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ABSTRACT Pose estimation with unknown correspondences between 3D object points and 2D image points
is known as the simultaneous pose and correspondence determination problem in the field of computer vision.
It currently is still diffcutlt to solve particularly with the appearance of occlusion and cluster. In this paper,
we present a new iterative algorithm for the pose estimation of an 3D object without any additional 3D-2D
corresondence infromation. Our method combines SoftAssign algorithm for derterming the correspondence
and OI (orthogonal iteration) algorithm for computing the pose. An assignment matrix which describes
the correspondence is first introduced to the objective function of OI algorithm, and the simultaneous
pose and correspondence determination problem is formulated as that of minimizing the weighted object
space collinearity error. The pose and correspondence are evolved from an initial pose to an optimum
value by nesting the two algorithms into one deterministic annealing process. Simulation and experimental
results demonstrate that the proposed method is computationally more efficient and more accurate than the
state-of-art methods.

INDEX TERMS Pose estimation, orthogonal iteration, correspondence determination, SoftAssign.

I. INTRODUCTION
Pose estimation is widely used in virtual reality [1],
unmanned air vehicle navigation [2], aircrafts docking [3]
and robot control [4]. In industrial measurement, point-based
pose estimation is computing the pose of an object through
3D known geometry and the corresponding 2D image, which
is also known as the PnP (perspective-n-point) problem [5].
With the known 3D-2D correspondence, the PnP problem is
aimed at computing the rotation and the translation of the
object coordinates system with respect to the camera coor-
dinates system. In recent years, numerous effective methods
have been put forward to solve this problem [6]–[12].

One thing should be noticed that all the PnP algorithms
work only if the 3D-2D correspondences are determined in
advance. However, the premise is often difficult to achieve
because the image points are usually hard to be distinguished
from each other due to their similar 3D geometry features.
For example, in order to estimate the pose of a helmet
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(Fig.1(a)), some LED points with known coordinates are
mounted on it as the object feature points, and the image
captured by an infrared camera from a certain angle is shown
in Fig.1 (b). Without any additional information, it is diffi-
cult to find the one-to-one 3D-2D correspondences. Besides,
the occlusion and cluster case should also be taken into
considered since they are inevitable in actual measurement,
which will make the correspondence determination more
complicated:

1) Occlusion: occlusion happens when part of the object
points is obscured or outside the field of view due
to large rotation angle, so some object points are not
detected as the image features of that object, as is shown
in Fig.1(c).

2) Cluster: Noise and imperfect image extraction algo-
rithm are the main reasons for cluster. The appearance
of cluster will cause some features which do not belong
to the object to be mistakenly detected as the image
features. As is shown in Fig.1 (d), the points in the red
circle are some interference points.
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FIGURE 1. Confused correspondences between object points and image
point. (a) An object (helmet) with some LED feature points mounted.
(b) The image of the object. (c) Occlusion case (d) cluster case.

If correspondences are not well determined, it will lead
to the invalidation of the subsequent PnP algorithm and the
incorrect pose estimation result [13]. Therefore, pose prob-
lem and correspondence problem are closely connected, and
one needs to design a method to estimate the pose with
unknown correspondences, which is the simultaneous pose
and correspondence determination problem [14]. When the
initial pose is not far away from the true pose, the Soft-
Posit [12] algorithm is still the most efficient algorithm so
far.However, it entails trying too many guesses before find-
ing a proper initial pose, which will affect the speed of the
algorithm [15]. Besides, SoftPosit cannot handle coplanar
case because the scaled orthographic projection matrix in the
embedded Posit algorithm will be singular if the geometry
features of the object are coplanar. For these reasons, the goal
of our work is to design a more accurate, faster and more
widely used algorithm to estimate the pose of an object from
non-corresponding points.

A. RELATED WORK
The RANSAC [5] which is based on hypothesize-and-test
principle is a classic solution to the simultaneous pose and
correspondence determination problem. In the RANSAC
algorithm, random samples consisting of 3D object features
and 2D image features with hypothesized correspondences
are selected, and the pose is computed by the PnP methods.
Then the object features will be projected back onto the image
plane according to computed pose data. The correctness of
the pose depends on whether the back-projected image is
sufficiently similar to the original. If it is similar enough,
the pose will be accepted, or another new correspondence will
be hypothesized and the process will be repeated. A more
effective solution similar to RANSAC is Blind PnP [15],
which establishes different Gaussian mixture models (GMM)

for different pose priors, reduces the incorrect potential
matches rapidly and makes the search process more targeted.
Other solutions are also proposed in [16]–[19] to improve
the RANSAC. These hypothesize-and-test approaches have
a high success rate, but at a heavy computation cost.

