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ABSTRACT This paper proposes an intelligent control strategy for enabling a robotic arm to grasp and
place water-filled bottles without spilling any of the water. First, the system architecture of a five-degree-
of-freedom robotic arm and its mechanical design are introduced. Second, both the forward and inverse
kinematics of the robotic arm are derived. The study conducted an experiment in which the designed and
implemented robotic arm could grasp a bottle of water and move it to another place. However, if the
acceleration or the orientation of the robotic arm were inappropriate, the water in the bottle may be spilled
during the movement. Therefore, the proposed strategy applies an inertial measurement unit for obtaining
relevant information. According to the obtained information, the velocity curves of each joint could be
optimized by adaptive inertia weight and acceleration coefficients particle swarm optimization. Finally,
the experimental results demonstrated the feasibility and effectiveness of the proposed method.

INDEX TERMS AIWCPSO, intelligent control, robotic arm, velocity control.

I. INTRODUCTION
In recent years, industrial automation has attracted atten-
tion worldwide and has been actively promoted. Robots
play an essential role in industrial automation. Software and
hardware related to robots have been upgraded constantly,
and robots with incrementally superior capacities have been
invented. Robots can assist humans in tasks or conduct haz-
ardous tasks for humans. Therefore, robots are also crucial
for humans.

Industrial robots primarily exist in the form of robotic
arms. In the early stage of commercial robotics, robotic
arms were used in various industrial manufacturing tasks,
and currently, their application scopes have expanded. From
the deployment of the first robotic arm to current industrial
robots, related technology has improved and still contin-
ues to improve. Academics have published numerous stud-
ies on robotic arms. Various technology companies devote
effort and resources to researching and developing robotic
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arms [1]–[5]. With advancements in software and hardware
technology, computer processors have been miniaturized, but
their performance levels have increased substantially. Over
the past few years, the computation speed of processors has
doubled. Additionally, motor technology and performance
have advanced. Advancements in various fields have necessi-
tated the expansion of robotic arm applications. The capabil-
ity of robotic arms has been improved. Initially, robotic arms
could only move objects. Currently, they can conduct more
difficult tasks such as welding.

Different situations have different demands for robotic
arms. To date, robotic arms have been applied in various
fields. The researchers in [6] proposed a high-speed and
lightweight robotic arm for playing badminton. In [7], a two-
degree-of-freedom (DOF) fabric-based soft robotic arm was
developed for grasping objects. Moreover, the authors in [8]
produced a robotic arm for edge-rolling manipulation by
proposing a grasp planning approach. In [9], a control method
that enables a mechanical arm to flip burgers was proposed.
The researchers in [10] utilized shape memory alloy coils
to produce a soft robotic arm. A study [11] presented an
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innovative, humorous humanoid robot that could produce
quick-and-wide arm motions.

Research has also investigated robotic arm control. For
example, the researchers in [12] used H∞ control design for
motion control in elastic-joint robots and yielded favorable
results. In [13], an adaptive impedance control method based
on the concept of reinforcement learning was proposed; the
proposed controller was applied to human–robot coopera-
tion. The results demonstrated the effectiveness of the pro-
posed controller in for performing cooperative human–robot
tasks. The researchers in [14] proposed a multi-objective
optimization method for position control of an arm mod-
ule; the proposed method was effective and contributed to
the development of an assistive device. Another study [15]
proposed the application of a physical–virtual impedance
control system to a dual-arm aerial manipulator; the study
achieved favorable results. Research has also been conducted
on collision estimation for robots working with humans.
For example, a study [16] proposed a method that involves
the projection of a human arm motion into the robot’s path
as a preventive measure; this contributed to future human–
machine cooperation. To resolve various problems such as
collisions, joint limits, and singularities, another study [17]
proposed haptic guidance methods for a dual-arm system
that achieved favorable verification. In [18], a stable control
framework was proposed and applied to a lightweight dual-
arm robot. The experimental results showed that this frame-
work could achieve favorable results even under conditions
of high uncertainty.

