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ABSTRACT Underwater automatic target recognition (ATR) is a challenging task for marine robots due
to the complex environment. The existing recognition methods basically use hand-crafted features and
classifiers to recognize targets, which are difficult to achieve ideal recognition accuracy. In this paper,
we proposed a novel method to realize accurate multiclass underwater ATR by using forward-looking
sonar—Echoscope and deep convolutional neural networks (DCNNs). A complete recognition process from
data preprocessing to network training and image recognition was realized. Firstly, we established a real,
measured Echoscope sonar image dataset. Inspired by the human visual attention mechanism, the suspected
target region was extracted via the graph-based manifold ranking method in image preprocessing. Secondly,
an end-to-end DCNNs model, named EchoNet, was designed for Echoscope sonar image feature extraction
and recognition. Finally, a network training method based on transfer learning was developed to solve the
problem of insufficient training data, and mini-batch gradient descent was used for network optimization.
Experimental results demonstrated that our method can implement efficiently, and the recognition accuracy
on a nine-class underwater ATR task reached 97.3%, outperforming traditional feature-based methods. The
proposed method is expected to be a potential novel technology for the intelligent perception of autonomous
underwater vehicles.

INDEX TERMS Automatic target recognition (ATR), forward-looking sonar, sonar image processing, deep

convolutional neural networks (DCNNGs), transfer learning.

I. INTRODUCTION

Accurate target recognition is a crucial basis for underwater
exploration and ocean development. As early as the 1960s,
underwater target recognition has been highly valued by naval
departments [1]. In recent decades, with the recovery of the
global economy, the demand for underwater target recogni-
tion technology has become increasingly urgent in civil and
commercial fields [2]-[4], including tracking and protection
of endangered aquatic organisms, salvage and rescue, aqua-
culture, and underwater archaeology. However, due to the
changeable environment and limitations on the sensing of
the marine, accurate multiclass underwater automatic target
recognition (ATR) has not been commendably solved.
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With the engineering application of sonar imaging sys-
tem, especially side-scan sonar and synthetic aperture sonar
(SAS), several works devoted to recognizing underwater tar-
gets through sonar images [5]-[8], as images are easier to
reflect the underwater scenes. In general, we choose the type
of imaging sonar according to the practical application. Side-
scan sonar is a system used for generating an image of the
sea bottom area, which is not suitable for the identification
of floating objects, nor for the real-time recognition tasks.
The main difficulty with SAS relates to micro navigation
and platform trajectory estimation, the high requirement on
the platform movement limits its application scenario. Real-
time imaging sonar Echoscope is one of the most impor-
tant innovations in underwater observation in recent years.
In fact, the invention of a more delicate and efficient imaging
system facilitates the generation of high-resolution images
and the design of appropriate technologies to automatically
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understand underwater scenes [9]. In this paper, we tackle the
challenging task of underwater target recognition by utilizing
Echoscope sonar.

Previously, hand-crafted features are employed for visual
object classification tasks, such as Scale-Invariant Feature
Transform (SIFT), Histogram of Oriented Gradient (HOG)
[10], and Fisher Vector. These hand-crafted features encode
shape, texture, and color information followed by different
classifiers such as the works of [5]—[7], [11], [12]. The fea-
tures can perform well for specific data and tasks, but most
have limited generalization capability, and feature extraction
requires expertise and a lot of trial and error. Underwater
targets are diverse in terms of size, shape, texture, and back-
ground even for the same class, which makes it extremely
difficult for conventional methods to accurately perform mul-
ticlass target recognition tasks.

Deep learning is a research hotspot in the field of machine
learning in recent years [13]—-[15], which attempts to extract
high-level features from mass data automatically through
the learning process. In the 1990s, Lecun et al. [16] estab-
lished the modern structure of convolutional neural networks
called LeNet-5 to classify handwritten numbers. Since 2006,
many studies focus on the improvement of CNNs. In 2012,
Krizhevsky et al. [17] proposed a classic structure of deep
convolutional neural networks (DCNNs) and shown its out-
standing performance in the ImageNet 2012 Large Scale
Visual Recognition Competition. Considering the excellent
performance in diverse optical image recognition applica-
tions [18], [19], we expect DCNNs to solve the underwater
target recognition problem as well. It’s worth noting that the
different imaging mechanisms result in the distinct character-
istics between sonar image and optical image. Sonar image
exhibits characteristics including incomplete boundary and
weak contrast [20], while the optical image shows evident
details that can be easily recognized by the human visual
system.

