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ABSTRACT In multiple unmanned aerial vehicle (UAV) formation control systems, high scalability can
guarantee the formation stability when UAVs join in or leave the system, and thus improves the robustness
of the formation flight. This paper investigates the scalability problem for multi-UAV formation control
with double-integrator dynamics. To be more specific, we focus how to build communication links with
fixed control parameters such that the formation can always keep stable when adding/removing arbitrary
number of UAVs. A bio-inspired method – Veteran Rule is proposed to solve this problem. Compared to
the existing methods, our proposed method does not require to re-design or adaptively adjust the control
parameters/gains for the changed Laplacian matrix. Furthermore, the convergence rate of the system under
the Veteran Rule is analyzed. Surprisingly, the convergence rate of the system reaches the maximum value
when all the in-degrees equal a particular value, rather than goes to infinity. Moreover, to guarantee the
robustness of the formation system, we study the tolerance on undesired communication links (which break
our proposed Veteran Rule). An upper bound for the coupling strength of the undesired communication links
is provided by using Gershgorin circle theorem. Finally, simulation results corroborate the effectiveness of
our results.

INDEX TERMS Double-integrator dynamics, formation control, optimal convergence rate, reverse edge,
scalability, unmanned aerial vehicles, veteran rule.

I. INTRODUCTION
A. MOTIVATION
Nowadays, formation control of multiple unmanned aerial
vehicles (UAVs) has attracted considerable attention due to
not only its capability in executing complexmissions, but also
its wide range of applications in military and civil uses, such
as target search and localization [1], contour mapping [2],
surveillance and exploration [3], forest fire detection [4], etc.

The cooperative UAVs often fly in formation, and
algebraic-graph-based formation control is one of two main
techniques in supporting the formation flight, in which
there are lots of articles about cooperative UAVs flying in
formation [5], [6].1 Since sometimes the number of a muti-
UAV formation would change due to the mission require-
ments or the formation needs to fuse or divide, it is necessary
to study the scalability problem in UAV formation control.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Li.

1The other main technique in formation control is based on rigid graph [3].

Compared to the rigid-graph-based methods, even though the
algebraic-graph-based control laws can be easily applied to
a 3-dimensional formation and do not have the local minima
problem [6], it is faced with the scalability issue.More specif-
ically, when someUAVs attempt to join or leave the formation
system, the Laplacian matrix of the communication topology
will change accordingly. As a result, the original control
parameters can be no longer effective (for those Laplacian
matrix dependent methods, e.g., [1], [7]), or the parameters
should be re-adjusted (for those adaptive consensus based
methods, e.g., [8], [9]) due to the topology change. When the
scale of the formation system gets very large, the amount of
calculation will also increase rapidly, and thus the redesign
of the control law becomes hard. The adaptive consensus
method cannot perform well facing with large scale of the
formation system, either, because it needs the whole system
re-adjusts when newUAVs join in the system even though the
original system has reached formation stability. To the best of
our knowledge, the existing methods cannot handle the scale-
changes properly without changing the control parameters,
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and no closely relatedwork has been devoted to the scalability
problem. Thus, it is necessary to consider the formation scala-
bility problem without changing the control parameters/gains
in the whole formation system, i.e., with fixed individual
control parameters.

Another important issue for the formation scalability is
the convergence rate. Intuitively, the convergence rate may
decrease as the number of UAVs changes; and a simple
example is for single-integrator systems where the algebraic
connectivity varies with the scale of the formation system.
Hence, how to guarantee the convergence rate in the forma-
tion scalability problem is a meaningful and essential topic to
study.

Furthermore, the robustness of scalability also plays a piv-
otal role in UAV formation systems. If the designed method
is affected by some unexpected events, the corresponding
tolerance should be analyzed.

B. RELATED WORKS
In algebraic-graph-based formation control framework, con-
sensus is a commonly used method, which means in a typ-
ical multi-agent system, each agent shares information only
with its neighboring agents under a designed protocol while
the whole group can coordinate to achieve a certain global
behavior [10]. Consequently, this has resulted in tremendous
amount of interest for this topic, and two pioneer papers
on consensus problem are [11], [12]. Since then, the con-
sensus problem has been extensively studied by numerous
researchers and much progress has been made to the study
of the conditions that a group of agents in a network reach-
ing consensus, and a large variety of control strategies have
been proposed and analyzed for various kinds of consensus
problems. For example, [13] studied single-integrator multi-
agent systems under time-invariant (time-varying) topology,
and proposed a sufficient condition of reaching consensus
that the topology (topology union) has a spanning tree. After-
wards, researchers began to study second-order systems and
high-order systems. In [14], the authors proposed a sufficient
condition of a second-order system reaching consensus, and
then a necessary and sufficient condition was established
in [15]. Reference [16] analyzed a general consensus pro-
tocol of multi-agent systems with double-integrator dynam-
ics, and obtained the necessary and sufficient condition of
general double-integrator consensus protocols. There is still
a lot of literature and work on consensus, such as finite-
time consensus problem [17], [18], system with linear and
nonlinear dynamics [19], [20], etc.We recommend the survey
papers [5], [6] to readers who are interested in the consensus
problems for multi-agent systems.

However, as stated in Section I-A, the existing methods
cannot handle the scale-changes properly:

Reference [21] proposed an interaction topology which is
irrelevant to the magnitude of the couplings among agents.
Reference [7] analyzed an observer-type consensus protocol
based on relative output measurements between neighboring
agents. However, the control laws in these studies rely on the

nonzero eigenvalue of the Laplacian matrix. Similarly, works
like [14], [20] cannot solve the scale changing problem,
either. This is because the design of the control law depends
on the prior information of the whole Laplacian matrix to
compute eigenvalues. This serious drawback requires that the
control parameters must be redesigned due to the topology
change.

For the fully distributed control laws, a notable method
which can overcome the drawback from utilizing the spec-
trum information of Laplacian matrix is the adaptive consen-
sus, in which the coupling among agents adjust according
to the change of topology. Nevertheless, most of adaptive
consensus studies are based on undirected communication
topologies [9], [22]–[25]. Since the communication links are
usually asymmetric, [8] then provided a general solution
of linear consensus problem under directed communication
topologies. The system can reach consensus using only the
agent dynamics and the relative states of neighboring agents
as long as the communication graph contains a directed
spanning tree with the leader as the root node. However,
when the initial consensus error is large, the coupling gain
with the form of multiplying a new nonlinear function in the
controller will increase rapidly, which may bring very big
control input. Based on [8], [26] proposed a distributed adap-
tive observer to decouple the adaptive coupling gain from
the input so that the magnitude of the control input would
not be impacted by the high-gain coupling. But the short-
coming that the control parameters for other UAVs would
be affected by the UAVs joining or leaving the system still
exists, when the scale of the formation gets large, the whole
systemmust adjust even only one new UAV joins in. To avoid
this drawback, we propose our method inspired from pigeon
flocks [27].