During the use of a robotic arm to grasp objects, velocity
control and endpoint angle settings are critical. In the present
study, for example, when a robotic arm was used to move a
liquid-filled bottle in 3 s, the liquid spilled. The spillage can
be ascribed to two main reasons. First, during the movement
process, the gripper was not horizontal; it was tilted slightly.
Second, the velocity allocation during the movement process
was inadequate. In the process of moving an object in a short
period, maximum acceleration tends to be excessively large,
causing the surface of the water to shake excessively and thus
resulting in water spillage.

To resolve this problem, this study proposes a smart
control strategy for a robotic arm. The strategy involves a
relatively modest learning process that leads to substantial
improvement. A robotic arm with a total length and weight
of 66.01 cm and 2.7 kg, respectively, was applied in this
study. Iterative design and improvement produced a rigid
robotic arm whose weight could be sustained by the available
motors.

Particle swarm optimization (PSO) has an extensive appli-
cation range [19]–[26]. This method has been expanded to
various forms, such as linear time-varying PSO [27], random
PSO [28], rank-based PSO [29], increasing PSO [30], adap-
tive inertia weight PSO (AIWPSO) [31], andAIWCPSO [32],
where AIWCPSO was adopted from AIWPSO. Studies have
argued that AIWCPSO has superior learning effectiveness.
Accordingly, this study used the AIWCPSO method.

FIGURE 1. Design of robotic arm mechanism.

The smart control strategy was designed using
AIWCPSO [32] and velocity curves. An inertial measure-
ment unit (IMU) sensor located at the end of the machine
arm transmit the status of the gripper during movement
to the smart control system for calculation and learning.
After multiple iterations of a learning loop, the motor at
each joint can obtain an optimal velocity curve; thus, dur-
ing the entire movement process, liquid spillage would not
occur.

The major contributions of this study are outlined as
follows: 1) applying the AIWCPSO algorithm to obtain an
optimal velocity control curve; 2) defining the velocity con-
trol curve module for the robotic arm; 3) designing a robotic
arm for the proposed intelligent control strategy; and 4) prov-
ing the practicality and feasibility of the proposed velocity
control strategy for the designed robotic arm.

The rest of this paper is organized as follows. In Section II,
the mechanisms of the robotic arm are discussed. The opti-
mization algorithm used for the designed robotic arm is
described in Section III. In Section IV, experimental results
are presented to support the argument that the proposed
control strategy is feasible and practical. Finally, Section V
concludes this paper.

II. MECHANISMS OF THE ROBOTIC ARM
Fig. 1 illustrates the design of the robotic arm. The robotic
arm has five DOF. It contains seven dc servomotors. The total
weight and length of the arm were measured to be 2.7 kg
and 66.01 cm, respectively. The robot’s metal components are
composed of three metal types: 6061 aluminum alloy, 7075
aluminum alloy, and stainless steel. Among the three metals,
6061 aluminum alloy has the lowest density, followed by
7075 aluminum alloy and then stainless steel. Because sheet
metal components require bending, high-density materials
are not suitable. Therefore, most of the sheet metal compo-
nents are composed of 6061 aluminum alloy. By contrast,
the metal components at the robotic arm’s base that does
not require bending are all composed of 7075 aluminum
alloy, which is approximately as dense as stainless steel;
therefore, it is both rigid and lighter relative to stainless steel
of the same volume. Stainless steel constitutes the metal
components near the robotic arm’s base that does not require
bending. Its high density results in excellent rigidity, and
its weight is three times heavier than 7075 aluminum alloy
of the same volume. Because stainless steel constitutes the
metal components at the base, its weight rests directly on the
desk and does not impose excessive burdens on the motors.
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FIGURE 2. Base and gripper design: (a) base and (b) gripper.

To reduce the total weight of the robotic arm, the gripper
and the gears are made of glass fibers and reinforced
plastics.

Fig. 2 presents the design of the base and the gripper. The
basemust fix the arm-connected extrusion to the desktop. The
first motor must support the weight of the entire robotic arm
andmust frequently rotate at high speed; hence, it is equipped
with a thrust-bearing needle roller. When the motor rotates,
the push force induces the needle to roll upward, minimizing
friction and thus minimizing the loading of the motor.

The motor to the gripper uses a 32-tooth gear, whereas
the gripper uses a smaller 22-tooth gear. Therefore, the dc
servomotor is required to rotate by only 62◦, and the gripper
can change from an open position to a closed position to
grasp objects. The gripper contains a thrust-bearing needle
roller to sustain the weight of the held object. When the
gripper is loaded, the friction caused by opening and closing
is minimized. The bearing is in the robotic arm.