Different from the hypothesize-and-test methods, the Evo-
Pose [20] which is based on Genetic Algorithm constructs
an objective function of reprojection errors according to the
perspective projection model, and evolves the candidate pose
solution (the six-dimensional array composed of rotation and
translation) by genetic operators. After some generations,
good pose solutions emerge toward optimality. Xia et al. [21]
enhances the evolutionary algorithms with a new efficient
scheme: the candidate solution is evolved only when the
offspring is better than the parent, so the survival probability
of good pose offspring is increased, which will improve the
efficiency. Generally, these Genetic algorithms are accurate
when the object points are not very close to each other, but
it takes too much time during the evolution process from one
generation to another, and the perspective projection model
is not robust to the image noise.

Some other methods which formulate the cost function by
different projection model are also proposed [12], [22], [23].
Among them, SoftPosit [12] stands out because its success
rate and efficiency. The SoftPosit algorithm integrates the
iterative correspondence determination technique named Sof-
tassign [25], [26] and the iterative pose estimation algorithm
named POSIT [27] into one single iteration loop.All potential
matches are treated equally during the search process of the
optimal pose instead of the hypothesize-and-test schedule.
The pose and correspondence are determined simultaneously
by minimizing a global objective function based on a weak
perspective model in a deterministic annealing process. The
time complexity of SoftPosit is O(NM2) (N and M are the
number of 3D object points and 2D image points, respec-
tively), which is still the most efficient so far.

Haoyin et al. [24] proposed SoftSI algorithm that com-
bines two SVD (singular value decomposition)-based shape
description theorems and a new proposed PnP algorithm
named SI [24]. Their mehtod can elimate the bad initial values
quickly accroding to the standard deviation of the translation
vector at the first few iteration steps, which accelerate the
process of finding a proper initial value for the iterative
algorithm. The SoftSI algorithm is fast and robust to noise
for the cases without occlusion and cluster.

Inspired by the work of SoftPosit, we propose a new pose
estimation with unknown correspondence algorithm named
SoftOI. For determining the correspondence, Softassign algo-
rithm is also employed in ourmethod; for computing the pose,
different from SoftPosit, we combine the Softassign algo-
rithm with another more accurate and efficient iterative pose
estimation algorithm named OI (orthogonal iteration) [10].
The weihted space collinearity error is first introduced to
describe the matching relations beteen the image points and
the object points. During the deterministic annealing pro-
cess, the pose and correspondence are determined alternately
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FIGURE 2. Geometry of camera model.

through minimizing the global weighted object space
collinearity error at each iteration step. Experiment results
shows that the proposed algorithm canmake the simultaneous
pose and correspondence determination problem be solved in
a more accurate and efficient way even occlusion and cluster
cases are taken into considertion. Besides, our mehtod has
a broder application range in which both the coplanar and
noncoplanar cases can be handled.

Our paper is organized as follows: The camera model and
the OI pose estimation algroithm embedded in SoftOI are
introduced briefly in Section III. Section IV explains the pro-
posed simultaneous pose and correspondence determination
algorithm (SofOI) in detail. The silmulations and experiment
results of SotOI are showed in Section V.

II. POINTS WITH KNOWN CORRESPONDENCES
A. CAMERA MODEL
As is shown in Fig.2, given a set of non-collinear object points
wPi(wXi, wYi, wZi)T (i = 1, 2, . . . n) expressed in the object
coordinate system P0−XwYwZw. The coordinates of the same
points expressed in camera coordinate system Oc − XYZ are
Pi(Xi,Yi,Zi)T , which can be represented by the following
rigid transformation:

Pi = R · wPi + T (1)

where R = (R1,R2,R3)T ∈ SO(3) and T = (Tx,Ty,Tz)T ∈
R3 are the rotation matrix and translation vector between
P0 − XwYwZw and Oc − XYZ . The homogenous image point
pi = (ui, vi, 1)T is the projection of an object point Pi on the
normalized image plane, and the line li that passes through
Oc and pi is called the line-of-sight of Pi.Qi is the orthogonal
projection of Pi on the line-of-sight with the expression:

Qi = Vi(R · wPi + T ) (2)

where

Vi = pipTi /p
T
i pi (3)

is the line-of-sight projection matrix which can project an
object point orthogonally to line-of-sight defined by the cor-
responding image point. Theoretically, Pi should be on the

line-of-sight defined by pi, or in other words, Pi should
coincide with Qi. This fact can be expressed as follows:

R · wPi + T = Vi(R · wPi + T ) (4)

B. THE OI (ORTHOGONAL ITERATION) POSE
ESTIMATION ALGORITHM
The distance between Pi and Qi is called the object-space
collinearity error, and the principle of OI algorithm is com-
puting the pose by minimizing the sum of the squared object-
space collinearity errors as:

E(R,T ) =
n∑
i=1

d2i

=

n∑
i=1

||(E3 − Vi)(R · wPi + T )||2 (5)

Note that (5) is quadratic in T , if R is fixed, the opti-
mum value for T can be obtained by computing the partial
derivatives of E with respect to T , and the expression of the
translation vector T is:

T (R) = −(
n∑
i=1

(E3 − Vi)2)−1
n∑
i=1

(E3 − Vi)R · wPi

= −(
n∑
i=1

(E3 − Vi))−1
n∑
i=1

(E3 − Vi)R · wPi (6)

So if the initial R0 has been obtained by using a weak
perspective approximation [30], one can compute the optimal
R by the following iterative steps: First, assume that Rk is the
kth estimation ofR, then T k = T (Rk ),Qki = Vi(Rk ·wPi+T k ),
and the next estimation Rk+1 can be determined by solving
the problem as follows:

Rk+1 = argmin
R

n∑
i=1

||(R · wPi + T )− Qki ||
2 (7)

It is an absolute orientation problem from {wPi} to {Qki },
and which can be resolved with the SVD (singular value
decomposition) method [10]. Define:

S =
n∑
i=1

(Qki − Qk )(
wPi − wPi)T (8)

where Qk and wPi are the centroid of {Qki } and {
wPi} respec-

tively. Let (U , 6,V ) be a SVD of S, that is USV T
=
∑

.
The solution to (7) is Rk+1 = VUT , then the estimation
T k+1 = T (Rk+1) can be obtained according to (6), and this
process is repeated until R is the same as that computed at the
previous step.

III. POSE ESTIMATION WITH UNKNOWN
CORRESPONDENCES
The global object function of OI algorithm proposed in (5)
is the expression of the sum of the object-space collinearity
errors between the object points and the orthogonal pro-
jections on the line-of-sights defined by the corresponding
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FIGURE 3. Schematic diagram of one object point and its orthogonal
projections.

image points. For a set of image points pj(j = 1, 2, . . .M )
and object points Pi(i = 1, 2, . . .N ) without known corre-
spondences, an object point may match any one of the image
points, so the pose problem will be confused, especially for
the case of clutter or occlusion in which M is more or less
than N .

To solve the pose estimation with unknown correspon-
dences problem, the weights mij which determine the assign-
ments between object and image points are introduced, and
the simultaneous pose and correspondence can be formu-
lated as the minimization of the new weighted object space
collinearity error as:

E(R,T ) =
N∑
i=1

M∑
j=1

mij(d2ij − α)

=

N∑
i=1

M∑
j=1

mij(||R · wPi + T − Qj||2 − α) (9)

where d2ij is the square distance between an object point Pi
and the orthogonal projection of Pi on the line-of-sight of
pj, that is Qj = Vj(R · wPi + T ). As is shown in Fig.3,
Q1,Q2,Q3 are the orthogonal projections of the object point
P1 (one object point in point sets Pi(i = 1, 2, . . .N ))) on
the line-of-sight of p1, p2, p3 (three image points in point
sets pj(j = 1, 2, . . .N )), respectively. d11, d12, d13 are the
Euclidean distances between P1 and Q1,Q2,Q3. If p2 is
the corresponding image point of P1, we call Q2 the own
orthogonal projection of P1. The weight mij is equal to 1 if
Pi and pj is matched, or mij is equal to 0. Another way of
thinking the matched relations is that mij is equal to 1 only if
Qj is exactly the own orthogonal projection ofPi. To avoid the
trivial solution in which all the weights mij = 0 be the final
solution to (9), a parameter α is introduced to encourage the
matching from pj to Pi. If d2ij−α ≤ 0, pj and Pi are potentially
matched with each other. If d2ij − α > 0, pj is definitely not
the matched point of Pi. Note that if all the weights are all
fixed (1 or 0) and α = 0, the global objective function (9) is
equivalent to (5).

In order to accelerate the algorithm, we unitize pj =
(uj, vj, 1)T to pj(ũj, ṽjw̃j)T before computing the line-of-sight
projection matrix Vi, where:

ũj = uj/
√
u2j + v

2
j + 12 (10)

ṽj = vj/
√
u2j + v

2
j + 12 (11)

w̃j = 1/
√
u2j + v

2
j + 12 (12)

so pjpTj is always equal to 1 and the global object function E
can be rewritten as:

E(R,T )

=

N∑
i=1

M∑
j=1

mij(||R · wPi + T − pTj (R ·
wPi + T )pj||2 − α)

=

N∑
i=1

M∑
j=1

mij[(R1 · wPi + Tx − pTj (R ·
wPi + T )ũj)2 + . . .

(R2 · wPi + Ty − pTj (R ·
wPi + T )ṽj)2 + . . .

(R3 · wPi + Tz − pTj (R ·
wPi + T )w̃j)2 − α] (13)

To sum up, the simultaneous pose and correspondence
problem can be solved by an expectation-maximization strat-
egy [28] as the following iteration steps:

1) Compute the correspondences (mij) according to a
given pose parameters (R and T ).