C. OUR CONTRIBUTIONS
In this work, we study the scalability problem for the
UAV formation governed by double-integrator dynamics
under a directed communication topology. Our contributions
are as listed as follows:
i) A method inspired from pigeon formations to build

interaction topology is proposed, and we call it the
Veteran Rule. It is shown that when using the Veteran
Rule, the system can always have the formation stability
with system scalability, and the control parameter in
each UAV is fixed. Moreover, comparing with redesign-
ing methods our method is independent of any global
information from the communication graph and do not
demand a ground control station to send commands of
switching control laws.

ii) The convergence rate of the system under the Veteran
Rule is analyzed. Intuitively, it seems that larger in-
degrees lead to a higher convergence rate, since they
represent stronger connection in a network. But sur-
prisingly, the convergence rate of the system reaches
the maximum value when all the in-degrees equal a
particular value, rather than goes to infinity. Based on
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this result, the Veteran Rule with optimal convergence
rate is proposed.

iii) To guarantee the robustness of the formation sys-
tem, we study the tolerance on undesired communica-
tion links (which break our proposed Veteran Rule),
i.e., reverse edges. An upper bound for the coupling
strength of the reverse edges is provided by using
Gershgorin circle theorem [28]. Based on this upper
bound, we discuss how the reverse edges change
the scalability of the formation system in different
cases.

D. PAPER ORGANIZATION
The remainder of the paper is organised as follows. Section II
gives the preliminaries of this paper, and it has three parts:
Firstly, some basic concepts of graph theory are summer-
ized in Section II-A. Secondly, the system model is given
in Section II-B. Thirdly, Section II-C gives the problem
description. In Section III, we propose the Veteran Rule to
guarantee the formation scalability where a rigorous proof
is given. Furthermore, convergence rate is analyzed and its
optimal design is provided in Section IV. In SectionVwe give
an upper bound of the strength of undesired communication
links, and analyze the impact of these edges in topology on
the system. In Section VI, simulation results corroborate the
effectiveness of our methods. Finally, the concluding remarks
are given in Section VII.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. BASIC CONCEPTS IN GRAPH THEORY
To present the problem description, some basic concepts in
graph theory related to our work are briefly summarized in
this subsection.

A directed graph G can be described by a triple (V, E,W),
where V = {1, . . . ,N } is the node set, and E ⊆ V×V denotes
the edge set, andW = [wij] ∈ RN×N with wij ≥ 0 represents
the adjacencymatrix such that (i, j) ∈ E if and only ifwji > 0.
In this work, we assume G is simple (i.e., with no self-edges),
which means wii = 0 for all i ∈ V . The set of neighbors
of node i is denoted by Ni = {j ∈ V : (j, i) ∈ V}. The
in-degree of the node i is defined by degin(i) =

∑
j∈Ni

wij,
and the degree matrix is D = diag{degin(1), . . . , degin(N )}.
With the adjacencymatrixW and the degreematrixD, we can
define the LaplacianmatrixL of G byL = D−W . A directed
path from i to j is a sequence of ordered edges of the form
(i, k1), (k1, k2), . . . , (kl, j), and we say G has a spanning tree
if at least one node has a directed path to the other nodes. The
following lemma gives some basic properties of the Laplacian
matrix L.
Lemma 1 ([19]): Let L ∈ RN×N be the Laplacian matrix

of a directed graph G and 1N = [1, 1, . . . , 1]T ∈ RN , then
i) L at least has a zero eigenvalue, and 1N is the associated

eigenvector, that is L1N = 0;
ii) If G has a spanning tree, then 0 is a simple eigenvalue

of −L, and all the other N − 1 eigenvalues of −L have
negative real-parts.

Definition 1 (Directed Acyclic Graph [29]): If a directed
graph has no directed cycles, that is to say, it is formed by
a collection of vertices and directed edges, such that there is
no path starting at some vertex v and follow a sequence of
edges that loops back to v again, we call this kind of graph
directed acyclic graph (DAG).

In a DAG, we call the ordering of the vertices that the
starting endpoint of every edge occurs earlier in the ordering
than the ending endpoint of the edge the topological ordering.
A DAG has a unique topological ordering if and only if it has
a directed path containing all the vertices, in which case the
ordering is the same as the order in which the vertices appear
in the path. An edge is called a reverse edge if it is opposite to
the topological ordering that the starting endpoint of the edge
occurs later in the ordering than the ending endpoint [30].

B. SYSTEM MODEL
Consider a multi-UAVs system of number N using local
communications. A directed graph G can be used to describe
the communication topology of the formation system. More
specifically, node i ∈ V stands for the ith UAV, and edge
(i, j) ∈ E represents the communication link from UAV i to
UAV j whose strength is denoted by wji. All the UAVs move
in d-dimensional space, d ∈ {2, 3}, 2 and we let ξi(t) ∈ Rd

and ζi(t) ∈ Rd be the position and velocity states of UAV i,
respectively. We assume the autopilot is properly designed
such that the dynamics of each UAV i satisfies:{

ξ̇i = ζi,

ζ̇i = ui,
(1)

where the input ui ∈ Rd is the acceleration of UAV i which
can be timely controlled. In this work, we need all the UAVs
achieve a given formation pattern and share the same speed.
Here we consider the consensus-based formation controller
as follows

ui = −
∑
j∈Ni

wij[(ξi − ξj −1ij)+ γ (ζi − ζj)], (2)

where1ij = 1i −1j denotes the desired relative position of
UAV iw.r.t. UAV j; and1i (1j) is the offset of UAV i (UAV j)
determined by the formation pattern; and γ > 0 is a param-
eter. By setting ξ = [ξ1, ξ2, . . . , ξn], ζ = [ζ1, ζ2, . . . , ζn],
and ξ̂ = [ξ1 − 11, ξ2 − 12, . . . , ξn − 1n] =: ξ − 1, the
closed-loop system with (1) and (2) can be written as[

˙̂
ξ

ζ̇

]
= 0 ⊗ Id

[
ξ̂

ζ

]
, (3)

where

0 =

(
0 IN×N
−L −γL

)
. (4)

We say system (1) achieves formation stability, if ξi−ξj→
1ij and ζi−ζj→ 0 as t →∞. Note that system (3) simplifies
the analysis of the formation stability defined in Remark 1.

2d = 2 means UAVs fly in a plane, while d = 3 implies UAVs fly in a R3

space
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Remark 1 (FormationStability): System (3) achieving co-
nsensus is equivalent to achieving the formation stability.
Thus, for all i ∈ {1, . . . ,N }, the following equation holds

lim
t→∞

∥∥∥∥[ξ̂ζ
]
− c(t)⊗ 1N

∥∥∥∥ = 0, (5)

where c(t) is called the consensus state trajectory or consen-
sus function [19].

With c(t), we can define the formation error as

δ(t) =
[
ξ −1

ζ

]
− c(t)⊗ 1N , (6)

whose asymptotic convergence is equivalent to that in (5).
Next, we define the convergence rate of formation error as

follows.
Definition 2 (Convergence Rate): The convergence rate of

the formation error δ(t) is the largest exponent β∗ to exponen-
tially bound ‖δ(t)‖ [31], i.e.,

β∗ = max{β < 0 : ‖δ(t)‖ ≤ α(‖δ(0)‖)eβt }, (7)

where α(·) is a class K function [32].