Regarding the robotic arm mechanism, the dc servomotors
connect metal components and have metal support designs
to increase the rigidity of the arm joints in order to enhance
stability.

In the system framework, a notebook computer serves as
the central processing system and is responsible for smart
control strategy learning and computing, kinetic comput-
ing, velocity curve design for the motors at each joint,
acceleration sensing, and gyro information processing. Infor-
mation detected by the sensors is transmitted to the cen-
tral processing system in its entity. The smart control
strategy applies this information to execute the learning
process.

Regarding the robotic arm control, the most crucial part
is the communication between the robotic arm and the cen-
tral processing system; specifically, a communication system
must be designed to precisely transmit orders, based on data
calculated by the central processing system, to the robotic arm
so that it can precisely implement ordered actions (Fig. 3).
Accordingly, in the proposed strategy, USB2Dynamixel is
used to transmit data between the robotic arm and the cen-
tral processing system. A half-duplex transmission mode
is applied, signifying that the two devices (notebook and
arm) can conduct two-way data transmission. Moreover,
only one device can transmit data at one time, and the

FIGURE 3. Schematic of robotic arm hardware.

other one must be in receiving mode. Therefore, during
the control of robotic arms, if a motor is instructed to
transmit its current state, the data transmission cycle would be
long.

The connection between the acceleration sensor, gyro, and
central processing system is also critical. The learning pro-
cess requires the sensor to transmit data. Therefore, contin-
uous information transmission is established to accurately
obtain the motion of the robotic arm at each time point.
These data enable the smart control strategy to continue to
learn about the accurate direction, finally presenting favor-
able results.

III. OPTIMIZATION ALGORITHM
Eberhart and Kennedy developed the PSO algorithm inspired
by the social behavior of bird flocking or fish schooling
[33], [34]. These animals utilize their own experiences and
refer to others’ experiences to determine their direction.
Therefore, the PSO algorithm has the advantages of rapid
convergence and simple concept, and it has been widely
adopted. The PSO has provided favorable solutions to numer-
ous problems. However, this algorithm still has weaknesses.
For example, it easily leads to local optimal solutions.
Scholars have attempted to improve the PSO algorithm.
Nichabadi et al. proposed the AIWPSO algorithm [31] that
changes the original fixed inertia weights to dynamicweights,
in addition to adjusting the particle learning situation. The
adaptive inertia weights are adjusted according to the updated
particles of the previous generation. The acceleration param-
eter is still a constant. This algorithm reduces the tendency of
arriving at a local optimal solution and can lead to favorable
learning results. TheAIWCPSO algorithm is an improvement
that is primarily based on the AIWPSO algorithm.

Two types of the PSO algorithm are detailed in the follow-
ing sections. The first type is the standard PSO, in which the
inertia weight and acceleration parameters are all constant.
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FIGURE 4. Schematic of PSO algorithm.

The second type is the AIWCPSO algorithm, which is differ-
ent from the standard PSO algorithm.

A. STANDARD PSO
Fig. 4 illustrates a schematic of the standard PSO algorithm.
The operating procedure of this algorithm is divided into five
stages. The first stage, involves particle initialization. In this
stage, the location and velocity of each particle would be
assigned a random number. The second stage entails calcu-
lating a fitness function according to the needs of the ques-
tion. Every time a particle updates its location and velocity,
the fitness function determines the fitness of that particle
due to its movement. The third stage involves updating the
personal best of each updated particle. The personal best of
each particle is recorded. When the fitness function exceeds
the personal best, the personal best is updated. The fourth
state entails updating the global best, which is the optimal
solution of all particles. After the learning of each generation
of particles, their personal best data are compared with the
global best. If their data are superior to the global best,
the global best is updated. The fifth stage involves updating
the velocity and location of each particle. The velocity is
influenced by the current velocity, personal best, and global
best, as presented in (1). The location of a particle at the
next time point is determined by the current location plus
the velocity of the particle, as indicated in (2). The fifth
stage involves establishing a program termination condition.
Different problems lead to different termination conditions,
such as whether an error must be smaller than a tolerable
error and whether a certain number of iterations has been

reached.