The research of deep learning for underwater target recog-
nition is far from enough. One reason is that the success
of DCNNs in image processing depends on the use of
large amounts of training data, while the costly and time-
consuming underwater experiment results in the lack of sam-
ple images for DCNNS5 training. It has been observed that
DCNNSs is prone to overfitting in small samples, that is,
high training accuracy and poor test results. Wang et al. [21]
attempted to overcome network overfitting by a very com-
plicated weight initialization method, specifically, they used
the generated weights of the deep belief network (DBN) [22]
to adaptively replace the random weights of the DCNNs.
However, the classification accuracy of this method is only
85.5% on a six-class target recognition task.

In this paper, we propose a novel underwater ATR method
based on deep learning to improve the accuracy of under-
water multiclass target recognition tasks. A complete pro-
cess from data preprocessing to network training and image
recognition is realized. An end-to-end DCNNs model named
EchoNet is designed, and the corresponding training strategy
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FIGURE 1. Overview of the proposed underwater target recognition
method. Accurate multiclass target recognition is realized by using the
Echoscope sonar image and deep convolutional neural networks, while
network training method based on transfer learning is developed to solve
the problem of insufficient sonar image data.

is developed to solve the problem of insufficient training data.
Features are learned from the data itself, so domain knowl-
edge of sonar image feature extraction is not needed. Besides,
we construct an Echoscope sonar image dataset, which is
available to the vision research community and can be used to
test sonar image recognition algorithms. To our knowledge,
this work is the first to consider using the Echoscope sonar
image and DCNNs for underwater ATR. Experimental results
show that our method can greatly improve the accuracy of
underwater multiclass ATR compared to traditional feature-
based classifiers.

The rest of this paper is organized as follows: Section II
describes the details of the EchoNet for sonar image recog-
nition; in Section III and Section IV, experimental results
are presented and discussed; finally, concluding remarks and
directions for future research are provided in Section V.

Il. ACCURATE TARGET RECOGNITION

The framework of the proposed accurate underwater ATR
method is shown in Fig. 1. The main part is to train our
designed DCNNs applied for underwater target recognition
using Echoscope sonar images (the bottom half of Fig. 1).
We will discuss the three key points in detail below, including
sonar image preparation, DCNNs model design, and network
training based on transfer learning. The top half of Fig. 1 is
to train a DCNNSs using standard supervised learning with
a large image dataset (e.g. ImageNet [23]), and the trained
model plays the role of basic network in transfer learning.
We can view the trained basic network as an analog to the
prior knowledge a human learns from previous visual expe-
riences, which is conducive to the learning task of the target
network [24].

A. SONAR IMAGE PREPARATION

The Echoscope imaging sonar, developed by Coda Octopus,
is the world’s highest-resolution commercial real-time sonar.
With a horizontal and vertical resolution of 0.4°, Echoscope
can generate high definition images with a maximum range
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FIGURE 2. Overview of the Echoscope: (a) Beam energy distribution of
the phased array imaging sonar system; (b) An underwater ROV equipped
with an Echoscope (marked with a rectangle).
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FIGURE 3. Extraction of the interested image region. Underwater scenes
are first recorded by E-UIS, saliency detection method via graph-based
manifold ranking is then applied to each single frame to get the
interested image region. These segmentation results are finally collected
for training and testing the EchoNet.

of 100 m. The imaging sonar uses phased-array techniques
to generate more than 16,000 discrete beams each time, and
the beams yield a range measurement obtaining data points
with known position and intensity (x, y, z, i), with which to
generate a complete sonar image [25]. With a ping rate up
to 12 Hz, Echoscope can provide successive image frames
similar to video images to monitor targets that are both mov-
ing and stationary. Fig. 2 shows a schematic diagram of the
Echoscope imaging principle, and an Echoscope mounted on
a remotely operated vehicle (ROV).