C. PROBLEM DESCRIPTION
In this paper, we study the scalability problem for formation
control that without changing control parameter γ , how to
design the communication links as well as their strengths such
that:
i) The formation system is still stable after adding new

UAVs, i.e., the system has scalability (see Problem 1);
ii) The convergence rate of the formation error is maxi-

mized (see Problem 3);
Note that the scalability does not intrinsically hold in for-

mation systems. When adding new UAVs, the same control
parameter γ cannot always maintain the formation stability,
if the communication links and their strengths are not prop-
erly designed. The following proposition gives the necessary
and sufficient condition for the formation stability, which
well explains why γ is correlated to the scale of formation
system.
Proposition 1 ([33]): Assume that the interaction topol-

ogy G has a spanning tree. Let µi denote the ith eigenvalue
of −L. Re(µi) = pi and Im(µi) = qi are the real and imag-
inary parts of µi, respectively. Then the system (1) achieves
formation stability (see Definition 1) if and if only

γ > max
2≤i≤N

qi
√
−pi|µi|

. (8)

From Proposition 1, we can see that a formation stable
γ is constrained by the communication links and their
strengths (through the Laplacian matrix L). Consider a for-
mation system with N UAVs which has reached formation
stability. Assume M new UAVs join in this system, and
they will build communication links to the original N UAVs,
which leads the Laplacian matrix L extends to N+M dimen-
sions. New elements of the new Laplacian matrix will change
the originalN eigenvalues, and also bring newM eigenvalues.

This means the originally satisfied condition (8) is fragile
after adding new UAVs. Similarly, consider the number of
UAVs in the original formation is N + M . When M UAVs
quit the formation, even if the new communication topology
has a spanning tree, the originally established inequality (8)
can hardly hold. Thus, it is necessary to study the scalability
problem in formation control systems, which is formally
defined in Problem 1 and Problem 2.
Problem 1: Assume the formation system with N ≥ 1

UAVs is formation stable (see Definition 1). After adding
arbitraryM ≥ 1 UAVs but without changing γ , how to build
new communication links to these M UAVs such that the
new formation system with N + M UAVs is still formation
stable?
Problem 2: Assume the formation system with M + N

UAVs is formation stable, how to guarantee formation sta-
bility when M UAVs quit from the original N + M UAVs
without changing γ ?

In Section III, we will provide the solutions to Problem 1
and Problem 2.

III. THE VETERAN RULE AND FORMATION SCALABILITY
A. THE VETERAN RULE
In nature we often see pigeons flying in a flock. Even though
sometimes several separated individuals will join or leave the
flock, the flock still maintains its formation and keeps stable.
So analyzing the behavior model of pigeons may give us
some inspiration to solve the formation scalability problem.
In this section, we will show a interaction basic rule that
we found among pigeons, which we call it ‘‘Veteran Rule’’.
According to this rule, we build an interaction topology,
and show that with this kind of topology the system can
always achieve formation stability and possess the property of
scalability.

Through the study of pigeon flocks, we have a conclusion
that experienced pigeons tend to fly in front of the flock,
while unexperienced pigeons tend to fly in latter of the
flock [34]. Based on this, we call the pigeon with more
navigation experience in a pair the ‘‘local leader’’ and the
other with less experience the ‘‘local follower’’. It is found
that the local leader always tends to take the position of front
while the local follower tends to fly in latter of the local
leader [35]. Through visual information, local followers can
respond (usually copy and imitate) to the behavior of the local
leader [27], thus local followers will be able to accomplish
their homing or migration [36]. However, the local followers
are in local leaders’ blind spots so that whatever they do,
their local leaders cannot perceive their behavior, thus will
not make any response [37]. Thus we can say the information
transfer is only from local leaders to local followers, in other
words, the information transfer is only from experienced indi-
viduals to unexperienced pigeons. We call this rule ‘‘Veteran
Rule’’, that the information transfer is only from experienced
individuals to unexperienced individuals, or we say unex-
perienced individuals only obtain unidirectional information
from experienced individuals (see Fig. 1).
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FIGURE 1. Nodes in the topology above represent pigeon individual 1− 5.
The experience of each pigeon is quantified as 86,42,99,45 and 80,
respectively. The Veteran Rule means the information only transfer from
experienced individuals to unexperienced individuals, and thus a
topology example shown above is formed.

B. FORMATION SCALABILITY
For UAVs, we define a Q value Q(i) similar to the experience
of pigeons in the flock for each UAV i in the system: i) the
Q value of each UAV is unique, and ii) the Q values of any
two UAVs are comparable.
Theorem 1: Assume that the communication topology G

has a spanning tree, when using the Veteran Rule (i.e. infor-
mation only flows from high value UAVs to low value UAVs),
the system always achieves formation stability, and can solve
the scalability problem (i.e., Problem 1 and Problem 2).

Proof: This proof is divided into two steps. In the first
step, we prove that the communication topology built accord-
ing to the Veteran Rule corresponds to a directed acyclic
graph. Then in the second step, we prove the formation
stability and the scalability.

Firstly, to prove the graph is a directed acyclic graph,
we only need to prove for any node pair of nodes i and j
with Q(i) > Q(j), and there is never a directed path from j
back to i. Since the communication topology has a spanning
tree, the former statement is obvious according to the Vet-
eran Rule. Next we will prove there is never a directed path
from j to i by contradiction. Assume there is a directed path
from j to i that passes j, j1, . . . , jk , i, which implies Q(j) >
Q(j1) > · · · > Q(jk ) > Q(i). This is contradicted with
Q(i) > Q(j). Thus there is never a directed path from j back
to i for any two given nodes i and j, which means the graph is
a directed acyclic graph according to Definition 1.
Secondly, we will show the system achieve formation sta-

bility regardless of the system scale. Denote the elementary
matrix that exchanges the ith row and jth row as Pij. For
any adjacency matrix corresponding to a directed acyclic
graphW , denote U = Pi11Pi22 · · ·PiNN , where i1, i2, · · · , iN
are the nodes of the system whose Q values are ranked in
a decreasing order. By applying the transformation W ∗ =
U−1WU to the adjacency matrix, the nodes are ranked in the
topological order, which implies the adjacency matrix of the
system satisfies for any i < j, for Q(i) > Q(j), w∗ij = 0.
So the adjacency matrix and the Laplacian matrix of the

system is a lower triangular matrix.3 The eigenvalues of the
Laplacian matrix µi is a real negative number. By this time
qi = Im(µi) = 0, which implies the necessary and sufficient
condition (8) becomes γ > 0. Thus the system achieves
formation stability. ForN can be an arbitrary number, the con-
clusion holds when the number of the formation is N + M .
Similarly, forM UAVs quiting the formation ofN+M UAVs,
the system can still achieve formation stability if all the UAVs
follow the Veteran Rule. So as long as the new UAVs comply
the Veteran Rule that if low Q value UAVs only receive
information from high Q value UAVs in the communication
topology, the system can always reach formation stability and
possesses the property of scalability.
With Theorem 1, we can solve Problem 1 and Problem 2.