2) Compute the maximum likelihood estimation of pose
parameters (R and T ) according to the correspondences
(mij) determined in step 1.

3) Update the pose parameters by the estimation results in
step 2, and iteration process will be repeated until the
parameters of both pose and correspondence converge.

A. CORRESPONDENCE DETERMINATION
Following the framework in [14], the correspondence deter-
mination aims at finding a N ×M ’’0-1’’ assignment matrix
M ={mij} which specifies the matching relations between N
object points and M image points explicitly. An element mij
with value 1 at the row i and column j inM indicates that the
ith object point Pi is matched with the jth image point pj. For
the case of clutter and occlusion, a slack rowN+1 and a slack
columnM + 1 are added intoM. A value 1 at row N + 1 and
column j indicates that clutter occurs, and the image point pj
has not found anymatched 1 among the object points; A value
1 at row i and columnM + 1 suggests that occlusion occurs,
and there is no image point matched with the object point Pi.
Since each object point can match only one image point at
most, and vice versa,M must satisfy a constraint: the sum of
weights in each row and each column are always adding up
to 1. The ‘‘0-1’’ assignment M can be computed through an
iterative Softassign method which combines the Sinkhorn’s
algorithm and deterministic annealing.
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At the beginning of the iteration, M starts with a fuzzy
matrixM0 = {m0

ij} in which each element initialized to:

m0
ij = exp(−β(d2ij − α))

= exp[−β((R1 · wPi + Tx − pTj (R ·
wPi + T )ũj)2 + . . .

(R2 · wPi + Ty − pTj (R ·
wPi + T )ṽj)2 + . . .

(R3 · wPi + Tz − pTj (R ·
wPi + T )w̃j)2 − α)] (14)

and all of the slack row and slack column elements are set to a
small constant. The parameter α is the maximum permissible
squared object space error between an object point Pi and its
own orthogonal projection, which is used to judge whether
there is a potential matching between Pi and pj. It must
be set to a proper value for the reason that: on one hand,
a overlarge α will cause the incorrect match between Pi and
Qj though they are far apart from each other, which will
lead the Softassign to converge prematurely and be limited
to a local optimum; on the other hand, if α is too small, Pi
will not be assigned to match with Qj though Qj is the own
orthogonal projection of Pi when image noise exits, and the
Softassign cannot converge even when all the correct matches
have be found. Thus, the parameter α should be set to the max
maximum image noise mapped to the object space. Referring
to the statistical theory in [12], we take α = 9.21×σ 2

× (R3 ·
wPi + Tz)2 in which σ is the standard deviation of the image
noise. Besides, the annealing parameter β needs to be initially
set to a small value in order to ensure no correspondences will
be ruled out immediately if the initial pose is not close to the
real pose at the beginning of the iteration. However, it will
cause a low convergence speed in the deterministic annealing
process if β is too small. Based on experimental experience,
β is initialized to β0 = 0.0005. The distance d2ij is obtained by
the initial pose parameters, andM0 is processed concurrently
by the two mechanisms:

First, a Sinkhorn technique [32] is employed in which
each element of M0 is normalized alternatingly for several
times through dividing the sum of that row or column ele-
ments respectively. This operation can be formulated by the
equation:m

k+1
ij =m

k
ij/
∑N+1

i=1
mkij, 1≤ i≤N+1, 1≤ j≤M

mk+1ij =m
k+1
ij /

∑M+1

j=1
mk+1ij , 1≤ i≤N , 1≤ j≤M+1

(15)

where mkij are the elements of the kth iterative matrixMk and
mk+1ij are that of Mk+1. This process will keep running until
M converges. Sinkhorn aims to make the resulting assign-
ment matrix meet the constraint discussed previously: the
sums of weights in each row and each column are equal to 1.

Then, the deterministic annealing [32] is applied during
which the term β is updated according to β = 1.05 × β
after the Sinkhorn is accomplished at each iteration step. The
upper limit number of iteration in deterministic annealing is
log1.05(0.5/β0) [12]. As the deterministic annealing goes on,
the elements mij corresponding to the smaller d2ij is going

to converge to 1 while the other elements tend to converge
to 0. The goal of deterministic annealing is to make the
correspondence which has the minimum distance in each row
and each column be assigned to the match.