V (t + 1) = w× V (t)+ c1 × rand1 × (pbest − X (t))

+ c2 × rand2 × (gbest − X (t)) (1)

X (t + 1) = X (t)+ V (t + 1) (2)

where w is the inertia weight and c1 and c2 are acceleration
parameters. These three parameters are constant during the
PSO learning period. Moreover, rand1 and rand2 are random
numbers between 0 and 1; pbest is the personal best, repre-
senting the optimal location of a particle; gbest is the global
best, derived from the optimal positions of all particles; V (t)
is the current velocity of the particle; V (t + 1) is the velocity
of the particle at the next point in time; X (t) is the location
of the particle at time t; and X (t + 1) is the location of the
particle at time t + 1.

B. AIWCPSO ALGORITHM
Nickabadi et al. proposed theAIWPSO algorithm [31], which
is an improvement of the PSO algorithm in that it transforms
the constant inertia weight to a dynamic weight. The condi-
tions in (3) are used for updating the personal best of each
particle. If S (i, t) = 1, then the personal best of a particle is
updated; the personal best is not updated if S (i, t) = 0. In (3),
i is the particle number and t is the current iteration number.
Ps (t) is the ratio of the total personal best of a current particle
against the total number of particles; n is the total number of
particles, as shown in (4). Equation (5) presents the principle
for updating the inertial weight, where wmin and wmax are
the self-determined minimum and maximum values of the
weight, respectively, and range between 0 and 1. Equation (1)
can be modified into (6):

S (i, t) =

{
1, if fitness

(
pbest ti

)
> fitness

(
pbest t−1i

)
0, otherwise

(3)

Ps (t) =

n∑
i=1

S (i, t)

n
(4)

wa (t) = (wmax − wmin)Ps (t)+ wmin (5)

V (t + 1) = wa (t)× V (t)+ c1 × rand1 × (pbest − X (t))

+ c2 × rand2 × (gbest − X (t)) (6)

Fig. 5 shows the flowchart of the AIWCPSO algorithm.
The AIWCPSO algorithm is based on the main structure
of the AIWPSO algorithm; thus, it maintains the advantages
of the AIWPSO algorithm, apart frommodifying its accelera-
tion parameters [27]. The difference between the AIWCPSO
and PSO algorithms is that the AIWCPSO algorithm updates
the global best as well as the location and velocity of each
particle. The AIWPSO algorithm also updates the adaptive
inertia weight and adaptive acceleration parameters, thus
transforming c1 and c2 in the PSO algorithm through Ps (t)
into the dynamic adaptive acceleration parameters a1 (t) and
a2 (t), as presented in (7). α and β are positive values deter-
mined by users. Equation (6) can be modified to yield (8).

126932 VOLUME 7, 2019



T.-H. S. Li et al.: Intelligent Control Strategy for Robotic Arm by Using AIWCPSO

FIGURE 5. Flowchart of AIWCPSO algorithm.

Existing studies have shown that the AIWCPSO algorithm
exhibited superior learning effects to the AIWPSO algorithm.{

a1 (t) = α (Ps (t))+ β
a2 (t) = α (1− Ps (t))+ β

(7)

V (t + 1) = wa (t)× V (t)+a1 (t)× rand1 × (pbest − X (t))

+ a2 (t)× rand2 × (gbest − X (t)) (8)

C. VELOCITY CURVE DESIGN
One of the crucial components of smart control strategies
is velocity curve design. Fig. 6 presents a velocity curve,
where the x-axis represents normalized time. A robotic arm
operated in accordance with this velocity curve accelerates
from a static state to the point of maximum angular velocity
and then gradually slows down to the static state. A velocity
curve ismainly composed of an acceleration terminal point t1,
deceleration starting point t2, and maximum angular velocity.
The velocity curve of each motor differs and has different
t1, t2, and ωmax values. A velocity curve can be divided into
three stages, each of which is described in (9), where θ1 in the
first stage is shown in (10) and θ2 in the third stage is shown
in (11).

ω (t) =
ωmax

2π
(θ1 − sin θ1) , 0 < t ≤ t1

ω (t) = ωmax, t1 < t ≤ t2
ω (t) =

ωmax

2π
(θ2 − sin θ2) , t2 < t ≤ 1

(9)

FIGURE 6. Velocity curves.