High-resolution sonar image provides an intuitive view of
the underwater scene that makes automatic identification of
suspect targets possible. The sonar data generated by Echo-
scope enables to create continuous pictures of the underwater
scene, which can be viewed and recorded by the Echoscope-
Underwater Inspection System (E-UIS). Yang et al. [26] pro-
posed a saliency detection method for optical images via
graph-based manifold ranking. Inspired by their method,
we extract interested image regions from records of E-UIS;
the whole process is shown in Fig. 3.

The preprocessing can eliminate the redundant background
and make it easier for the ATR task. All sonar data used in this
work were acquired at sea by Echoscope, and objects would
be recognized from the segmentation results. With RGB
channels normalized separately by min-max normalization,
pixel values of the scene-level sonar images are normalized
to [0, 1], to reduce the undesirable influence on target recog-
nition. More details about the Echoscope sonar image dataset
are described in Section III.

B. ECHONET ARCHITECTURE

DCNNs model is a deep learning architecture inspired by
biological visual cognitive mechanisms [27]. The architecture
of EchoNet, as depicted in Fig. 4, consists of 5 convolutional
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layers and 2 fully connected layers, whose structure is based
on the AlexNet [17]. Starting with raw input, the output of
the last fully connected layer is fed to Softmax to gener-
ate a probability distribution over the n class labels, and n
corresponds to the category number of underwater targets
of interest. AVE pooling is used rather than the commonly
used MAX pooling after the first convolutional layer, since
average pooling should be more robust when dealing with
the speckle-like nature of sonar image. To reduce the number
of connection parameters, we use only two fully connected
layers, and dropout is only used in FC1.

1) CONVOLUTIONAL LAYER

Given an input feature map x; and a convolution filter kj,
the output feature map y; may combine convolutions with
multiple input maps and can be expressed as

vi=f (in*k,-j + bj) (1)

where * is the two-dimensional discrete convolution operator
and b; is an additive bias. The activation function f(x) =
max (0, x), called Rectified Linear Units (ReLU) is applied
to each convolutional layer and FC1 layer. Both convolution
filter weights and biases are model parameters that need to be
learned.

2) POOLING LAYER

AVE pooling operation is used to compute the average value
over a pixel’s neighborhood region, while MAX pooling
operation is to compute the maximum value. The pooling
layer can reduce the dimension of the feature maps and
introduce small translation invariance.

3) FULLY CONNECTED LAYERS

Acts as a classifier in the whole network. The fully con-
nected layers are computed as Y = f(WeY5 + Bg) and
Y7 = ¥ (W;Ys + B7), where W; and B; are matrixes of
the trainable parameters, ¥ (X)[i] = X! / > XU is the
Softmax function.

C. NETWORK TRAINING WITH TRANSFER LEARNING

The training process of EchoNet seeks to minimize the clas-
sification error on the training dataset, in other words, model
parameters 6 are learned to minimize the cross-entropy cost
function:

M n
m=1 c=1
+A-R0O) (2)

where 1 {-} is an indicator function defined as 1{true} = 1 and
1{false} =0, {(x(l), h(l)) R (x(M), h(M))} is a training set
of M labeled examples, labels A e {1,2,...,n}p:0; x(’"))
is the estimated probability of the c-th class, and A - R(f) is a
weight decay term (L2 regularization in this paper).
Normally, the training process of DCNNs goes like this:
first, the learning network is randomly initialized and fed

VOLUME 7, 2019



IEEE Access

L. Jin et al.: Accurate Underwater ATR in Forward-Looking Sonar Imagery

\ AVE Pooling  MAX Pooling MAX Pooling Fully Fully
(3 x 3, stride=2) (3 x 3, stride=2) (3x 3, stride=2) connected connected
Preprocessed Feature Map 1 Feature Map 2 Feature Map 3 Feature Map 4 Feature Map 5 FC1 Output

Sonar Image (27 x 27 x 96) (13x 13 x 256) (13x 13x 384) (13x 13x 384) (6 x 6 x 256) (nClasses x 1)

FIGURE 4. The architecture of the EchoNet. The red cuboid represents the convolution filter, and the number next to it
specifies the filter size; the blue cuboids are feature maps corresponding to the output of the first five layers, and the light

green rectangles represent the fully connected layers.
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FIGURE 5. The training method of the EchoNet. The labeled rectangles
(e.g. Wy, ) represent weights learned for each layer, and color indicates
which dataset the weights were originally trained on. The ellipsoids
between rectangles represent the feature maps at each layer.

with a large number of images, then costs are computed by
forward-propagation, and finally backpropagation algorithm
is used to tune the network parameters.