B. POSE DETERMINATION
Assume that all the weights mij are obtained. Given a fixed
R, the optimal value for T can be obtained by computing the
partial derivatives of E with respect to T :

T (R) = −[
M∑
j=1

m′j(E3 − Vj)]
−1

N∑
i=1

M∑
j=1

mij(E3 − Vj)R · wPi

= F
N∑
i=1

M∑
j=1

mij(E3 − Vj)R · wPii (16)

where m′j =
N∑
i=1

mij. The optimal rotation matrix which

minimizes the global objective function E can be obtained
by solving the weighted absolute orientation problem from
{
wPi} to {Qkj } at each iteration step:

Rk+1 = argmin
R

N∑
i=1

M∑
j=1

mij||(Rk · wPi + T )− Qkj ||
2 (17)

By adding the weights mij, S can be rewritten as:

S =
N∑
i=1

M∑
j=1

mij(Qkj − Qk )(
wPi − wPi)T

=

N∑
i=1

M∑
j=1

mijQkj (
wPi − wPi)T

−

N∑
i=1

M∑
j=1

mijQk (wPi − wPi)T

=

N∑
i=1

M∑
j=1

mijQkj (
wPi − wPi)T (18)

where:

wPi =

N∑
i=1

M∑
j=1

mijwPi

N∑
i=1

M∑
j=1

mij

Qk =

M∑
i=1

mijQki

M∑
i=1

N∑
j=1

mij

(19)

Let (U , 6,V ) be a SVD of S, the solution to (17) is Rk+1 =
VUT , then T k+1 = T (Rk+1), andQk+1j = Vj(Rk+1 ·wPi+T ).
As the iteration progresses, Pi will gradually get closer to the
corresponding line-of-sight, and this process will be repeated
until the pose is converged.

C. START AND TERMINATION OF SOFTOI
The SoftOI is an iterative method, and a proper initial pose
that is not far away from the true pose has a higher prob-
ability to make the SoftOI successful. However, there is no
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R =

 cosβ cos γ sinα sinβ cos γ − cosα sin γ sinα sin γ + cosα sinβ cos γ
cosβ sin γ cosα cos γ + sinα sinβ sin γ − sinα cos γ + cosα sinβ sin γ
− sinβ cosβ sinα cosβ cosα


T = (Tx ,Ty,Tz) (20)

additional information to judge whether an initial pose is
close to the true pose or not. What is more, the objective
function in (9) has many local optimal solutions; a single
initial pose is not enough to obtain the global optimal value,
so we need to try several different initial poses to find one
which can lead the SoftOI to converge to the correct pose.
Since a pose can be expressed by the three Euler angles and
three translation parameters as shown at the top of this page
(20), as shown at the top of this page, where α, β and γ
are the yaw, pitch and roll angle, and x, y and z are the
translation components in the three directions, we establish
a pose candidates set in which each pose candidate is consist
of two parts: a 3D Euler angle vectorEA = (α, β, γ ) and a 3D
translation vector T = (Tx ,Ty,Tz). The Euler angle vectors
are regularly generated at intervals of π/6 in the range of−π
to π , and the translation vectors are randomly generated by
the pseudorandom number generator [33] in a 3D hypercube
that can approximately cover the true translation. The total
number of the candidates is 2197 ((2π/(π/6)+1)3×1), which
means that the SosfOI will give up if a proper initial pose is
not found within 2197 tries. With an initial pose chosen from
the pose candidates set, the SoftOI algorithm keeps searching
for the global optimal value until the termination criterion is
met at the first time.

The way to judge whether the termination criterion has
been met is whether there are enough correct correspon-
dences between object points and image points have been
found. However, in real imagery, not all correct matches will
be found due to high image noise or imperfect image feature
point extraction algorithm. Therefore, we set a threshold for
the ratio of correct matches to k = 0.9 in actual measure-
ment, which indicates the algorithm will be terminated if
more than 90% of the detected object points have found the
corresponding image points. As is mentioned in section IVA,
there will be an approximate ‘‘1’’ in the ith row and jth
column of the assignment matrix M if the ith object point
and the jth image point are matched, the Nmatch (number of
the correct matches) can be intuitively counted from M at
each iteration. In addition, after about 30 iterations in the
deterministic annealing process, the Nmatch tends to remain
unchangedwhile the pose also tends to converged. So tomake
the algorithm efficient, the current search will also be early
terminated if there is no significant increase on Nmatch after
at most log1.05(0.5/β0) iterations [12] and be restarted with
another new initial pose from the pose candidates set.

The threshold k = 0.9 is just an empirical but not perfect
value, as it can be the case that an accurate pose be ‘‘ignored’’
because the ratio of Nmatch is less than 0.9 due to the high

image noise. Conversely, the search may also be terminated
with a wrong pose if the ratio ofNmatch is greater than 0.9, this
is because toomany clutter points are wrongly regarded as the
image points if the clutter rate is high. However, these cases
are not common, and the success rate of SoftOI in different
conditions of clutter and occlusion rate will be shown in the
simulations in the Section V.

D. SOFTOI ALGORITHM FLOW
Initial

a) List of object points wPi = (wXi, wYi, wZi)T (i =
1, 2, . . .N ).

b) List of the normalized image points pj =

(uj, vj, 1)T (j = 1, 2, . . .M ).
c) The terms mij in the slack row and slack column

are initialized to γ = 1/(max{M ,N } + 1).
d) β is initialized to β0 = 0.0005.
e) α is initialized to 9.21× σ 2

× (R3 · wPi + Tz)2.

