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ABSTRACT This paper concentrates on harmonic analysis in gaseous helium, including microscopic gener-
ation, selective filtration and macroscopic propagation. A coherent method is proposed, with time-dependent
Schrödinger equation for harmonic generation and Maxwell’s wave equation for harmonic propagation.
By introducing the polarization source based on the microscopic single-atom response, the macroscopic
nonlinear propagation can be efficiently solved by a set of linear equations at each harmonic frequency.
Using the proposed method, we numerically investigate the propagation effects of selective harmonics in
gaseous helium. Our results reveal that specific harmonics allow the synthesis of an isolated attosecond
pulse, which presents a high beam quality and an excellent spatial profile with Gaussian-like distribution.
Moreover, the generated pulse provides a promising potential on high power defense, quantum radar and
communication.

INDEX TERMS Gaseous helium, harmonic analysis, Maxwell’s wave equation, propagation effects,
time-dependent Schrödinger equation.

I. INTRODUCTION
Harmonic analysis is a mathematic branch associated with
the basic signal or wave, which has become a vast subject
with applications on communication, signal processing and
quantummechanics [1]. Generally, low-order harmonics may
occur in electronic devices at microwave range [2], plasmonic
structures at terahertz range [3] and metal nanoparticles at
visible-light [4]. With the development of high intensity
lasers, harmonics of tens- and hundreds-order are observed
from gaseousmedium by intense driving field [5]. High-order
harmonic generation (HHG) has attracted considerable atten-
tions due to its practical application to synthesize isolated
attosecond (as, 10−18s) pulse (IAP) [6]. The IAP presents
extremely close to the ideal impulse with wide frequency
band, whichmakes it a promising candidate on input pulse for
high power defense [7] and transmitting signal for quantum
radar and communication [8], [9].

As shown in Fig. 1, typical high-order harmonic spec-
tra begin with a rapid decline for low-order harmonics
consistent with the perturbation theory [10], followed by
a broad plateau of almost constant intensity, and vanish
with an abrupt cutoff. A breakthrough understanding with a

The associate editor coordinating the review of this article and approving
it for publication was Firuz Zare.

FIGURE 1. Typical high-order harmonic spectra from gaseous medium,
which begin with a rapid decline on intensity for low-order harmonics,
followed by a broad plateau of almost constant intensity, and vanish with
an abrupt cutoff.

‘‘three-step model’’ [11] was initiated by Corkum to explain
the plateau effect in HHG spectra, which involved ionization
away from the nucleus, propagation in the driving field, and
recombination with the parent ion. To quantitatively calculate
harmonics at each order, classical theory [12], semiclassical
theory [13], and theory of quantum electrodynamics [14],
[15] are widely used to describe the microscopic interaction
between an atom and an intense driving field.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 127631

https://orcid.org/0000-0003-4267-7725
https://orcid.org/0000-0002-4230-9968
https://orcid.org/0000-0001-6465-8141


L. Zhang et al.: Harmonic Analysis in Gaseous Helium by Coherent Schrödinger–Maxwell Method

However, a complete description of high-order harmonic
analysis consists of three parts: microscopic harmonic gen-
eration by the intense driving field, selective filtration for
IAP synthetization and macroscopic propagation of relevant
harmonic fields in gaseous medium [16]. According to the
relationship between time domain and frequency domain,
broad frequency band corresponds narrow time band. There-
fore, harmonics in the plateau region are made full use for
IAP synthetization. As is well known, Fourier transform [17]
is a mathematical tool used in signal processing and analysis.
Unfortunately, it can not reflect the local correspondence
between short time and frequency. Using a ‘‘reverse, shift,
multiply and integrate’’ technique, wavelet transform can
overcome this disadvantage to analyze local time-frequency
relationship of non-stationary signal [18]. Thus, in the pro-
cess of selective filtration, wavelet transform is usually
utilized to investigate the time-frequency characteristic of
high-order harmonics in the plateau region.