Although DCNNs take advantage of weight sharing and
local connection, the networks still have millions of weights
that need to learn, which determines that the networks should
be trained on a large dataset. Due to the limited amount
of sonar images at hand, a network training method based
on transfer learning is developed to avoid overfitting of the
EchoNet, as depicted in Fig. 5.

Transfer learning is a tool in machine learning to solve the
basic problem of insufficient training data [28], [29], which
tries to transfer the knowledge from the source domain to the
target domain. We present a flexible transfer learning method.

Firstly, a basic network is trained using standard super-
vised learning with a large number of labeled images (top
row). ImageNet provides such an ideal large image dataset,
which contains over 10 million optical images with each
image labeled. Then, pre-trained parameters (Wa; ~ Wye)
of the basic network are transferred to the EchoNet (bottom
row), and the last layer of EchoNet is initialized randomly
from Gaussian distribution. Finally, the EchoNet is fine-
tuned on the Echoscope sonar image dataset. Particularly, the
first 2 layers are locked and the remaining layers are allowed
to learn during the fine-tuning process. Mini-batch gradient
descent (MBGD) is used to update the model weight w as
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Underwater ATR With EchoNet:
Start with:
X, .Y, : optical image training data and ground truth;

X, Y, : Echoscope sonar image training data and ground truth;
BasicNet: a basic DCNNs randomly initialized with 09: :

EchoNet: the designed DCNNs randomly initialized with &, ;
Train:
Define Y, = BasicNet(X|,6,) : source task output;

s2Ys

0, «arg érmn Loss(Y,,Y,): obtain optimal parameters for BasicNet;

é, <« 6: : transfer parameters from BasicNet to EchoNet;
Define Lock, (-) : an operation of locking the first / layers’ parameters of DCNNs;
Define I;, = EchoNet(.X,, Lock, (é, )) : target task output;
9: <« arg _min Loss(Y,, }},) : obtain optimal parameters for EchoNet.
é
Lot )
Input: an original Echoscope sonar image X, :
Output: the category of sonar image X, .
1: Preprocess the image x, with segmentation, normalization and size adjustment to obtain “{} :

2: Input i‘, into EchoNet to predict the category of the image x, .

FIGURE 6. Procedure for underwater ATR with EchoNet.

follows:
aJ

Vi+1 W'Vt—a')th—a'[—
ow

5]
3

where t is the iteration index,n is the momentum variable,v;
is the previous weight update,« is the learning rate,A is the
weight decay variable, and [ 52 |,,, ] s, i the average over the
t-th batch B; of the derivative of the cost function with respect
to w, evaluated at wy.

Most of the transfer learning methods aim to cope with
the same data type—optical image, while our work tries to
transfer image representations from the optical images to
sonar images.

From what have been described above, we outline our
underwater ATR method in Fig. 6.

Wit1 Wr + Vet

Ill. EXPERIMENTS AND RESULTS

A. ECHOSCOPE SONAR IMAGE DATASET

We evaluate the effectiveness of our underwater target recog-
nition method on a real, measured sonar image dataset. Sea
experiments have been conducted by Coda Octopus using the
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FIGURE 7. High-resolution sonar images of interested underwater
targets. From top left to bottom right: (a) Cornerstone; (b) Diver (marked
with a rectangle dotted line); (c) ROV; (d) Sunken barge1; (e) Sunken
barge2; (f) Sunken barge3; (g) Shipwreck; (h) Sunken plane; (i) Sunken
military tank.

TABLE 1. Details of the Echoscope sonar image dataset.

T Sea experiments Number of
arget Year Location extracted images
Cornerstone 2009 USA 335
Diver 2010 UK 287
ROV 2011 UK 311
Sunken bargel 2012 UK 223
Sunken barge2 2012 UK 394
Sunken barge3 2012 UK 195
Shipwreck 2012 UK 370
Sunken plane 2012 UK 583
Sunken military tank 2012 UK 217

high-resolution imaging sonar Echoscope between 2009 and
2012 in various geographical locations with diverse envi-
ronmental conditions. In each experiment, a specific object,
including cornerstone, diver, ROV, sunken barge, shipwreck,
sunken plane, and sunken military tank was investigated as
an interested underwater target, as shown in Fig. 7.