For K < 2197

a) Choose an initial pose (R0,T 0) from the pose can-
didates sets

b) Compute the orthogonal projection points of Pi on
the line of sights defined by pj:Qj = Vj(R·wPi+T )

While Nmatch < ceil(0.9N (1 − po))&&β < βend
(βend = 0.5)

a) Compute the square distances:

d2ij = (R1 · wPi + Tx − pTj (R ·
wPi + T )ũj)2

+ (R2 · wPi + Ty − pTj (R ·
wPii + T )ṽj)2

+ (R3 · wPi + Tz − pTj (R ·
wPi + T )w̃j)2

b) Compute m0
ij = γ exp(−β(d2ij − α)).

c) Normalize each row and column of M alternat-
ingly for several times until

∥∥Mk
−Mk−1

∥∥ ≤ 1;

d) Compute the defined F = −[
M∑
j=1

m′j(E3 − Vj)]−1,

with m′j =
N∑
i=1

mij.

e) Compute the defined S =
N∑
i=1

M∑
j=1

mijQkj (Pi − Pi)
T ,

then process S by SVD method: USV T
=
∑

.
f) Compute the optical estimation of the rotat-

ing matrix Rk+1 at the next iteration step
Rk+1 = VUT .
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g) Compute the optical estimation of the rotating
matrix T k+1 at the next iteration step T k+1 =

F
N∑
i=1

M∑
j=1

mij(E3 − Vj)Rk+1 · wPi

h) update β = βu · β, βu = 1.05 is the updated
parameter;

End while
If Nmatch > 0.9N (1− po)
OutputM, R and T
Break;

End if
K = K+ 1;

End for
Output:

a) The assignment matrixM = {mij}which explicitly
specifies the matching relations betweenM image
points and N object points.

b) Rotation matrix R = (R1,R2,R3)T .
c) Translation vector T = (Tx ,Ty,Tz)T .

IV. SIMULATIONS AND EXPERIMENTS RESULTS
We test the performance of our approach in the simulta-
neous pose and correspondence problem with Monte Carlo
simulations in which the effects of occlusion and clutter are
considered. In the simulations, 100 independent random trials
are conducted with a virtual camera, of which the image size
is 800× 700 pixels and focal length f = 800.
First, N object points (vertices) which are randomly dis-

tributed in the range of [−2, 2] × [−2, 2] × [4, 8] are gen-
erated. Next, the object is rotated to an arbitrary orientation
and translated to arbitrary point according to a generated pose
which can be denoted by Rtrue and Ttrue. Then the object
is projected back to the image plane with according to the
perspective projection model. Theoretically, the number of
image points M detected on the image plane is equal to
the number of object points N . However, N will be less
than M if some of object points are occluded, and more
than M if clutter occurs. Let Po and Pc denote the ratio of
occlusion and clutter respectively, to simulate occlusion and
clutter, NPo points must be deleted from the feature points
and N (1− Po)Pc/(1− Pc) clutter points must be added on
the image. Finally, Gaussian noise with standard deviation
σ = 1 pixel is added to the image feature points in both
x and y coordinates, and the correspondences between the
object points and image points are disorganized. Each trial
is performed with the combination of the three parameters:
N ∈ {20, 30, 40, 50, 60, 70, 80}, Po ∈ {0.2, 0.4, 0.6}, Pc ∈
{0.2, 0.4, 0.6}.

Fig.4 shows a recording of updated process of determin-
ing the correct pose and correspondence by our method.
The blue filled point is the reprojection of object points and
the red hollow dot is the detected image points (including the
clutter points). The blue solid lines and red dotted lines which
connect the object points and image points respectively are

FIGURE 4. The recording of updated process of softOI. (a) The initial
guess of the pose. (b)∼(f) are the 1th,5th,13th,20th,27th, 33th steps
of the iteration. Po = 0.2, Pc = 0.4.

FIGURE 5. The success rate of SoftOI for different combinations of
Po and Pc with the number of object points from 20 to 80.

used to make the pictures easier to understand, and they are
not used by the algorithm.

A. SIMULATION OF SUCCESS RATE OF SOFTOI
Since the correspondence and pose determination are opti-
mized mutually, a good pose will be obtained if the correct
correspondence is determined, and vice versa. In simulations,
we consider a trial to be successful when over 90% of the
correct correspondences have been found and the pose error
is small enough. Since the number of pose candidates set is
limited to 2197, a trial is regarded as a failure if it has not
succeeded within 2197 initial poses. However, one cannot
expect all the trials to be successful due to different levels of
image noise and object points recognition rate. The success
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FIGURE 6. The efficiency comparison between SoftPosit and SoftOI. (a) the computational time comparison for different number of object
points with unknown correspondences. (b) the mean number of random starts comparison for different number of object points. (c) the
computational time comparison for different number of object points if an initial pose has been found.The experiments of SoftPosit and SoftOI
are conducted under the circumstance of Po = 0.4 and Pc = 0.4.