In the previouswork [16], attosecond pulses have been syn-
thetized by harmonics of microscopic single-atom response.
Furthermore, macroscopic propagation of relevant harmonic
fields in gaseous medium should be considered for spatial
distribution of the generated IAP. Frequency domain methods
can be used to model nonlinear harmonic phenomena to
avoid cumbersome media dispersion in time domain. For
low-order harmonics, Xiong et al. [19] proposed a surface
integral equation (SIE) method to solve the coupled-wave
equations for second- harmonic generation and radiation.
Fang et al. [20] established a full hydrodynamicmodel to sim-
ulate nonlinear harmonic response and distribution in metal-
lic metamaterials. For high-order harmonics, Jin et al. [21]
investigated medium propagation effects in Ar and N2, with
an approximate nonlinear polarization source based on quan-
titative rescattering (QRS) theory [22]. Besides, many efforts
have been made on IAP propagation effects of beam quality
and spatial profile due to its crucial role for experimental
measurement [23], [24].

In this paper, a coherent method is proposed for har-
monic analysis in gaseous helium, including microscopic
generation, selective filtration and macroscopic propagation.
First, we solve the time-dependent Schrödinger equation
(TDSE) [25] to obtain accurate harmonic spectra. Then
Morlet wavelet transform [18] is applied to investigate
the time-frequency characteristic of harmonics for selective
filtration. Finally, the generated IAP with broad band is
investigated by Maxwell’s wave equations at each harmonic
frequency, with nonlinear polarization source based on the
microscopic single-atom response. The main contribution is
that the nonlinear harmonic propagation can be accurately
solved at certain harmonic frequencywith a set of linear equa-
tions. In order to improve efficiency and stability, the Crank-
Nicholson (CN) difference scheme [26] is employed in whole
procedure. Using the proposed method, we numerically
investigate the propagation effects of selective harmonics in
gaseous helium. The simulated results reveal that specific
harmonics are able to synthesize an isolated attosecond pulse

FIGURE 2. Illustration of a complete typical HHG spectra observation.

which presents a high beam quality and an excellent spatial
profile with Gaussian-like distribution. Moreover, the gen-
erated pulse provides a promising potential on high power
defense, quantum radar and communication.

The paper is organized as follows: Section I is the
introduction. Section II gives the formulations of microscopic
generation, selective filtration and macroscopic propagation.
In section III, some numerical results are presented to demon-
strate the accuracy, efficiency and practical value of the
proposed method. A brief conclusion is given in section IV.

II. PRINCIPLE AND FORMULATION
As shown in Fig. 2, a complete description of high-order
harmonic spectra observed experimentally consists of three
parts: microscopic harmonic generation, selective filtration
and macroscopic propagation. First, harmonics may occur
in the gas jet due to single-atom response between gaseous
target and driving intense laser field. Then, a filter is located
near the exit of gas jet for selective filtration to synthetize IAP.
During the propagation, the peak center of IAP with relevant
harmonic fields will diverge, resulting in a divergence angle.

A. MICROSCOPIC HIGH-ORDER HARMONIC
GENERATION
According to the mentioned ‘‘three-step model’’ [11], an out-
most electron is driven away from the nucleus by the intense
laser field. When the oscillating laser field changes its
sign, the electron decelerates to zero and re-accelerate back
towards the parent ion. If the returning electron recombines
with its parent ion, high-order harmonics can be released with
high energy photon, which is much larger than that of the
fundamental field. The entire interaction between gaseous
atom and intense laser field can be solved by TDSE expressed
as:

i}
∂

∂t
ψ(Er, t) =

[
−

}2

2me
∇

2
+ V (Er)− eEr · EE (t)

]
ψ(Er, t)

(1)

where i =
√
−1, ψ(Er, t) is the wave function, } is reduced

Planck’s constant, me is the real mass of the valence electron,
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∇
2
= ∂2

/
∂r2, V (Er) is the potential energy distribution of

gaseous atom, and EE (t) is the driving intense laser field.
Using Crank-Nicholson difference scheme, equation (1) is

solved by the finite difference time domain (FDTD) method
with 3-D stability condition [16]:

21t
[

1
(1x)2

+
1

(1y)2
+

1
(1z)2

]
+8max1t ≤ 2 (2)

where 8(Er, t) = V (Er)− eEr · EE (t).
According to Ehrenfest theorem [27], the electron average

acceleration a(t) can be calculated by mathematical expecta-
tion expressed as:

a(t) =
〈
ψ(Er, t)