We collected these experimental results and extracted
sonar images to establish a high-resolution sonar image
dataset. Table 1 summarizes the detail of each sea experiment
and the number of scene-level sonar images we obtained.

There are totally 2,915 verified target images of 9 classes,
which have been preprocessed and manually labeled by us.
The total sonar images are divided into 3 subsets: 900 images
(100 images of each the 9 classes) for training, 450 images
(50 images of each the 9 classes) for validation, and the
rest 1565 for test. The original size of these false-color sonar
images various from 150 x 150 x 3 to 240 x 240 x 3 pixels.
Considering the average size of the images, all the images
are resized to 227 x 227 x 3 when fed to the EchoNet. The
images shown in Fig. 7 have been resized to the same size.
Sonar images in the dataset vary significantly not only in
target position, orientation and scale within each class, but
also in colors and textures.
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B. TRAINING AND TESTING THE ECHONET

In this subsection, we first describe training details and then
show experimental results of the proposed target recognition
method on the Echoscope sonar image dataset. We implement
DCNNs models based on the efficient and practical open-
source Caffe framework [30], the EchoNet is constructed as
described in subsection II. B.

The training process of EchoNet has been introduced in
detail in subsection II. C. AlexNet architecture is employed
as the basic network, which is trained on a dataset obtained
from the ImageNet-2012, a subset with 1000 optical images
in each of 1000 categories, and obtains a final top-1 error on
the validation set of 42.6%. Then, parameters (W4 ~ Wye)
of the AlexNet are transferred to the EchoNet. We lock the
first 2 layers of EchoNet and train the remaining layers on
the Echoscope sonar image dataset. MBGD with a batch size
of 45 is used to train the EchoNet by back-propagating the
classification error. The learning rate is set to 0.001, and
decreased by a factor of 2 every 200 iterations, in conjunction
with weight decay of 0.005 and momentum of 0.9. The total
number of training iterations is set to 1000, i.e., 50 epochs.

To illustrate the results precisely, we repeated the EchoNet
training and testing experiment five times (each experiment
takes about 1 hour), and got an average testing accuracy of
96.4% on the nine-class underwater target recognition task,
with the highest accuracy reached 97.3% and the lowest accu-
racy reached 94.4%. Validation loss vs. training iterations
curve and validation accuracy vs. training iterations curve
that in one of the EchoNet training experiments are shown
in Fig. 8. Overfitting does not occur despite the huge number
of network parameters, which can be attributed to the special
training method developed, as well as the reduction of fully-
connection layers. Taking the best classification results as an
example, the confusion matrix is given in Table 2, shows that
only a few highly similar samples are misclassified.

We have noticed some other recent works about under-
water target recognition based on sonar image. For exam-
ple, Matheus et al. [12] proposed an object classification
method by using forward-looking sonar and the best per-
formance reached 93.6% on a five-class target recognition
task. Myers et al. [6] presented a method called normalized
shadow-echo matching (NSEM) and reached 94.8% accuracy
on a four-class target recognition task using the SAS image.
Zhu et al. [5] presented a classification system based on
KELM and PCA to classify the underwater target image
collected by side-scan sonar and got 94.2% accuracy of dis-
tinguishing between metal cylinders and rocks. These results
further confirm the method we proposed is an effective way
for accurate underwater ATR tasks.

C. METHODS COMPARISON

We carry out extensive experiments to evaluate the efficacy of

the proposed EchoNet with four classic classifiers in pattern

recognition and two state-of-the-art deep neural networks.
The four classic classifiers, including the k-nearest neigh-

bor (KNN) classifier, multi-layer perceptron (MLP), nearest
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FIGURE 8. Training curves of EchoNet: (a) Validation loss vs. training iterations. Loss declines sharply and tends to
be 0 after about 300 iterations; (b) Validation accuracy vs. training iterations. Accuracy rises quickly at the
first 100 iterations and tends to be stable after about 200 iterations.

TABLE 2. Confusion matrix of 9-class recognition results.