rates of SoftOI with different combinations of occlusion rate
Po and cluster rate Pc are shown in Fig.5. One hundred trials
were conducted for each combination. As we can be from
Fig.5, the success rate of SotfOI decreases with the increase
in Po and Pc. When the occlusion rate is small (Po = 0.2),
the success rate is high (over 97%). Even when the occlusion
occurred seriously (Po = 0.6), a good pose can be found
with a probability of more than 75%. In addition, with the
increasing number of object points, the success rate doesn’t
decline significantly when Po is smaller than 0.6. It suggests
that the SoftOI can keep a stable and good performance
though the scene becomes complex.

B. SIMULATION OF RUN TIME
The complexity of SoftOI is O(NM2), which is comparable
to that of SoftPosit. However, the running speed of SoftOI
is almost two times faster than that of SoftPosit, as can be
seen from Fig.6(a). The main reason is that the OI algorithm
nested in our algorithm is global convergent [10], and it can
obtain the correct pose even though the initial pose is not
near from the true pose when the correspondences are fixed.
Benefited from the global convergence in OI, our method has
strong search ability for optimal value, which indicates that it
needs less initial start poses in the whole searching process.
Obviously, the less the initial start poses are needed, the faster
the algorithm will be. Under the same conditions, the mean
numbers of initial poses required in each successful trail are
shown in Fig.6 (b). To find a proper initial pose from the pose
candidates set, our method needs about average 57 attempts
less than SoftPosit.

In addition, the most of the runtime of our method is spent
on the searching for the proper initial pose, and the speed of
the SoftOI will becomemuch faster if a proper initial pose has
been found. As can be seen from Fig.6 (c), the SoftOI requires
about 0.6s for 80 points with unknown correspondences while
the runtime of SoftPosit is about 3.6s.

C. SIMULATION OF ACCURACY
The accuracy of SoftOI algorithm is evaluated by the
pose errors between the true pose (Rtrue,Ttrue) and the
estimated pose (R,T ). The rotation error is defined

FIGURE 7. The comparison of pose estimation error for different number
of points. (a),(b) the mean and median rotation errors of different
methods. (c),(d) the mean and median translation errors of different
methods. The experiments of SoftPosit, Depose and SoftOI are conducted
under the circumstance of Po = 0.4 and Pc = 0.4.

as: erot = max3k=1 a cos(dot(Rktrue,Rk )) × 180/π , where Rk
is the kth column of R, and the translation error is measured
according to etrans = ||Ttrue − T ||/||T || × 100. The perfor-
mance of SoftOI are compared with two other state of art
simultaneous pose and correspondence determination algo-
rithms (SoftPosit, DePose) and two PnP methods (RPnP[8],
LHM[10]). Since the SoftOI, SoftPosit [14] and Depose [21]
may not converge to the correct pose with a 100% proba-
bility, only the successful trails are considered here in order
to make the accuracy experiment equitable. The simulation
of the accuracy is conducted with 100 independent random
trials and the pose estimation errors of different methods
are plotted in Fig.7. Fig.7 (a) and Fig.7 (b) are the mean
and median rotation errors comparison, while Fig.7 (c) and
Fig.7 (d) are the mean and median translation errors com-
parison. As can be seen, the SoftOI has shown its better
performance when compared with other simultaneous pose
and correspondence determination algorithms. The rotation

VOLUME 7, 2019 137727



H. Dong et al.: Simultaneous Pose and Correspondence Determination Combining Softassign and Orthogonal Iteration

FIGURE 8. The applications of the SoftOI in some different simulated scenarios. (a) The reference images. (b) The
projections of the CAD model according to the initial pose. (c) (d) Some sample projections in the iteration process.
(e) Final results of SoftOI.

accuracy has been improved more than 1◦ when the SoftOI is
employed, whereas the translation error has also decreased
slightly. What is more, even compared with PnP methods,
the rotation and translation accuracy of SoftOI are similar
with RPnP and just about 0.05◦ and 0.7% lower than LHM
when the number of object points is more than 50. However,
one cannot expect that SoftOI can be superior to the PnP
methods, this is because SoftOI aims to solve not only the
pose problem but also the correspondence problem, and it
is usually terminated with an approximate rather than an
absolute ‘‘0-1’’ assignment matrix to ensure the speed of
algorithm. Even though a rough ‘‘0-1’’ assignment is enough
to determine the correspondences, it will bring interference
from the incorrect potential matching points more or less
during the pose refinement process. If more high accuracy is
necessary, the pose can be recalculated by the PnP method
after the correct correspondences have been determined
by SoftOI.