∣∣∣∣−∂8(Er, t)∂r

∣∣∣∣ψ(Er, t)〉
=

∫
�

ψ∗(Er, t)
[
−
∂8(Er, t)
∂r

]
ψ(Er, t)d� (3)

where � is the total computational space.
Generally, the intensity of high-order harmonic at each

order is expressed as:

P(ω) ∝ |a(ω)|2 =

∣∣∣∣∫ t

0
a(t)e−iωtdt

∣∣∣∣2 (4)

B. SELECTIVE FILTRATION
According to the relationship between time domain and fre-
quency domain, broad frequency band corresponds narrow
time band. To make full use of harmonic orders in the plateau
region, we apply Morlet wavelet transform into the analysis
of non-stationary signal by high-order harmonic generation.
By adding a window function with adjustable width, Mor-
let wavelet transform automatically narrows the width of
the time window as the signal frequency increases, greatly
improving the resolution. The expression of Morlet wavelet
transform is as follows:

Aω(tc, ω) =
∫
+∞

−∞

h(t)wtc,ω(t)dt

=

∫
+∞

−∞

√
ωh(t)W [ω (t − tc)] dt (5)

where wtc,ω(t) indicates the kernel function with W (x)
defined as:

W (x) =
(

1
√
τ

)
exp (ix) exp

(
−
x2

2τ 2

)
(6)

in which τ is the window width of Morlet wavelet transform.
After wavelet transform applied, the correspondence of

harmonics intensity in different time and frequency can
obtained. Therefore, an IAP may be achieved by

I (t) =

∣∣∣∣∣∣
N2∑

m=N1

a(ω)eimωt

∣∣∣∣∣∣
2

(7)

with [N1,N2] is the suitable order range from plateau region
in Fig. 1.

C. MACROSCOPIC HARMONIC PROPAGATION
In HHG experiments, the IAP with broad frequency band
carries out a macroscopic propagation in gaseous medium
until observation. During propagation, the intensity and dis-
tribution of harmonics will change due to the interaction of
gaseous medium, resulting in a divergence angle compared
with ideal impulse, which can not be ignored. In our work,
by introducing nonlinear polarization source based on micro-
scopic single-atom response, propagation of the generated
IAP with broad band in gaseous medium is investigated by
Maxwell’s wave equations at each harmonic frequency. The
CN difference scheme is employed in the entire solution,
to improve efficiency and stability.

1) MAXWELL’S WAVE EQUATION
With the symmetry of spatial distribution in cylindrical coor-
dinate system, Maxwell’s wave equation for the propagation
of high-order harmonics is expressed as:

∇
2Eh (r, z, t)−

1
c2
∂2

∂t2
Eh (r, z, t) =

1
ε0c2

∂2

∂t2
PNL (r, z, t)

(8)

where ∇2
= ∇

2
⊥
+ ∂2

/
∂z2 indicates the Laplace operator

in cylindrical coordinate system, Eh (r, z, t) is the high-
order harmonic field, PNL (r, z, t) is the nonlinear polariza-
tion source depended upon the applied fundamental field
E1 (r, z, t), c is the velocity of light in vacuum and ε0 is the
permittivity of vacuum.

For the sake of calculation, we employ motion coordinate
system with z′ = z and t ′ = t − z/c, then the time and space
partial derivatives are defined as:

∂

∂z
=

∂

∂z′
−

1
c
∂

∂t ′
, (a)

∂

∂t
=

∂

∂t ′
, (b)

∂2

∂z2
=

∂2

∂z′2
−

2
c
∂2

∂z′∂t ′
+

1
c2
∂2

∂t ′2
, (c)

∂2

∂t2
=

∂2

∂t ′2
, (d)

(9)

Under the slowly evolving wave approximation [28],
the order of ∂2

/
∂z′2 is much less than that of ∂

/
∂z′, so the

first item in Eq. (9.c) on the right hand can be ignored.
Substituting Eq. (9) into Eq. (8), we can obtain Maxwell
wave equation of macroscopic HHG propagation in motion
coordinate system as:

∇
2
⊥
Eh
(
r, z′, t ′

)
−

2
c
∂2

∂z′∂t ′
Eh
(
r, z′, t ′

)
=

1
ε0c2

∂2

∂t ′2
PNL

(
r, z′, t ′

)
(10)

In order to further simplify calculation, Fourier transform
is applied into Eq. (10) to obtain Maxwell wave equation in
frequency domain as:

∇
2
⊥
Ẽh
(
r, z′, ωn

)
−

2iωh
c

∂Ẽh
(
r, z′, ωh

)
∂z′

= −
ω2
h

ε0c2
P̃NL

(
r, z′, ωh

)
(11)
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where Ẽh
(
r, z′, ωh

)
and P̃NL

(
r, z′, ωh

)
are the component

of high-order harmonics and nonlinear polarization source
at h-th order frequency ωh, respectively. Once the nonlinear
polarization source P̃NL

(
r, z′, ωh

)
is given, the spatial distri-

bution of macroscopic propagation effects can be achieved by
Eq. (11) with CN difference method.

2) CRANK-NICHOLSON DIFFERENCE METHOD
The Laplace operator in cylindrical coordinate system is
expressed as:

∇
2
⊥
f =

∂2f
∂r2
+

1
r
∂f
∂r
+
∂2f
∂ϕ2

1
r

(12)

Substituting Eq. (12) into Eq. (11), we can obtain:

2iωh
c

∂Ẽh
(
r, z′, ωh

)
∂z′

=
∂2Ẽh

(
r, z′, ωh

)
∂r2

+
1
r

∂Ẽh
(
r, z′, ωh

)
∂r

+
ω2
h

ε0c2
P̃NL

(
r, z′, ωh

)
(13)

Then Eq. (13) can be exactly solved by Crank-Nicholson dif-
ference method as Eqs. (14.a) and (14.b) shown at the bottom
of the current page. It should be mentioned that L’hôpital’s
Rule [29] is employed for Eq. (14.b) to eliminate singular
item 1

/
r in Eq. (14.a) with:

lim
r→0

(
1
r
∂E
∂r

)
= lim

r→0

(
1
r ′

(
∂E
∂r

)′)
=
∂2E
∂r2

∣∣∣∣
r→0

(15)

As a consequence, problem (14) can be solved by tridiagonal
matrix algorithm [30] without direct inverse.

3) NONLINEAR POLARIZATION SOURCE
The component of nonlinear polarization source at each
harmonic frequency is decided by the Fourier transform of
nonlinear polarization response, as:

PNL
(
r, z′, t

)
=
[
n0 − ne

(
r, z′, t

)]
〈x (t)〉 (16)

where n0 is the initial neutral atom density in gas medium,
〈x (t)〉 is the time dependent dipole moment in microscopic
single-atom response defined as:

〈x (t)〉 = 〈ϕ (r, t) |r|ϕ (r, t)〉 (17)

TABLE 1. Conversion between hartree atomic units and international
system of units.

and ne
(
r, z′, t

)
is the density of free electron calculated by:

ne
(
r, z′, t

)
=n0

[
1− exp

(
−

∫ t

−∞

γ
(
r, z′, t ′

)
dt ′
)]

(18)

where γ
(
r, z′, t ′

)
is the ionization rate calculated from

Ammosov-Delone-Krainov (ADK) theory [31].

III. NUMERICAL RESULTS
In this section, we investigated both microscopic single-atom
response and macroscopic propagation effects of high-order
harmonics fields from helium atom by intense two-color
Bessel-Gauss (BG) beam [23], [24]. In atomic physics,
Hartree atomic units (a.u.) are widely applied to avoid
the conversion between units for computer precision [32],
as shown in Table 1. In this case, the helium atom is estab-
lished by one dimensional soft core Coulomb potential model
with [33]

V (x) = −
1

√
x2 + 0.484

(19)

As shown in Fig. 3, the two-color BG beam EBG is syn-
thesized by a fundamental pulse E0 with linearly polarized
(central λ0 = 800nm) and a control pulse E1 with linearly
polarized (central λ1 = 1600nm), given by:

EBG (r, z, t) = E0 (r, z) f0 (t) cos (ω0t)

+E1 (r, z) f1 (t) cos (0.5ω0t + φ1) (20)

−
1z′

2 (1r)2
Ẽh
(
rn−1, z′m+1, ωh

)
+

(
2iωh
c
+

1z′

(1r)2
+

1z′

2r (1r)

)
Ẽh
(
rn, z′m+1, ωh

)
−

(
1z′

2 (1r)2
+

1z′

2r (1r)