When newUAVs join in the formation, they can build connec-
tions according to the Veteran Rule and receive information
from agents whose Q values are higher than themselves’.
When an UAV i quits the formation, the original links
from UAV i to UAV j (generalize for all the UAVs receive
information from i) breaks which may cause the spanning
tree disintegrates in the topology. Thus when UAV i quit,
UAV j looks for UAVs with higher Q values than itself’s
and builds connections to receive information from upper
agents. In this way, the spanning tree in the topology G can be
guaranteed by ensuring each UAV (except for the UAV with
the highestQ value) has a neighbor whoseQ value higher than
itself’s as its local leader, the formation maintains formation
stability.4

Remark 2: One may ask what if a new UAV does not find
a higher Q value upper UAV in its neighborhood? In this
case, it is unavoidable to build reverse edges which breaks the
Veteran Rule, since otherwise the communication topology
would have no spanning tree. Therefore, we need to analyze
the robustness of the Veteran Rule w.r.t. reverse edges, which
is discussed in Section V.

Although the stability problem of scaled formation is
solved by the Veteran Rule, it seems that the increasing num-
ber of UAVs in the formation may decrease the convergence
rate of the system, which rises Problem 3.
Problem 3: Based on Problem 1 and Problem 2, how to

design the strengths wij for communication links so that the
convergence rate β∗ (see Definition 2) is maximized?
In Section VI-B, we analyse the convergence rate of the

system and propose the solution to Problem 3.

IV. CONVERGENCE RATE ANALYSIS
Convergence rate is an important performance index of a
system. In this section we consider the convergence rate
maximization problem (i.e., Problem 3) under the Veteran
Rule. In other words, the formation control system keeps
scalable, while maximizes the convergence rate.

3Another method to prove the Laplacian matrix corresponding to a
directed acyclic graph can be transformed into a lower triangular matrix is
shown in [21].

4It is worth noting that we do not care about the process of obtaining Q,
but how to realize the scalability of the formation with Q values.
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Intuitively speaking, it seems that larger in-degrees lead
to a higher convergence rate, since they represent stronger
connection in a network. However, this is not true. In this
section, we show that the in-degrees are not the larger the
better, and themaximum convergence turns out to be achieved
when all the in-degrees equal a particular value.

To analyze the convergence rate of the system, we should
focus on the mode of the system dynamics. According to

det(λIN + L) =
N∏
i=1

(λ− µi), (9)

we can calculate the eigenvalues of 0(as shown in (4)) by

det(λI2N − 0) = det(λ2 IN + (1+ γ λ)L)

=

N∏
i=1

(λ2 − γµiλ− µi) = 0.

Solve the equation and we get

λi± =
γµi ±

√
γ 2µ2

i + 4µi

2
(10)

as the eigenvalue of 0 corresponding to µi. By analyzing
the mode of the system (3), it is straightforward that β∗ =
max
2≤i≤N

Re(λi±). We should notice that λi are only correlated

with γ and µi, where γ is a constant we do not want to
change, and µi varies from 0 to −∞. Since Re(λi) are neg-
ative real numbers, the maximum convergence rate implies
minβ∗(µi i = 2, 3, · · · ,N ), i.e., min max

2≤i≤N
Re(λi±). So

Problem 3 transforms into: When β∗ reaches its minimum
when µi i = 2, 3, . . . ,N varies?
Theorem 2: The convergence rate of the system is maxi-

mized when the in-degree of every node equals to 4
γ 2
.

Proof: For the order of the nodes does not affect
eigenvalues of 0 and the size relation of in-degrees, thus for
simplify denoting the subscript and without loss of generality,
we assume the agents are ranked in the topological order, and
the in-degrees of nodes di satisfy d2 ≤ d3 ≤ · · · ≤ dN .
Since the Laplacian matrix L is a lower triangular matrix,
the in-degree of each node is di = −µi. Denote λi+ =
γµi+

√
γ 2µ2

i +4µi
2 and λi− =

γµi−

√
γ 2µ2

i +4µi
2 . The convergence

rate of the system correlate with max
2≤i≤N

Re(λi), and for eachµi,

the corresponding λi± always have Re(λi−) ≤ Re(λi+). So
when talking about the convergence rate, we just need to care
about all the λi+. To analyse the variation of λi, we draw
the parameter root locus of λ when µ varies from 0 to −∞
(see Fig. 2). Since |µ2| ≤ |µ3| ≤ · · · ≤ |µN |, we know that
λi+(µi) i = 3, 4, . . . ,N runs in front of λ2+(µ2) along the
root locus. Through the root locus we know that (see Fig. 2)
λ− → −∞ as µ → −∞, and λ+ → − 1

γ
as µ → −∞.

Re(λ) reaches it minimum at the right endpoint of the circle
(noted with a triangle in Fig. 2), moving forward along the
root locus, λ+ runs on the real axis from− 2

γ
to− 1

γ
. Thus we

FIGURE 2. The root of polynomial λ2 − λµγ − µ with µ varying from 0 to
−∞. The root locus of eigenvalues λ starts from the origin. At the very
beginning, Re(λ) decreases along the circle (x + 1

γ )2 + y2 = 1
γ2 to − 2

γ . As

µ continues increasing, λi± lie on the negative part of the real axis: λ−
tends to −∞, while λ+ tends to − 1

γ . The eigenvalues of the Laplacian
matrix µi have an order of |µ2| ≤ |µ3| ≤ · · · ≤ |µN |, so
λi+(µi ) i = 3,4, . . . ,N runs in front of λ2+(µ2) along the root locus.
Thus, we have min |Re(λµi+

)| = min{|Re(λµ2+
)|, |Re(λµN+

)|}.

have

β∗ = maxRe(λµi+ ) = max{Re(λµ2+
),Re(λµN+ )}. (11)

When Re(λµ2+
),Re(λµN+ ) simultaneously reaches their min-

imum, β∗ reaches its global minimum. Thus the optimal
situation is all the λi+ lie on the right endpoint of the circle,
which implies µi2 = µiN = −

4
γ 2
. By this time, β∗ = λi2 =

λiN = −
2
γ
. Thus when the in-degree di =

N∑
j=1
wij = 4

γ 2
i =

2, 3, . . . ,N , β∗ reaches its minimum − 2
γ
.

Remark 3: If a small γ is chosen, the corresponding coef-
ficient of the system exponent 2

γ
increases and thus the

system achieves consensus with a higher convergence rate.