Category Stone Diver ROV Bargel Barge2 Barge3 Ship Plane Tank Accuracy
Stone 185 0 0 0 0 0 0 0 0 100.00%
Diver 0 137 0 0 0 0 0 0 0 100.00%
ROV 3 0 158 0 0 0 0 0 0 98.10%
Bargel 0 0 0 73 0 0 0 0 0 100.00%
Barge2 0 0 0 2 242 0 0 0 0 99.20%
Barge3 0 0 0 0 0 45 0 0 0 100.00%
Ship 0 0 0 0 0 0 220 0 0 100.00%
Plane 0 0 0 9 29 0 0 395 0 91.20%
Tank 0 0 0 0 0 0 0 0 67 100.00%
Accuracy 97.3%

neighbor (NN) classifier and support vector machine (SVM),
are mainly implemented by using the Scikit-learn machine
learning module. The sonar image dataset is divided
into 2 subsets: 1350 images (150 images of each the 9 classes)
for training, and the rest 1565 images for the test. We sepa-
rately use two kinds of features as the input of the classifiers,
namely, the original pixel value of the image and the HOG
feature.

Firstly, we define two preprocessing functions: The first
one is to flatten an 227 x 227 x 3 image into a row of pixels.
The second one is to extract the HOG feature from a resized
180 x 180 x 3 sonar image using ft.hog function (the image is
divided into 15 x 15 blocks, each block contains 2 x 2 cells and
each cell has 6 x 6 pixels). Then, we extract each image fea-
tures and put them into arrays. Finally, the KNeighborsClassi-
fier, MLPClassifier and SVC functions are applied to evaluate
the data. For the KNN method, we change the number of
neighbors and store the best result. In MLPClassifier, we set
one hidden layer with 80 neurons and use stochastic gradient
descent (SGD) to update the model weights. The learning rate
is set to 0.1 and the maximum iteration is 1000. In SVC, the
maximum iteration is 1000, and class weight is “balanced’.

Using raw pixel values as input, the accuracy of the KNN
classifier is 72.0% (with k = 10), and the accuracy of MLP
is 89.3%. Using HOG features as input, the accuracy of the
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NN classifier is 91.4%. With a widely used baseline method
HOG + SVM, we obtain an accuracy of 92.7%.

EchoNet is also compared with two well-known deep neu-
ral networks. We implement the AlexNet and GooglLeNet
[31] on the Caffe framework, pre-trained models (code pro-
vided by Caffe) are employed and totally fine-tuned by using
our Echoscope sonar image training dataset. We fine-tune the
AlexNet with the same hyper-parameters as the EchoNet; for
GoogLeNet, each iteration of MBGD used a batch size of
45, a momentum of 0.9, and a multiplicative weight decay
of 0.005 per iteration. The learning rate started at 0.001, and
the learning rate follows a polynomial decay with a power
of 0.5. Learning stopped after 1200 iterations. After training,
test data of the Echoscope sonar image dataset are feed to
the fine-tuned AlexNet and GoogLeNet to test the networks.
The experiment of each network is repeated five times, and
the training curves of the AlexNet and GoogLeNet in one
experiment are shown in Fig. 9 and Fig. 10 respectively.

The experimental results of all methods are listed in
Table 3, which shows the proposed EchoNet method
outperforms all the comparison methods. Specifically, com-
pared to the best baseline using traditional hand-crafted fea-
tures (SVM_HOG), we achieve absolute increases of 4.6%.
Compared to the deep-network-based methods, we achieve
absolute increments of 3.2%, 0.3% respectively. Although

125527



IEEE Access

L. Jin et al.: Accurate Underwater ATR in Forward-Looking Sonar Imagery

validation loss

0 100 200 300 400 500 600 700 800 900 1000

training iterations

(@)

¥ (%)

alidation accuracy

0 100 200 300 400 500 600 700 800 900 1000

(b)

FIGURE 9. Training curves of the AlexNet: (a) Validation loss vs. training
iterations; (b) Validation accuracy vs. training iterations.
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FIGURE 10. Training curves of the GoogLeNet: (a) Validation loss vs.
training iterations; (b) Validation accuracy vs. training iterations.

GoogLeNet achieves similar recognition accuracy as the
EchoNet, training GoogLeNet takes ten times as long as the
EchoNet. Overall, the DCNNs based methods are better than
the traditional hand-crafted features based methods.
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TABLE 3. The results of comparison methods on the sonar image dataset.