)
Ẽh
(
rn+1, z′m+1, ωh

)
=

1z′

2 (1r)2
Ẽh
(
rn−1, z′m, ωh

)
+

(
2iωh
c
−

1z′

(1r)2
−

1z′

2r (1r)

)
Ẽh
(
rn, z′m, ωh

)
+

(
1z′

2 (1r)2
+

1z′

2r (1r)

)
Ẽh
(
rn+1, z′m, ωh

)
+

ω2
h

ε0c2
P̃NL

(
rn, z′m, ωh

)
, r 6= 0 (14.a)

−
1z′

(1r)2
Ẽh
(
rn−1, z′m+1, ωh

)
+

(
2iωh
c
+

21z′

(1r)2

)
Ẽh
(
rn, z′m+1, ωh

)
−

(
1z′

(1r)2

)
Ẽh
(
rn+1, z′m+1, ωh

)
=

1z′

(1r)2
Ẽh
(
rn−1, z′m, ωh

)
+

(
2iωh
c
−

21z′

(1r)2

)
Ẽh
(
rn, z′m, ωh

)
+

(
1z′

(1r)2

)
Ẽh
(
rn+1, z′m, ωh

)
+
ω2
h

ε0c2
P̃NL

(
rn, z′m, ωh

)
, r = 0 (14.b)
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FIGURE 3. The intense two-color bessel-gauss beam synthesized by
fundamental and control pulse.

where E0 (r, z) and E1 (r, z) are the BG spatial distributions
with peak intensities of 0.2068a.u. and 0.16a.u., respectively.
One optical cycle corresponds to the period of fundamental
pulse. The envelope f (t) is expressed as

f (t) = exp
[
−4t2 ln (2)

τ 2

]
(21)

where τ = 4, 5fs is the full width at half maximum (FWHT)
for the fundamental pulse and control pulse, respectively.
According to the ionization gating mechanism, the relative
phase φ1 is set as zero to achieve broad supercontinuum [34].

For helium atom model, the ground state is designed as:

ψ(x) = Q(0.5+
√
x2 + 0.5) exp(−2

√
x2 + 0.5) (22)

with Q for the normalization coefficient. The solution range
is [−800a.u., 800a.u.] with Dirichlet boundary condition.
The temporal and spatial spacing are designed according to
stability condition with 1x = 0.5a.u. and 1t = 0.1a.u.,
respectively.

The intensity of high-order harmonic is proportional to
the square of the Fourier transform mode of the electron
average acceleration, which has been mentioned in Eq. (4).
In Fig. 4, we plot the high-order harmonic spectra from
gaseous helium irradiated by the synthesized two-color BG
beam. Consistent with prediction of the ‘‘three-step’’ model,
the harmonic spectra consist of three parts: the perturbative
regime for low orders, the plateau for intermediate orders,
and the cutoff at the highest orders. Particularly, two plateau
regions of 30-105th and 120-315th orders can be observed
to possess appropriate spectral intensity and exhibit regu-
lar supercontinuum characteristics, which is consistent with
previous theoretical and experimental work [35], [36]. The
cutoff position appears at the 315th order, which makes an
agreement with the result predicted by empirical formula and
experimental work, determined by:

Ecutoff = hωcutoff ≈ Ip + 3.17UP (23)

FIGURE 4. High-order harmonic spectra in log scale with two plateau
regions of 30-105th and 200-250th orders.

FIGURE 5. Attosecond pulses of HHG from a one dimensional helium
atom model with time-frequency analysis by Morlet wavelet transform.

where Ip indicates the ionization energy and Up indicates the
ponderomotive energy [37] given by:

Up =
e2E2

0

4meω2 (24)

The quantitative comparison has demonstrated the accuracy,
feasibility of the proposed method to simulate microscopic
high-order harmonic generation.

Next, we carry out selective filtration of the high-order
harmonic spectra. In our implementation, the window width
of Morlet wavelet transform is set as τ = 25. Figure 5 shows
the time-frequency characteristics between radiation moment
and harmonic order. The highest main peak corresponds to
the second plateau region, while the adjacent main peak cor-
responds the first plateau region. By comparison, the highest
main peak exhibits a relatively concentrated radiation range.
For 50-80th orders in the first plateau region, three radiation
ranges of 96as, 112as and 140as are observed due to the exis-
tence of long trajectory and short trajectory. Long trajectory
is caused by earlier ionization and later recombination with
electron movement for a long period, whereas short trajectory
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FIGURE 6. The isolated attosecond pulse of 52as synthesized by
150-300th orders harmonics.