One may ask with the input form ui = −
N∑
j=1
wij[(ξi−ξj−δij)+

γ (t)(ζi − ζj)] i = 1, 2, . . . ,N , it seems like a contradiction
when γ tends to 0, that the gain decreases while the conver-
gence rate of the system increases. Since the in-degree of the

node is
N∑
j=1
wij,wij can be considered as a linear function of the

in-degree of the node, wij = 4
kγ 2

k ∈ R+(each wij has a linear
growth with the increase of the in-degree), then the gain of the
system is wijγ = 4

kγ . Thus with the decrease of γ , the gain of
the input is actually increasing, which coincides with a faster
convergence rate. Similarly if a large γ is chosen, 4

γ 2
may

be very small, at this time wij should also be small to adapt
the magnitude of 4

γ 2
. Since the maximum absolute value of
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minimal-real-part eigenvalue is 2
γ
, under this circumstance

the optimal convergence rate would be reduced.

V. THE REVERSE EDGE
In pigeon flocks, high level members seldom look back-
ward to form a cycle in their interaction topology. However,
sometimes the lower level pigeons may detect some new
food or be threatened by some predators. Then, the direction
switching information will influence the upper level ones,
which constitutes some additional reverse links [30]. It is
mathematically easy to prove that adding temporary reverse
edges is equivalent to changing the initial value of the system,
which does not change the tendency that the system converges
in pigeon flocks. However, sometimes in a UAV formation
some reverse edges may exist all the time. Practically there
are many factors such as spatial distance or some unknown
disturbances that constrains the UAVs in the system building
connections completely coinciding with the Veteran Rule.
Or as we mentioned in Remark 2 some UAVs have to build
connections with other agents to guarantee the spanning tree
in topology so that information does not exactly transfer from
highQ value agents to lowQ value agents. Therefore, we need
the topology have a tolerance of adding reverse edges so that
the system still reaches consensus. So a fundamental problem
is to find an upper bound for the coupling strength of the
reverse edges (see Problem 4). Without loss of generality,
in this section we discuss the problem under the assumption
that the nodes are ranked in the topological order, and we
define a concept the reverse range, in which reverse connec-
tions between these nodes are permitted.
Definition 3 (The Reverse Range): The reverse range is a

set whose elements are the vertices with reverse edges from
the minimal topological order number to the maximal topo-
logical order number.
Problem 4: Assume the reverse range is from i to k , and

the elements in the reverse range matrix arewls (i ≤ l, s ≤ k).
Under what conditions of wls, the formation stability of the
system is not affected by reverse edges in topology?
Next we will give an upper bound of the tolerance of the
coupling strength of the reverse edge.

We denote L′ as the new Laplacian matrix with reverse
edges, and the submatrix ofL′ formed from rows i, . . . , k and
column i, . . . , k as the reverse range matrix A (see Fig. 3).
For each agent l (i ≤ l ≤ k) in the reverse range, let

A1l =
i−1∑
s=1

wls denote the summation of coupling strengths

with agents from 1 to i− 1, i.e., the agents with highest i− 1

Q values. A2l =
l∑
s=i
wls stands for the summation of coupling

strengths of edges satisfying the Veteran Rule in the reverse

range matrix A in Fig.3, and A3l =
k∑

s=l+1
wls presents the

summation of coupling strength of reverse edges on agent l.
The following theorem upper bounds the summation of the
coupling strengths of all possible reverse edges in the reverse
range, which provides a solution to Problem 4. Note that

FIGURE 3. The minimal topological order number of nodes with reverse
edges is i , while the maximal number is k , the reverse range of the
topology is {i, i + 1, · · · ,k}. The submatrix of L′ from Lii to Lkk is called
the reverse range matrix, denoted as A.

A2l + A3l presents the summation of the coupling strength
between l and other agents in the reverse range.
Theorem 3: For each agent l, the following two conditions

guarantee the formation stability:
i) When A1l ≥ 1

γ 2
, A3l can be arbitrarily large;

ii) When A1l < 1
γ 2
, A2l + A3l < 1

2A1l(
1

(1−γ
√
A1l )2
− 1).

Proof: After adding the reverse edge, the Laplacian
matrix turns to the form of Fig. 3, denoted as L′. Note that
except for submatrix A, the residant of L′ is the same as the
original L. Thus we just need to consider eigenvalues of −A
[denoted as zl (i ≤ l ≤ k − 1)].
When zl all satisfy (8), the system achieves system stability.

To analyze the eigenvalues of matrix −A, we use the Gersh-
gorin Theorem [28] to matrix −A. The Gershgorin discs are

|zl − (−L ′ll)|<
l∑
s=i

|−Lls|+
k∑

s=l+1

| − Lls| (i ≤ l ≤ k − 1),

(12)

where Lll = −µl+A3l , Lls = −wls. The proof is now divided
into two steps. In the first step, we prove that when the curve
q2 = − γ 2 p3

1+γ 2p
is seperate from all the Gershgorin discs, such

that the formation stability can be achieved. In the second
step, we obtain the upper bound of A3l that guarantees the
curve is separate from all the discs.

According to the Gershgorin Theorem, all the eigenvalues
of −L ′ lie in the union of the Gershgorin discs. When the
curve q2 = − γ 2 p3

1+γ 2p
is separate from all the Gershgorin disks,

all the eigenvalues zl satisfy q2l (1+ γ
2 pl) < −γ 2 p3l , which

is equivalent to γ > ql√
−pl |zl |

. From Proposition 1, the system

achieves formation stability. Then, the formation stability
problem becomes: when the curve q2 = − γ 2 p3

1+γ 2p
is separate

from all the Gershgorin discs (see Fig. 4).
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FIGURE 4. The eigenvalues of −L′ , zl (i ≤ l ≤ k − 1) lie in the union of
Gershgorin discs. Disc 1 and 2 correspond to case ii) while disc 3 and 4

correspond to case i). When the curve q2 = − γ2 p3

1+γ2p
is separate from all

the Gershgorin circles, zl satisfy (8), the system achieves formation
stability.

FIGURE 5. When −
i−1∑
s=1

wls < −
1
γ2 , the endpoint of the circle is on the left

side of (− 1
γ2 ,0), the eigenvalue zi lying in this kind of discs satisfies

pi < −
1
γ2 < −

q2
i

γ2|z|
, i.e.γ >

qi√
−pi |zi |

; thus the magnitude of the radius

has no effects on the formation stability.

For i), −A1l = −
i−1∑
s=1

wls ≤ − 1
γ 2
, the left endpoint of this

type of disc never lies on the right side of (− 1
γ 2
, 0), as shown

in Fig. 5. Thus the eigenvalue zl lying in this kind of discs

satisfies pl < − 1
γ 2
< −

q2l
γ 2|zl |

, which satisfies condition (8).

In this case, the radius of the Gerschgorin disc can be infinite,
and the curve will never intersect this kind of discs, which
implies A3l can reach infinity.

For ii), −A1l = −
i−1∑
s=1

wls > −
1
γ 2
, the left endpoint

of the disc is on the right side of (− 1
γ 2
, 0), as shown in

Fig. 6. To guarantee curve q2 = − γ 2 p3

1+γ 2p
has no inter-

sections with the Gershgorin discs, the radius of the cir-
cle cannot be unboundedly large. As shown in Fig. 6,
the critical situation is the curve is tangent to the disc.