Inference time

Method Accuracy .
per image (ms)

KNN_raw_pixel 72.0% 341.2
MLP_raw_pixel 89.3% 1.1
NN_HOG 91.4% 3114
SVM_HOG 92.7% 133.7
AlexNet 94.1% 73.1
GoogLeNet 97.0% 186.9
EchoNet 97.3% 60.6

Besides the accuracy of underwater multiclass target
recognition, the real-time requirement is also an essential
point in ATR. Therefore, we also examined the efficiency of
each method listed in Table 3.

The design of a classifier usually consists of two parts:
training and test (inference). In practice, we care more about
the inference efficiency of a classifier. In Table 3, we show
the average inference time each recognition method takes on
a single sonar image, which is calculated by averaging the
total test time of the 1565 test images. The test platform is
based on a dual-core Intel processor. It should be noted that
since the first four methods are developed in Python, and the
last three methods run in the Caffe, these runtimes cannot be
compared with each other directly, but only generally reflect
the efficiency of each method. The Caffe framework is mainly
based on C++, which is several times more efficient than
Python.

In terms of details, the time complexity of the KNN and
NN algorithm increase with the increase of training sample
size and feature dimension. A test sample must be com-
pared with all the training samples, which leads to heavy
distance calculation. For the MLP method, the shallow struc-
ture and straightforward computation make it very efficient.
For the SVM_HOG method, independent feature extraction
(~50 ms) is required before using SVM for image recogni-
tion, resulting in reduced recognition efficiency. For the last
three DCNNs based methods, their forward pass floating-
point operations (FLOPs) are about 720M, 1550M, and 700M
respectively. Although each model takes hours to train, it does
not spend much time on test due to the advantages of end-
to-end model structure and efficient numerical computation.
As we can see from Table 3, EchoNet takes only 60.6 ms
to test one sonar image. As the maximum refresh rate of the
Echoscope is 12 frames per second, EchoNet is fast enough
to process each frame in real-time.

IV. DISCUSSION

In this section, we mainly discuss the impact of image noise,
network architecture and training method on the recognition
performance, and further analyze the reason for the success
of transfer learning through parameter visualization.

A. EFFECT OF IMAGE NOISE ON RECOGNITION

In Fig. 7, we have shown some sonar images generated by the
Echoscope during sea experiments, which are of good quality.
However, the underwater environment can sometimes be so
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TABLE 4. Recognition results of The image datasets polluted by noise.

Accuracy
Method Noise variance=0.01  Noise variance=0.1
MLP_raw_pixel 62.6% 30.9%
SVM_HOG 80.8% 56.0%
AlexNet 91.1% 89.3%
EchoNet 94.5% 92.6%

severe that sonar images may be heavily polluted by noise.
In this subsection, we would like to test the effect of image
noise on recognition accuracy of our method. We generate
two kinds of zero-mean white Gaussian noises with variances
of 0.01 and 0.1 respectively. By artificially adding the noises
to the normalized real-measured sonar images, we obtain two
simulated sonar image dataset contaminated by noise. Fig. 11
shows several representative sonar images.

We employ EchoNet and some comparison methods to
conduct experiments on the polluted image datasets, and
show experimental results in Table 4. The experimental set-
tings are the same as described in subsection III. C and each
data is the average value of five experimental results.

It can be seen from Table 4 that EchoNet and AlexNet can
still achieve acceptable recognition accuracy at a high noise
level, while the traditional feature based methods are suscep-
tible to noise and significantly reduce their accuracy. This
further demonstrates the advantage of the DCNNs. Besides,
with the increase of noise level, the recognition accuracy of
each method decreases. We can consider using image noise
reduction method in sonar image preprocessing to obtain
better application effect.

B. AVE POOLING VS. MAX POOLING

In Section II, we have described the architecture of the
designed DCNNs, whose first pooling layer used aver-
age rather than the commonly used maximum approach.
We would like to test a network that has a similar structure
as the EchoNet, except that the first pooling layer is changed
to MAX pooling. The same training method and hyper-
parameters are employed to conduct the experiments, and the
results are shown in Fig. 12. For the MAX pooling approach,
the average testing accuracy of the five experiments is 92.6%,
with the maximum is 96.2%, and the minimum is 89.3%.
By contrast, AVE pooling approach gets an average testing
accuracy of 96.4%, with the maximum is 97.3% and the
minimum is 94.4%. It appears that using AVE pooling at
the first pooling layer is more effective for Echoscope sonar
image processing in our method.