D. EXPERIMENTS
We test our simultaneous pose and correspondence determi-
nation algorithm on real images. Fig.8 shows the applications
of the SoftOI in some different simulated scenarios such as
hand-eye robot work piece grabbing (the first row), helicopter

automatic landing (the middle row) and indoor robotic vehi-
cle navigation (the bottom row). In order to accomplish these
works, the relative pose between the camera and the object
must be determined.

For each scenery in (a), lines are detected by Hough trans-
form [29], shown in red, and some of their intersections
are extracted as the 2D image feature points (mark with
white). The object feature points are obtained from the CAD
model, and we connect their projections (marked with blue)
with green lines to make it easier to understand. The cor-
respondences between the image feature points and object
feature points are not known, and the number of object points,
the occlusion rate Po and cluster rate Pc in each scenery are:
16, 21%, 25% (piece grabbing); 24, 8%, 15% (automatic
landing); 22, 10%, 20% (robotic vehicle navigation). Each
image in (b) shows the projection with an initial guess, and
the projections according to the refined pose at some iteration
step in SoftOI are shown in (c) and (d).As can be seen,
the 3Dmodels are getting closer to the object, which suggests
that the pose and correspondences are evolving towards the
true value. The final pose and correspondence determination
results are shown in (e), in which the projections of 3D mod-
els have all matched with the object points. So far, the cor-
respondence and pose have all been successfully determined
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FIGURE 9. A failure case of a book pose recognition. (a) The reference images. (b) The projections of the CAD model according to the initial pose.
(c) The wrong result of SoftOI. (d) The correct result of SoftOI.

by SoftOI within 84, 73, 93 iterations, respectively. Besides,
the object points of the helicopter land mark in the sec-
ond scenery (middle row) are coplanar, which cannot be
solved by SoftPosit, so our algorithm has a broader range of
applications.

Since the success rate of our method is not 100%, and there
is a little probability of failure in the application of SoftOI if
the occlusion rate and cluster rate are high. Figure 9 shows a
failure case of a book pose recognition in which the 8 vertexes
of the book are used as the object points. The Pc and Po
are 0.63 and 0.50, which means that there exists 7 cluster
points (marked with black circle), and only 4 object points
are correctly detected (marked with white circle). As can
be seen from Fig.9 (c), the CAD models (marked with blue
circle) have not matched with the vertexes of the book well
in the final result, which suggests that the compute pose error
is large. This is because some cluster points are wrongly
detected as the object points, and the CAD model points
are likely to get closer to the ‘‘faked’’ object points with
the evolution of the pose if the cluster points are not far
away from the ‘‘true’’ object points. However, the SoftOI
considers an image point and an object point are matched if
the distance between them is small enough, and terminates
once 4 (ceil(8× 0.5× 0.9)) matches have been found, so the
algorithm may fall into local optimum and converge to an
incorrect pose. This situation can be improved by a better
image point extract algorithm in which more object points
can be detected and more cluster can be filtered out. For
example, if we manually remove one cluster point at the
position ‘‘A’’ and add one more vertex as the detected object
point at position ‘‘B’’ in Figure 9(a), and the Pc and Po
become 0.54 and 0.37, then a good pose and a correct corre-
spondence can be obtained by the SoftOI again, as is shown
in Figure9 (d).

Besides, another factor that will cause a failure is that there
is no proper initial pose be found in the pose candidates
set, and the termination condition has not been satisfied
although SoftOI is restarted 2197 times. Since an initial pose

is composed of an Euler angle vector and a translation vector,
there is a probability that the Euler angle vector is suitable but
the translation vector is too far away from the true translation.
However, the Nmatches will likely be less than the threshold
due to large distance between object points and the corre-
sponding image points if the initial translation vector have
not evolved into an acceptable value within log1.05(0.5/β0)
times, so the initial pose will be refused even if the initial
rotation is proper. To solve this problem, we can appropriately
reduce the Euler angle interval between the two adjacent
candidates in the pose candidates set, and generate more
candidates to increase the probability of finding a proper
translation vector. However, it may cause a little loss of
efficiency.

V. CONCLUSION
In this paper, we present a new simultaneous pose and
correspondence determination algorithm in which occlusion
and cluster cases are also taken into account. An assign-
ment matrix that specifies the matching relations between
object points and image points is introduced into OI algo-
rithm. The Softassign correspondence determination algo-
rithm and OI pose estimation algorithm are nested into one
iteration loop, and the pose and the correspondence are
determined alternately by minimizing the object function
based on the weighted object space collinearity error and by
applying the deterministic annealing technique. Compared
with other state-of-art simultaneous pose and correspondence
determination algorithms, our method has the advantage of
higher accuracy, faster speed and wider applications. The
SoftOI algorithm is well suited for complex pose estimation
applications such as robot guidance, aircrafts docking and
objects recognition where correspondences between image
point and object point are not known in advance. In the
future work, we will improve initial pose set establish-
ment method to reduce the overall algorithm time consump-
tion and make the SoftOI more efficient in the real-time
measurement.
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