θ1 =
t
t1
2π (10)

θ2 =
1− t
1− t2

2π (11)

The velocity curve equation can be integrated to yield an
equation of angular displacement 1θ , where 1θ , t1, and
t2 are all known. Thus, the equation of maximum angular
velocity ωmax can be derived. The equations are presented
in (12)–(16).

1θ =

t1∫
0

ωmax

2π

(
t
t1
2π − sin

(
t
t1
2π
))

dt

+

t2∫
t1

ωmaxdt +

1∫
t2

ωmax

2π

(
1− t
1− t2

2π

− sin
(
1− t
1− t2

2π
))

dt (12)

1θ =

ωmax × t2

2× t1
+

ωmax × t1 × cos
(
2×π×t
t1

)
4× π2

∣∣∣∣∣∣
t1

0

+ (ωmax × t)|
t2
t1

+

ωmax × (1− t)2

2× (1− t2)

+

ωmax × (1− t2)× cos
(
2×π×(1−t)
(1−t2)

)
4× π2

∣∣∣∣∣∣
1

t2

(13)

1θ =
ωmax × t1

2
+ ωmax × (t2 − t1)+

ωmax × (1− t2)
2

(14)

1θ =
ωmax (1+ t2 − t1)

2
(15)

ωmax =
(2×1θ)

(1+ t2− t1)
(16)
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D. AIWPSO PARAMETER SETTING
One of the objectives of this study was to achieve
favorable learning results though few iterations; therefore,
the AIWCPSO algorithm was adopted. The number of iter-
ations was set to 9, and the total number of particles was set
to 7. The information of each particle included the accelera-
tion end time and deceleration starting time of five motors.

The smart control strategy applies the AIWCPSO algo-
rithm, with OPS serving as the main part with partial adjust-
ment. The parameter settings in [32] were a wmin value
of 0 and wmax value of 1. Therefore, the adaptive inertia
weight can be calculated using (17). A large inertia weight
is conducive to ensure that a particle searches an entire
region, whereas a small inertia weight limits the scope of
the regional search process. Regarding the derivation of the
acceleration parameters, α was set to 2.05 and β was set to
0.5; accordingly, the acceleration parameters could be derived
as expressed in (18)

wa (t) = Ps (t) (17){
a1 = 2.05× (Ps (t))+ 0.5
a2 = 2.05× (1− Ps (t))+ 0.5

(18)

The goal of this study was to prevent shakiness due to
acceleration and tilted grippers during the movement of the
robotic arm, which would lead to spilling. Therefore, in our
adaptive function design, we must consider four criteria: the
peak values of the x-, y-, and z-axis accelerations as well as
a summary of the differences between the gripper and the
horizontal gesture at each time point, as shown in (19), as
shown at the bottom of this page. The accelerations in all
axes must be normalized to avoid the creation of an exces-
sively small acceleration that would cause an extremely high
adaptive value. A small acceleration peak means less shak-
ing. Furthermore, if the gripper of the robotic arm could be
consistently horizontal during task execution, liquid spillage
due to the tilted gripper can be prevented.

IV. EXPERIMENTAL RESULTS
Fig. 7 shows the experimental setup of this study. The start
points of the three experimental routes in this study were the
No. 1–3 locations on the brown platform, whereas the end
points were the No. 4–6 locations on the red platform. During
the learning process in the smart control strategy, movements
were repeatedly conducted and a considerable amount of
water could be spilled due to the tilting of the robotic arm
or inappropriate velocity curve; therefore, translucent bottles
with caps were used to replace cups to prevent spillage. After
the completion of an experimental process, the cap of the
water bottle was unscrewed to demonstrate the differences

FIGURE 7. Experimental setup.

FIGURE 8. Flowchart of velocity design.

between learned and unlearned situations. Furthermore, due
to spoilage during the practice process, all prompts were
made of waterproof materials.