C. TRAINING WITH DIFFERENT LOCKED LAYERS

In our training method, the first 2 layers of the EchoNet
are locked and the remaining layers are allowed to learn
during the training process. Now, we use Ny, to indicate the
number of locked layers and discuss the impact of Ny value
on network performance. The values of Ny are chosen from
{0,1,...,6}, and corresponding new networks are trained.
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FIGURE 11. Sonar images polluted by zero-mean white Gaussian noise:
(a) Noise variance is 0.01; (b) Noise variance is 0.1.
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FIGURE 12. Recognition results of AVE pooling approach and MAX
pooling approach.

Note that all layers can participate in training when Ny =
0, whereas only the last fully connected layer is allowed
to learn when Ny, = 6. For each N; value, we conduct
four experiments. Except for different training strategies, the
structure of each network is exactly the same as mentioned in
Section II. All experiments draw their training data and test
data from the same dataset, as specified in Table 1.
Experimental results are shown in Fig. 13, we note that
the average recognition accuracy changes with Ny,. For our
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FIGURE 13. Experimental results of the EchoNet with different training
strategies.
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FIGURE 14. Filter weights visualization of the first convolutional layers.
(a) Filters only trained on optical images (N, = 2); (b) Filters trained on
optical images and fine-tuned by sonar images (N, = 0).

designed DCNNSs, one can see that Ny = 2 gives the best
result, which suggests that completely fine-tuning the target
network (N; = 0) may not get the best performance. The
choice of whether or not to lock the first / layers of the target
network may depends on the size of the target dataset and the
number of parameters in the first m layers [32].

D. VISULIZATION OF LEARNED FILTERS

Inspired by the parameter visualization method [33], we dis-
play the filter weights of the first convolutional layer respec-
tively from the EchoNet with N, = 0 and Ny, = 2, as shown
in Fig. 14.

Visually, there is little difference between the two sets of
filters in Fig. 14. To describe the similarity of the two sets of
weights quantitatively, the correlation coefficient of matrixes
is introduced and calculated using the following formula:

> > Ay — A)Byn — B)
r= = “4)
(Z > Amn — A)2> (Z > Bun — 3)2)

where A and B are two matrixes, A and B are corresponding
mean values. The correlation coefficient » € [0, 1], the larger
the r, the more similar the two matrixes are. For the two sets of
filters, we put the parameters of each filter group into a large
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matrix respectively. The correlation coefficient of these two
matrixes is 0.99, which is consistent with the results shown
in Fig. 14.

Network parameters trained on optical images are similar
to those used for sonar image recognition, which illustrates
the generalization ability of DCNNs for image processing.
The front layers of the DCNNs can be treated as a versatile
feature extractor, so it is reasonable to transfer the knowledge
of optical image recognition to sonar image recognition.

V. CONCLUSION

For improving the accuracy of underwater multiclass target
recognition tasks, this paper proposes an ATR method in
combining the forward-looking sonar image and deep con-
volutional neural networks. An end-to-end DCNNs model
named EchoNet is designed and a corresponding training
strategy is developed that could extract high-level features
of sonar images automatically through the learning process,
and perform target recognition. We also build a sonar image
dataset contains a total of 2,915 sonar images, which can be
used for testing sonar image recognition algorithms.

Through a series of experiments, the influences of net-
work architecture and training method on the recognition
performance are discussed, and the reason for the success of
transfer learning is analyzed. Experimental results show that
compared with traditional classifiers, the proposed method
has high accuracy, good real-time performance and strong
anti-noise ability. In particular, our method can achieve an
accuracy of 97.3% on a nine-class underwater ATR task and
surpasses four traditional classifiers and two deep neural
networks.

Our research demonstrated the great prospect of using
imaging sonar and DCNNs for underwater ATR, which is
of great significance for underwater vehicles to perceive the
ocean environment and navigate autonomously. It is believed
that the deployment of DCNNs on unmanned platforms will
not be a difficult problem in the future with the continuous
optimization of network architecture and the development of
hardware computing acceleration technology.
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