FIGURE 6. The critical situation is the curve y2 = −γ
2x3

1+γ2x
(− 1

γ2 < x ≤ 0)

has two tangent points to the circle (x − zl )2 + y2 = r2
0 at the point (x, y ),

r0 is the upper bound of the radius which correlate with A3l .

The center of the circle is (zl, 0), and the tangent point
is (x, y), and the critical radius of the circle is r0,
(as shown in Fig. 6). Under this circumstances, the tangent
point satisfies

y′x ·
y

x − zl
= −1. (13)

Taking the derivatives at both sides of the equation
y2 = −γ

2x3

1+γ 2x
w.r.t. x, we have

2y · y′x =
−γ 2[3x2(1+ γ 2x)− γ 2x3]

(1+ γ 2x)2
. (14)

With (13) and(14), we get an equation w.r.t. x:

(x − zl)(1+ γ 2x)2 = γ 2[3x2(1+ γ 2x)− γ 2x3], (15)

which has two roots x1 = − 1
γ 2
−

1
γ 2
√

1−2γ 2zl
and x2 = − 1

γ 2
+

1
γ 2
√

1−2γ 2zl
. For x1 < − 1

γ 2
, it contradicts − 1

γ 2
< x ≤ 0;

thus the x-coordinate of the tangent point is x = x2 = − 1
γ 2
+

1
γ 2
√

1−2γ 2zl
. Then, we obtain the critical radius of the disc

r20 = (x − zl)2 + y2 = (
1
γ 2 −

1

γ 2
√
1− 2γ 2zl

+ zl)2

−

γ 2(− 1
γ 2
+

1
γ 2
√

1−2γ 2zl
)3

1+ γ 2(− 1
γ 2
+

1
γ 2
√

1−2γ 2zl
)
.

Since radius of the Gershgorin disc is
l∑
s=i
|wls| +

k∑
s=l+1
|wls| =

A2l + A3l , under the critical circumstance we have

(A2l + A3l)2 = (
1
γ 2 −

1

γ 2
√
1− 2γ 2zl

+ zl)2

−

γ 2(− 1
γ 2
+

1
γ 2
√

1−2γ 2zl
)3

1+ γ 2(− 1
γ 2
+

1
γ 2
√

1−2γ 2zl
)
,
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where zl = µl −A3l . Define
√
1− 2γ 2 zl as m, then we have

A3l = µl + m2
−1

2γ 2
. Simplifying the equation we obtain

(1− γ 2A1l)m2
− 2m+ 1+ γ 2A1l + γ 4A21l = 0 (16)

Solving the equation we obtain two solutions

m1 =
1

1+ γ
√
A1l
+ γ

√
A1l,m2 =

1

1− γ
√
A1l
− γ

√
A1l .

As γ 2 A1l
(1+γ

√
A1l )2
≤ γ 2 A1l , we have m2

1 ≤ 1 + 2γ 2 A1l , which

contradictsm2
= 1−2γ 2zl = 1+2γ 2A1l+2γ 2A2l+2γ 2A3l .

Therefore m1 is discarded, and m2 is the unique solution
of (16). That is to say, when

A3l≤
m2
2 − 1

2γ 2 −A1l−A2l=
1
2
A1l(

1

(1−γ
√
A1l)2

−1)−A2l,

(17)

the system will always achieve formation stability.
From the proof above we know that the larger A1l is,

the better robustness A3l will get. When A1l is large enough,
i.e. A1l ≥ 1

γ 2
, A2l + A3l can be arbitrarily large, which gives

no constrains when agent l builds connections with agents in
the reverse range. Thus, A3l can go to infinity, which means
the reverse edges can have infinite coupling strength in this
case.When A1l < 1

γ 2
, A2l has to be considered when building

reverse connections to guarantee the stability.
Remark 4: The appearance of the reverse edge changes

the scalability of the system. Three situations are considered
when new agents join in the system.
i) The new agent N + 1 owns a Q value higher than the

agent i. In this case, it can be relabeled with a number l1,
where l1 < i, and the new element wil1 would appear.

So
i−1∑
s=1

wls would increase, and the reverse edge is still

in the stable region, the system still achieves formation
stability. On the contrary, the quitting of agents with

Q values higher than agent iwill decrease
i−1∑
s=1

wls and the

upper bound of the coupling of reverse edge, the existing
reverse edges may exceed the upper bound, the system
may become unstable.

ii) The new UAV joins in the reverse range. In this case,
the new agent N + 1 can be relabeled according to the
Q value order with a number l1, where i < l1 < k .
New elements of the Laplacian matrix appear on the l th

row, ł1 < l ≤ k , which increases
i∑

s=l
wls and decreases

the upper bound 1
2A1l[

1
(1−γ

√
A1l )2
− 1] − A2l . Thus the

existing reverse edges may exceed the upper bound,
the system may become unstable. Moreover, the l1 Ger-
shgorin disc may intersect the curve q2 = −γ

2p3

1+γ 2p
so that

some eigenvalues may enter the unstable region through
the l1th circle, and the formation stability of the system
would be affected. Opposite to joining the system, when
agents in the reverse range quit the formation, the upper

bound would increase and the stability would not be
affected as long as the spanning tree is guaranteed.

iii) The new agent owns a Q value lower than the agent k .
This situation is simple, for the joining or quiting of the
new agent apparently affect neither A1l nor A2l , thus the
system still achieves formation stability.

Remark 5: The upper bound we mentioned above is a
sufficient but not necessary condition, for it just guarantees
no eigenvalue lies in the unstable region. For the eigenvalue
is a uncertain point in the Gerschgorin disc (without com-
puting with global information), the intersection of the curve

q2 = − γ 2p3

1+γ 2p
and the Gerschgorin circle does not mean the

eigenvalues of L ′ cannot satisfy (8). Thus it is not a necessary
condition to the formation stability of the system.
Remark 6: When the reverse edge appears in agents i and

i + 1, i.e., the reverse range is 2, the coupling strength of
reverse edge can also go to infinity. Assume the agent l + 1
builds reverse edge with agent l, the form of reverse range

is
(

Lll −wll+1
−wl+1l Ll+1l+1

)
. Since it is a 2 × 2 strictly diagonally

dominant matrix, according to Vieta theorem, the eigenvalues
of reverse range are two real negative numbers, who satisfy
γ >

qi√
−pi|zi|

= 0, thus the coupling of reverse edge wll+1
does not affect the stability of the system.

VI. SIMULATION
This section contains three subsections, in which UAVs are
modeled with a double-integrator model. In Section VI-
A, we corroborate the effectiveness of our proposed Vet-
eran Rule in formation scalability, where the formation sys-
tems with 12 and 600 UAVs are considered, respectively. In
Section VI-B, our theoretical results in the optimal conver-
gence rate are verified. In Section VI-C, reverse edge related
simulations are presented to illustrate the effectiveness of our
results.

