improved Q-learning method and the random selection
approach. Clearly, for the random selection approach, since
no available learning scheme to refine the strategies of users,
they just compete the channels stochastically, thus the per-
formance of the random selection approach is the worst.
More importantly, compared with the improved Q-learning
method, our developed FLRL algorithm possesses the capa-
bility of efficiently combating the dynamic and stochastic

FIGURE 10. Comparisons of the system performance among the three
spectrum access schemes.

wireless environment, thereby is more stable and robust under
dynamic scenario. Hence can refine the strategies and obtain
better performance. Owing to its significant advantage, our
proposed learning scheme is promising for the considered
realistic wireless communication network with dynamics and
uncertainties.

2) DIFFERENT MEMBERSHIP FUNCTIONS
For our proposed FLRL algorithm, we will go further to
research the influences of the membership function (triangle
membership function and trapezoid membership function)
on system performance, which contain two aspects: (1) the
complexity of the FLRL algorithm, i.e. the iterations number
needed for convergence; and (2) the system performance
when achieving the optimal solution, i.e. the expected net-
work throughput and the aggregate interference level.

The comparison result of the required iterations number for
convergence of the developed FLRL algorithm applying the
triangle membership function and the trapezoid membership
function is shown in Fig. 11(a). The numbers of users and
channels are set as N = 5 and M = 3, respectively. It is
seen from the figure that the convergence of FLRL algorithm
applying trianglemembership function ismore rapid than that
applying trapezoid membership function. The expectation of
the iteration number needed to converge of the former is
about 15, while the latter approximately needs 21 iterations
to reach the convergence.

The comparison result of the system performance of the
FLRL algorithm applying the triangle membership function
and the trapezoidmembership function is shown in Fig. 11(b).
The number of users varies from 2 to 12, and the channel
number is ‖M‖ = 8. It is seen that both the expected
network throughput and the aggregate interference level of
FLRL algorithm with the trapezoid membership function is
superior to that with the triangle membership function.

Associating the above experimental results and analyzing
the properties of different membership functions from a holis-
tic perspective, we can draw the conclusion that compared
with employing the triangle membership function, adopting
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FIGURE 11. Comparison of the triangle membership function and the
trapezoid membership function. (a) The iteration number for
convergence; (b) The system performance.

the trapezoidmembership function can get a superior network
performance at the cost of a higher complexity, for the trape-
zoid membership function characterizing fuzzy number in a
more comprehensive and detailed manner. This conclusion,
which can be used to design the membership function of
fuzzy number to balance the complexity and the performance
of algorithms, is of significant importance to guide the future
research.

VI. CONCLUSION
In this paper, we investigate the RSA problem regarding
throughput maximization with fully considering the dynamic
and uncertain information of the stochastic WSNs. By inter-
preting the time-varying CSI as a fuzzy number, we formulate
the problem as a NC-FG, and thereby the random fluctuant
data-rate can be represented as the fuzzy utility. On this basis,
a robust FLRL paradigm is proposed to achieve the FNE solu-
tion under the dynamically uncertain wireless environment.
Distinguishing from the most existing learning approaches
relying on direct observations, our developed scheme exe-
cutes the decision procedure according to the priority vectors
in a mapped fuzzy space. Due to the fuzzy space interpola-
tion, our scheme is inherently insensitive to uncertain CSI
and changing utility, which effectively eradicates the decision

fluctuation caused by environmental changes and attains a
robust access in dynamic and uncertain wireless commu-
nication networks. The effectiveness and superiority of the
FLRL algorithm are also demonstrated by comprehensive
simulation results. As such, our proposed scheme will be of
significant promise to the emerging diverse WSNs.
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