FIGURE 7. The spatial profiles of generated 52as isolated attosecond
pulse with 200-250th orders harmonics. (a) and (c) correspond to radial
distribution in the near field; (b) and (d) correspond to divergence angle
in the far field.

is caused by later ionization and earlier recombination with
electron movement for a short period. For 150-300th orders
in the second plateau region, only one concentrated radiation
range of 52as is observed. This is because long trajectory
and short trajectory tend to coincide in the vicinity of cut-off
region.

According to Eq. (7), an isolated attosecond pulse is syn-
thesized by 150-300th orders harmonics, as shown in Fig. 6.
The generated IAP performs 52as width with extremely
low sides. Energy is concentrated in the main peak with
232.9∼465.9 eV board frequency band. In particular, due
to the symmetry of gaseous atom, the high-order harmonic
spectra have only odd orders.

Then, we concentrate on the macroscopic propagation
effects of the generated 52as IAP with 150-300th orders.
As illustrated in Fig. 2, a 0.5mm long gas jet is placed

2mm after the BG beam focus and the observation point
in the far field is set 0.5m away from the gas jet. Only
odd nonlinear polarization components are calculated and
considered. With the proposed method, macroscopic propa-
gation effects are simulated by a group of linear Maxwell’s
wave equations. The spatial profile of the generated IAP by
two-color BG beam in helium medium is shown in Fig. 4.
Figures 4(a) and 4(c) correspond to radial distribution in the
near field. For observation point in the near field, the spatial
profiles of generated 52as IAP present an excellent Gaussian-
like with concentrated energy in the range of −7um to 7um.
The far field distribution of IAP is obtained by the Hankel
transform from the near field. Figures 4(b) and 4(d) corre-
spond to divergence angle in the far field. For observation
point in the far field, the divergence angle of central spot
is less than 0.1◦ in radial direction from our calculation.
The near-field and far-field results reveal that the generated
52as IAP presents a high beam quality and excellent spatial
profile after macroscopic propagation in gaseous helium.
In the aspects of computation, our proposed method can solve
harmonic analysis of arbitrary order with only change on non-
linear polarization source, providing a promising potential on
optimization design of isolated attosecond pulse.

The generated IAP are considered to have practical appli-
cations owing to the two significant advantages: (1) concen-
trated spot of Gaussian-like with tiny divergence angle in time
domain; (2) broad supercontinuum with high photon energy
range in frequency domain. In applied physics field, IAP has
been widely used for dynamical probe of electronic structure
and atoms on attosecond time scale [38], [39]. However,
there are few applications reported in other fields. Here, our
simulations reveal that IAP is extremely close to the ideal
impulse in time domain. In time domain, the IAP can reflect
impulse response at attosecond scale, which is an excellent
input source for high power microwave protection, such as
ultra-wideband GaN monolithic microwave integrated cir-
cuit (MMIC) chip [7] and beam steering antenna [8]. In recent
years, quantum radar has become a hot topic, since it offers
the prospect of detecting, identifying, and resolving radio fre-
quency (RF) stealth platforms and weapons systems [9]. The
IAP contains large amounts of broadband with mostly equal
intensity, which can release enough high-energy photons in a
very short time. In the electronic battlefield, quantum radar
can make full use of IAP as transmitting signal to image the
target [40]–[42].

IV. CONCLUSION
In this paper, a coherent method combined time-dependent
Schrödinger equation with Maxwell’s wave equation is pro-
posed for harmonic analysis in gaseous helium. The entire
simulation contains three segments: (1) microscopic har-
monic generation, (2) selective filtration, (3) macroscopic
propagation. We numerically investigate the high-order har-
monic generation by intense driving field in gaseous helium.
With time-frequency analysis by Morlet wavelet trans-
form, specific orders are selected to synthesize an isolated
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attosecond pulse. The IAP presents a high beam quality and
an excellent spatial profile with Gaussian-like distribution,
providing a promising potential on high power defense, quan-
tum radar and communication. Our method offers a powerful
route for computational design and optimization of isolated
attosecond pulse.
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