A. THE VETERAN RULE
To demonstrate the effectiveness of the Veteran Rule in UAV
formation, a 10 UAV formation system with 2 new joining
UAVs is considered. The adjacency matrix of the 10 UAV
system is

W =



0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
3 5 0 0 0 0 0 0 0 0
3 2 3 0 0 0 0 0 0 0
4 3 5 4 0 0 0 0 0 0
4 3 3 3 3 0 0 0 0 0
0 0 0 5 5 3 0 0 0 0
0 0 0 0 4 4 5 0 0 0
2 0 3 2 1 3 2 2 0 0
0 0 0 2 3 2 1 2 3 0


, (18)

and the control parameter is γ = 0.1. Assume the UAVs
are ranked in the topological order of their Q values, which
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FIGURE 7. The UAVs are ranked in the reverse order of their Q values,
Q(1) > Q(2) > · · · > Q(10), and the 10 UAVs system finally goes forward in
a shape of circle. (a) Communication topology and formation pattern of
the 10 UAV formation system (e.g., (5,20) means 15 = [5,20]T ), where
we also label UAVs 11 and 12 (new UAVs to join the formation system)
using dashed circles. (b) 10 UAVs achieve formation stability and form the
expected circle pattern.

implies Q(1) > Q(2) > · · · > Q(10). The communication
topology as well as the formation pattern of the system are
shown in Fig. 7(a) and the 10 UAV system finally forms a
circle pattern [see Fig. 7(b)].

Without loss of generality, we assume the two joining
UAVs’Q values satisfyQ(12) < Q(11) < Q(10), and the rel-
ative positions for UAVs 11 and 12 are111 = [0,−10]T and
112 = [−16.1803, 11.7557]T , respectively [see Fig. 7(a)].
When using the Veteran Rule, the added edges in the topology
are w11,2 = 3, w11,5 = 2, w11,6 = 3, w11,7 = 2, w11,9 = 3,
w11,10 = 2, w12,7 = 2, w12,8 = 3, and w12,9 = 4.
By Theorem 1, the system will finally achieve formation
stability, and the response curves of ξ̂ and ζ are as shown
in Fig. 8(a) and Fig. 8(b), respectively.

Next we will give an example as a comparison that
the new two UAVs build connections without the Veteran
Rule. Besides the edges coincide with the Veteran Rule we

FIGURE 8. Two new UAVs using the Veteran Rule join in the flock.
After a short period of oscillation, the system reaches formation stability.
(a) Position curves of the formation system; (b) Velocity curves of the
formation system.

mentioned above, some more reverse edges are also added in
the topology: w3,11 = 1, w4,11 = 2, w6,11 = 1, w8,11 = 1,
w9,11 = 1, w10,11 = 2, w4,12 = 2, w7,12 = 2, w8,12 = 1,
w9,12 = 2, w10,12 = 1, and w11,12 = 6. One of the
eigenvalues of the new Laplacian matrix is µ = −12.8136±
5.5.328i, p = Re(µ) = −12.8136, q = Im(µ) = 5.5328,

q
√
|p||µ|

= 0.111 which does not satisfy the necessary and

sufficient condition given in Proposition 1. Thus the system
cannot achieve formation stability, and the curves of ξ̂ and
ζ are shown in Fig. 9(a) and Fig. 9(b), respectively. This
simulation verifies our conclusion that building connection
regardless of the Veteran Rulemay lead formation unstability.

Another of our simulation in Fig. 10 further shows the
effectiveness of the Veteran Rule that the system still achieves
formation stability when the scale of the formation goes very
large (with 600 UAVs forming a cube in R3 space).
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FIGURE 9. Two new UAVs join in the system without using the Veteran
Rule, and the system diverges. (a) Position response of the system;
(b) Velocity response of the system.

B. CONVERGENCE RATE
We use a similar setting in the 10+2 UAV formation example
in Section VI-A to analyze the optimal convergence rate, and
the only difference is the control parameter γ = 0.5. From
Theorem 2, we know that the optimal in-degree for each UAV
is 4

γ 2
= 16. We assume all the 10 UAVs in the original

formation system chose this optimal in-degree, and see how
the convergence rate β∗ changes when UAVs 11 and 12 vary
their in-degrees from 10 to 20 (see Fig. 11). From Fig. 11 we
can observe that the convergence rate reaches its maximum
value when the in-degrees of UAVs 11 and 12 are equal
to 4

γ 2
= 16, which corroborates the result in Theorem 2.

C. THE REVERSE EDGE
Recall the example two UAVs joining in the 10 UAV for-
mation system given in Section VI-A. The reverse range is
from 3 to 12, and let τ represent the upper bound of reverse

FIGURE 10. A formation system with 600 UAVs using the Veteran Rule,
where the formation pattern is a 50× 50× 50 cube in R3 space.

FIGURE 11. The in-degrees of the original 10 UAVs are all 4
γ2 = 16.As the

in-degree of UAV11 and UAV12 vary, min
2≤i≤N

|Re(λi )|, which measures the

convergence rate of the system, is shown above. When the in-degrees of
UAV 11 and 12 equal 16, min

2≤i≤N
|Re(λi )| reaches its maximum.

edges. Using the conclusion we obtain in Section V, we get
τ3 = 3.78, τ4 = −1.35, τ5 = −6.02, τ6 = −6.02, τ7 = −13,
τ8 = −13, τ9 = −12.64, τ10 = −13, τ11 = −11.31.
We can find that when the coupling of reverse edges exceeds
the upper bound, the system becomes unstable and no more
maintains formation stability.

Next we will show that when the strengthen of reverse
edges are smaller than the reverse upper bound we gave
in Section V, the system can achieve formation stability.
Consider a system with 20 UAVs, γ = 0.05. The reverse
range of the system is from 6 to 10, with the reverse edges
w6,10 = 2.772 and w8,10 = 0.1734. For A1l we have A1,6 =
12, A1,7 = 13, A1,8 = 13, A1,9 = 14, A1,10 = 13, and
for A2l we have A2,6 = 0, A2,7 = 3, A2,8 = 3, A2,9 = 3,
A2,10 = 3. Through ii) in Theorem 3 we calculate the reverse
upper bounds of A3l (denoted as τl) equal τ6 = 2.7772,
τ7 = 0.1734, τ8 = 0.1734, τ9 = 0.5927, τ10 = 0.1734.
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FIGURE 12. The Gerschgorin discs corresponding to the situation the
strength of the reverse edge is in the upper bound. When the strength of

reverse edges are lower than the upper bound, the curve q2 = −γ
2 p3

1+γp is
always separate from all the Gershgorin discs. Note that Gershgorin disc l
(in the reverse range i ≤ l ≤ k) corresponds to the disc for the l th row in
Laplacian matrix L′ , e.g., Gershgorin disc 6 is for the 6th row.

FIGURE 13. The Gershgorin discs corresponding to the situation the
strength of reverse edges reach sufficient high. When A1l >

1
γ2 , the right

endpoints of Gershgorin discs are on the left side of p = − 1
γ2 , so the

curve q2 = −γ
2 p3

1+γp is always separate from all the Gershgorin discs even

though the radius get sufficiently large.