After defining the three routes, each of which was com-
posed of locations with two coordinates, this study calcu-
lated the motor angle of each joint by using reverse kinetics.
Fig. 7 shows the relative position of all objects. Route 1
involved taking up the water bottle from location No. 1 at
(64.55, 14, 0) and moving it to location No. 4 at (4, 46.2,
7.2). Route 2 involved taking up thewater bottle from location
No. 2 at (66.05, 0, 0) and moving it to location No. 5 at (38.6,
32.4, −0.4). Finally, Route 3 involved taking up the water
bottle from location No. 3 at (64.55, 14, 0) and moving it to
location No. 6 at (41.9, −31.6, 7).

The gripper must be horizontal at the start and end points.
The gripper could rotate about the z-axis only. The grasping
gesture matrix is presented in (20), where θ could be obtained
from the aforementioned six coordinates. The θ values at
the start and end points of Route 1 were 12.24◦ and 85.05◦,
respectively; those at the start and end points of Route 2 were
0◦ and 40.01◦, respectively; and those at the start and end

fitness =
1∣∣Accx,max

∣∣+ ∣∣Accy,max
∣∣+ ∣∣Accz,max

∣∣+ ∣∣∣∣ n∑
i=1

Gyro(i)− Gyrohorizontal

∣∣∣∣ (19)
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points of Route 3 were −12.24◦ and −37.02◦, respectively.

R =

 cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 (20)

A. EXPERIMENTAL PROCEDURES
The smart control strategy involves the AIWCPSO algorithm
and velocity curve design. The operating procedure of the
strategy involves five steps. The first step entails applying
the AIWCPSO algorithm to update the acceleration stopping
time and the deceleration starting time of each joint and
particle. The second step involves designing a velocity curve
for movement. The flowchart is illustrated in Fig. 8. Using
reverse kinetics and the start and end points of each path,
the system can obtain the initial and end angles of the motor
of each joint, thereby obtaining the angular displacement of
each motor. The point at the acceleration ending time and the
deceleration starting time can be used to calculate the max-
imum angular velocity. The third step entails implementing
the designed velocity curve on the robotic arm. The IMU sen-
sor transmits the information of the gripper. The fourth step
involves using the transmitted information to calculate fitness
values according to four reference indicators: x-, y-, and
z-axis maximum acceleration as well as the grasping ges-
ture during the movement process. The final step entails
updating the personal best, global best, adaptive inertia
weight, and adaptive acceleration parameters of the particles.
Steps 1–5 are repeated until the preset number of iterations
was reached.

The proposed smart control strategy was verified by
experiments in which a robotic arm grasped and placed a
water-filled bottle by using three different routes. Regardless
of distance, the robotic arm was required to complete the
transfer within 3 s. Before the application of the smart control
strategy, the robotic arm moved at an even speed. Without the
smart strategy, at the beginning of the movement, the grip-
per tilted and the arm moved at a considerably high speed,
causing the arm to hit the platform and spill the water. Addi-
tionally, when approaching its destination, the arm spilled
the water again because of the large negative acceleration.
These problems were corrected by the proposed smart control
strategy.

Each route was provided with three types of information:
first-generation particle and global best three-axis velocity
curve graph, acceleration and gesture graph, and global best
adaptive value graph. The x-axes of the three graphs represent
time, with each unit representing 20 ms.

B. TRAINING ROUTE 1
Fig. 9 provides a breakdown of the movements along
Route 1. Regarding the first-generation iteration, Fig. 10
illustrates the designed velocity curve for optimal particle
velocity. The horizontal axis represents time, whereas the
vertical axis represents the speed dial on the motor. The

FIGURE 9. Motion breakdown along Route 1.

FIGURE 10. First-generation particle velocity design along Route 1.
(a) Motor 1, (b) Motor 2, (c) Motor 3, and (d) Motor 4.

FIGURE 11. First-generation particle acceleration graph and gesture curve
along Route 1. (a) x-axis acceleration curve, (b) y-axis acceleration curve,
(c) z-axis acceleration curve, and (d) grasping gesture curve.

calculated velocity is transmitted to central processing system
that commands the robotic arm to move accordingly.

Data transmitted from the IMU sensor on the gripper to the
central processing system are graphed in Fig. 11. The three
axial accelerations can be observed in Fig. 11. The x-axis
represents time, and the y-axis represents acceleration. After
the absolute value was taken, the peak accelerations in the x-,
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FIGURE 12. Global best velocity design for robotic arm along Route 1.
(a) Motor 1, (b) Motor 2, (c) Motor 3, and (d) Motor 4.