The corresponding Gerschgorin discs are shown in Fig. 12.
In this case max

2≤i≤N

qi√
−pi|µi|

= 0.0367 < 0.05, and the

system can achieve formation stability.
Now we will give an example that when A1l > 1

γ 2
, i.e., the

strengthen of reverse edges can reach infinity. We consider
a 30 UAV formation system with γ = 0.1, and the reverse
range is from 20 to 25, where A1,20 = 107, A1,21 = 121,
A1,22 = 118, A1,23 = 114, A1,24 = 102, A1,25 = 103,
while the reverse edge w20,25 = 800, w21,25 = 800, w22,25 =

700, w23,25 = 500, w24,25 = 800. The Gerschgorin discs
corresponding is shown in Fig. 13. From Fig. 13 we can see
the Gerschgorin discs have no intersections with the curve

q2 = −γ
2p3

1+γ 2p
, γ0 = max

2≤i≤N

qi√
−pi|µi|

= 0.0015 < 0.1. Thus the

system can achieve formation stability.

FIGURE 14. The position and velocity response of the original system
of 20 UAVs before UAVs joining in or quitting from 1 to i − 1.

Simulations of the affect of reverse edges on scalability are
provided as follows. Consider the original 20UAVs formation
system we mentioned above, whose transformed position
response ξ̂ and the velocity response ζ are shown in Fig. 14,
where γ = 0.05. Now two UAVs with Q value higher than
UAV 6 join in the formation [corresponding to case i) in
Remark 4], they are labeled as UAV 3 and UAV 6 after joining
the system, and the original UAV 6 becomes UAV 7.

In this case, A1l increases, and the reverse range turns into
from 8 to 12 with A1,8 = 18, A1,9 = 20, A1,10 = 19,
A1,11 = 17, A1,12 = 18, and the reverse upper bounds τl
also increase to τ8 = 5.4989, τ9 = 3.5896, τ10 = 3.0328,
τ11 = 1.988, τ12 = 2.4989. Since γ0 = 0.0217 < γ = 0.05,
the system achieves formation stability, the transformed posi-
tion response ξ̂ and the velocity response ζ are shown
in Fig. 15.

When agents labeled 2, 3, 4 quit the system, the reverse
range turns into from 3 to 7, A1,3 = 6, A1,4 = 7, A1,5 = 5,
A1,6 = 3, A1,7 = 5, and the reverse upper bound τl decrease,
τ3 = 0.8958, τ4 = −1.8915, τ5 = −2.3310, τ6 = −2.7021,
τ7 = −2.3310, γ0 = 0.0685 > 0.05, by this time the system
no longer maintains formation stability, see (Fig. 16).

Next we will give an example of UAVs joining and quitting
in the reverse range[corresponding to case ii) in Remark 4].
Consider a 20 UAVs formation system, γ = 0.05, and the
reverse range is from 6 to 10. A1,6 = 15, A1,7 = 14,
A1,8 = 13, A1,9 = 15, A1,10 = 13, while A2,6 = 0, A2,7 = 3,
A2,8 = 1, A2,9 = 3, A2,10 = 1. The corresponding reverse
upper bounds are τ6 = 4.0349, τ7 = 0.5927, τ8 = 2.1734,
τ9 = 1.0349, τ10 = 2.1734. When the reverse edges are
w6,10 = 4, w8,10 = 2, the transformed position response ξ̂
and the velocity response ζ of the system are shown in Fig. 17.

When three new UAVs join in the reverse range, they are
labeled as 8, 9, 10, and the original UAV 8 becomes UAV 11.
The reverse range turns into from 6 to 13. A1,8 = 7, A1,9 = 7,
A1,10 = 6, and A2,9 = 9, A2,10 = 11, A2,11 = 11, A2,12 = 12,
A2,13 = 6. The reverse upper bounds are τ6 = 4.0349,
τ7 = 0.5927, τ8 = −7.8515, τ9 = −7.8515, τ10 =
−10.1042, τ11 = −7.8266, τ12 = −7.9651, τ13 = −2.8266.
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FIGURE 15. Two new UAVs labeled 3 and 6 join in the system. For each l
in the reverse range, A1l increases, so the upper bound also increases,
the coupling strength of reverse edges do not exceed, hence the
formation maintains it pattern. (a) Position response of the system;
(b) Velocity response of the system.

FIGURE 16. When UAV 2, 3, 4 quit the formation, for each l in the reverse
edge, as A1l decreases, the reverse upper bound also decreases. The
coupling strength of reverse edges exceed the upper bounds and the
system no longer maintains stable.

Since γ0 = 0.0518 > γ = 0.05, the system cannot
maintain stable, and the transformed position response ξ̂ and
the velocity response ζ are shown in Fig. 18.

FIGURE 17. The position and velocity response of the original system of
20 UAVs before UAV joining or quitting the formation. To show the
existence of reverse edges may affect the scalability of system, there are
two reverse edges in the topology, their coupling strength are lower than
the upper bound given by Theorem 3.

FIGURE 18. Three new UAVs labeled 8, 9, 10 join in the reverse range. For
each l in the reverse range, as A2l increases, the reverse upper bound of
the system decreases. As a result, the coupling strength of reverse edges
exceed the upper bound, and thus the system is no longer stable.
(a) Position response of the system; (b) Velocity response of the system.

When two UAVs labeled 8 and 9 quit from the original
20 UAV formation system, the reverse range is from 6 to 8
with A2,6 = 0, A2,7 = 1, A2,8 = 1. The reverse upper
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FIGURE 19. UAV 8 and 9 quit the formation, for each l in the reverse
range, as A2l decreases, the reverse upper bound increases and the
system still achieves formation stability.

bounds are τ6 = 4.0349, τ7 = 3.0349, τ8 = 2.1734. Since
γ0 = 0 < γ = 0.05, the system achieves formation stability
(see Fig. 19).

VII. CONCLUSION
In this paper, the scalability problem has been studied for
UAV formation control with double-integrator dynamics.
Inspired from pigeon flocks, we have proposed the Veteran
Rule to solve this problem under fixed control parameters.
Furthermore, the convergence rate of the formation system
under the proposed Veteran Rule has been analyzed. Coun-
terintuitively, we found that the optimal convergence rate
requires all the in-degrees to equal 4

γ 2
, where γ is the control

parameter; and any additional in-degrees do not contribute
to the convergence rate, but have negative effects. Based
on this result, the Veteran Rule with optimal convergence
rate has been designed. An upper bound of reverse edges
in a given reverse range has been proposed to guarantee
the formation stability, and the effect of reverse edges of
the system were analyzed in three different cases. Simula-
tion results have shown the effectiveness of our theory and
design.
Future Work
For future work, we are going to explore the propagation of

uncertainty in the system topology, we analyze how a small
error or the noise in the state of an agent affects other agents’
states, and how to reduce uncertainties in a network topology
utilizing filtering theories [38], [39]. Moreover, fuzzy model
of multi-UAV formation systems [40] and some analysis of
the key nodes of the network topology [41] will be consid-
ered.
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