FIGURE 13. Global best acceleration curve and gesture curve along Route
1. (a) x-axis acceleration curve, (b) y-axis acceleration curve, (c) z-axis
acceleration curve, and (d) grasping gesture curve.

y-, and z-axes were 0.32g, 0.42g, and 1.52g, respectively. The
y-axis in Fig. 11(d) is demarcated in radians, with the 0 point
signifying the gripper being horizontal. Therefore, during the
movement of the robotic arm, the gripper was mostly tilted,
leaving considerable room for improvement.

Through multiple sessions of learning, the global best
along Route 1 was obtained. Subsequently, velocity curves
were used to design the most suitable velocity curve (Fig. 12).

Fig. 13 illustrates data provided by the IMU sensor. The
peak accelerations in the x- and y-axes were 0.41g and
0.32g, respectively, but the accelerations in both axes were
almost steady. The peak acceleration in the z-axis was 1.4g.
As indicated in Fig. 13(d), the grasping gestures throughout
the movement process were almost horizontal. As illustrated
in Fig. 14, when the AIWCPSO system was learning, nine
iterations were required for determining the global best,
and the adapted value of the global best was substantially
improved subsequently. The learning time was 19.32 min.
The grasping gesture reflected clear differences.

C. TRAINING ROUTE 2
Fig. 15 presents a breakdown of the movement of the robotic
arm along Route 2. Fig. 16 presents the designed velocity

FIGURE 14. Learning curve for global best adaptive value along Route 1.

FIGURE 15. Movement along Route 2.

FIGURE 16. First-generation particle velocity designs along Route 2.
(a) Motor 1, (b) Motor 2, (c) Motor 3, and (d) Motor 4.

curve for optimal particle velocity in the first-generation
iteration. The horizontal axis represents time, whereas the
vertical axis represents the speed dial on the motor.

Data transmitted from the IMU sensor on the gripper are
shown in Fig. 17. The x-axis represents time, and the y-axis
represents acceleration. The axial accelerations on the three
axes are shown in the figure. The peak accelerations in the
x-, y-, and z-axes were 0.31g, 0.41g, and 1.49g, respectively.
As indicated in Fig. 17(d), the gripper tilted severely.
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FIGURE 17. First-generation particle acceleration curves as well as
gesture curve along Route 2. (a) x-axis acceleration curve, (b) y-axis
acceleration curve, (c) z-axis acceleration curve, and (d) grasping gesture
curve.

FIGURE 18. Global best velocity designs along Route 2. (a) Motor 1,
(b) Motor 2, (c) Motor 3, and (d) Motor 4.

Fig. 18 illustrates the global best velocity curve along
Route 2. Data from the IMU are shown in Fig. 19. The
peak accelerations in the x- and y-axes were 0.27g and
0.28g, respectively, whereas the acceleration in the z-axis was
mostly between 0.9g and 1.1g. The radian values in Fig. 19(d)
are mostly 0, showing that the gripper maintained a hori-
zontal orientation. Fig. 20 reveals the learning curve of the
AIWCPSO algorithm for determining the global best. After
a few iterations, the global best adaptive value improved by
tenfold or more. The total learning time was 19.30 min. The
gripper maintained a horizontal orientation, and the acceler-
ations in the three axes approached stability. The control of
peak acceleration in the y-axis was outstanding.

D. TRAINING ROUTE 3
Fig. 21 shows a breakdown of the robotic arm movements
along Route 3. Fig. 22 presents the designed velocity curve
for optimal particle velocity in the first-generation iteration.
The horizontal axis represents time, whereas the vertical axis
represents the speed dial on the motor.

FIGURE 19. Global best acceleration curves and gesture curve along
Route 2. (a) x-axis acceleration curve, (b) y-axis acceleration curve,
(c) z-axis acceleration curve, and (d) grasping gesture curve.

FIGURE 20. Learning curve for global best adaptive value along Route 2.

FIGURE 21. Movement along Route 3.

During the movement of the robotic arm, data were trans-
mitted in real time from the IMU sensor. The transmitted data
are depicted in Fig. 23. The x-axis represents time, and the
y-axis represents acceleration. The accelerations in the three
axes can be observed in the figure. The peak accelerations in
the x-, y-, and z-axes were 0.25g, 0.17g, and 1.42g, respec-
tively. As indicated in Fig. 23(d), the gripper tilted during the
movement process.
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FIGURE 22. First-generation particle velocity designs along Route 3.
(a) Motor 1, (b) Motor 2, (c) Motor 3, and (d) Motor 4.

FIGURE 23. First-generation particle acceleration curves and gesture
curve along Route 3. (a) x-axis acceleration curve, (b) y-axis acceleration
curve, (c) z-axis acceleration curve, and (d) grasping gesture curve.

The global best along Route 3 was achieved by the third
particle in the ninth generation. The system designed the
velocity curve for optimal velocity along Route 3 (Fig. 24).
Fig. 25 illustrates the IMU data, in which the accelerations in
the three axes can be observed. The peak accelerations in the
x-, y-, and z-axes were 0.27g, 0.17g, and 1.48g, respectively.
Fig. 25(d) reveals that all radian values are almost 0 for
the entire process, indicating that the gripper maintained a
horizontal orientation. Fig. 26 presents the learning curve
of the AIWCPSO algorithm for determining the global best.
The global best adaptive value improved substantially. The
learning time was 19.29 min. Along Route 3, the grasping
gesture improved significantly.

E. APPLICATION OF GRASPING WATER-FILLED BOTTLES
The learning process of the smart control strategy was applied
to a robotic arm grasping water-filled bottles and moving
them on the three routes. Although each of the bottles was
filled to a height of 1 mm from the top, signifying a nearly
full bottle, water was not spilled during the movement pro-
cess. Clearly, the smart control strategy yielded substantial

FIGURE 24. Global best velocity designs along Route 3. (a) Motor 1,
(b) Motor 2, (c) Motor 3, and (d) Motor 4.

FIGURE 25. Global best acceleration curves and gesture curve along
Route 3. (a) x-axis acceleration curve, (b) y-axis acceleration curve,
(c) z-axis acceleration curve, and (d) grasping gesture curve.

FIGURE 26. Learning curve for global best adaptive value along Route 3.

improvement because the gripper of the robotic arm main-
tained an excellent horizontal gesture. The system optimized
inhibition of maximum acceleration and stabilized the three-
axis acceleration.

The following figures depict the processes of grasping
and moving the water-filled bottles along the three routes.
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FIGURE 27. Grasping and movement of water-filled bottle along Route 1.

FIGURE 28. Gasping and movement of water-filled bottle along Route 2.

FIGURE 29. Gasping and movement of water-filled bottle along Route 3.

Figs. 27, 28, and 29 depict the movements along
Routes 1, 2, and 3, respectively.

This section introduces the experimental environment,
the flowchart of the smart control strategy, velocity curve
design, AIWCPSO parameter settings, and grasping and
movement of water-filled bottles. Regarding the grasping of
the water-filled bottles, three learning routes are described in
this section, along with information regarding acceleration,
velocity curves, and grasping gesture. The application of

results obtained from the learning process of the smart control
strategy is also demonstrated.

After observing the x-, y-, and z-axis accelerations through-
out the movement process, this study applied the proposed
smart control strategy to reduce most of the excessively
large accelerations, resulting in stabilized accelerations. The
most obvious learning effect was in the robotic arm grasping
gesture during the movement process. Before the learning
process, the gripper was tilted throughout the process, but
after the learning process, the gripper was almost always hor-
izontal through the process. The whole experimental video
can be accessed in [35].

V. CONCLUSION
This study has presented an intelligent control strategy and
applied it to a self-made robotic arm to grasp and place
water-filled bottles. The proposed intelligent control strategy
adopted the AIWCPSO algorithm along with velocity curve
design. The main goal of the experiments in this paper is
to determine the optimal solution to overcome the problem
of moving water-filled containers. After the learning process
mentioned in the previous sections, the grasping gesture can
be substantially improved; the gripper can also maintain a
horizontal gesture during the movement process. Addition-
ally, the accelerations in the x-, y-, and z-axes have been
stabilized, and their peaks have been reduced. The results of
this study demonstrate the feasibility and effectiveness of the
proposed intelligent control strategy.
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