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ABSTRACT This paper proposes a states feedback control method for Z-axis MEMS gyroscopes using
fractional calculus and adaptive dynamic slidingmode control method. A new slidingmode control method is
proposed to achieve trajectory tracking by adding a fractional order term in the conventional slidingmanifold.
The new proposed sliding surface contains integer order terms as well as fractional order terms and thus can
provide an extra degree of freedom. Besides, in the presence of unknown system parameters, some adaptive
laws containing the new designed sliding manifold are proposed to online tune controller parameters. All
adaptive laws are derived in the stability framework and the stability of the control system is also guaranteed
according to the Lyapunov stability theory and. Simulations results on a Z-axis vibrating gyroscope are
provided to illustrate the effectiveness of the control method.

INDEX TERMS Adaptive control, dynamic sliding mode control, gyroscope, fractional order calculus.

I. INTRODUCTION
MEMS gyroscopes are commonly used sensors for measur-
ing angular velocity which are widely used inmany occasions
such as cell phone, navigation, quadcopter and so on. The
working principle of MEMS gyroscopes is based on the iner-
tia effect of the detecting mass caused by the Colioris force.
Due to the defect of manufacturing technology, the struc-
ture of the MEMS gyroscope is not totally symmetric, and
the asymmetric will cause quadrature coupling between the
driving axis and the sensing axis. Besides, there are also
parameter variation and external disturbance in the gyroscope
system. All the above-mentioned factors will deteriorate the
performance of theMEMS gyroscope. To address these prob-
lems, great efforts have been dedicated in the investigation
of MEMS gyroscope control methods. Various control meth-
ods including sliding mode control, adaptive control and
other techniques are all applied in the control of MEMS
gyroscopes [1]–[3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xudong Zhao.

Sliding mode control (SMC) is a powerful robust control
scheme which has been widely used in many areas [4]–[6].
SMC has many attractive features such as easy implemen-
tation, insensitive to parameter variation, robust to distur-
bance and so on and these advantages make SMC a useful
tool in the control of system dynamics. SMC has many
advantages while it also has its drawbacks. It can be found
from the structure of sliding mode control that there are
always discontinuous robust terms in the control force. The
discontinuous terms will cause chattering in control forces
and the high frequency chattering will damage actuators in
practical situations. How to achieve satisfactory control per-
formance while reducing chattering phenomenon is always
a hot topic since SMC was firstly introduced [4]. Dynamic
sliding mode control method is one kind of high order sliding
mode control method that can alleviate chattering problem
by transferring discontinuous term to the derivative of the
control force [7]–[10]. As a consequence, dynamic sliding
mode control technique has attracted increasing attention
and it is widely used in many occasions. Hwang et al. [7]
proposed a hierarchically improved fuzzy dynamic sliding
mode control method in the control of autonomous ground
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vehicle to achieve path tracking. In [8], Liu developed a
new dynamic terminal sliding manifold and applied the new
dynamic sliding control method in the control of a class
of SISO systems. Utkin discussed to what extent the high
order sliding mode control may serve as an alternative to the
conventional sliding mode control in [9]. In [10], Fridman
proposed a continuous super twisting control which is based
on higher order sliding mode observer and the control method
can achieve second-order sliding mode.

Adaptive control is an effective approach to handle
parameter variations and it is usually combined with many
other control methods to improve performances of con-
trol systems [11]–[16] in the presence of unknown param-
eters [17]–[20]. Banazadeh and Taymourtash [14] proposed
an adaptive control method for an insect-like flapping wing
air vehicle where adaptive control technique is combinedwith
slidingmode control for attitude and position control. A novel
direct adaptive tracking control scheme is established in [16]
by incorporating fuzzy systems to approximate nonlinear
functions.

Fractional calculus is a generalization and extension of
integer differentiation and integration to fractional orders.
As a branch of mathematics, this concept has attracted
increasing attention of scientists and researchers due to its
importance in the investigation of system modeling and con-
trol algorithms. Fractional calculus has also been integrated
with adaptive control techniques [21]–[23] for system perfor-
mances improvement. Fei and Lu [21] proposed an adaptive
fractional order sliding mode control method for a Z-axis
gyroscope where a neural network is used to alleviate chat-
tering. In [22], Ahmad and Hamidreza analyzed dynamics
of chaotic fractional order systems under adaptive sliding
mode control method. In [23], Ali andHamed proposed a new
fractional order dynamic sliding mode method for a class of
nonlinear systems.

Thus, fractional calculus can also be used in adaptive
dynamic sliding mode control (ADSMC) for MEMS gyro-
scopes. Gyroscope performances and parameter adaptation
performances under adaptive fractional order dynamic sliding
mode control (AFDSMC) shall be systematically investigated
as well. At the same time, the effects on control performances
and parameter adaptations performances caused by different
fractional orders shall also be studied in detail. To the best
of our known, control methods for MEMS gyroscopes using
fractional order dynamic sliding mode control method are
seldom explored in the literature.

This paper proposed a dynamic sliding mode control
method using fractional calculus and simulation is conducted
on a Z-axis gyroscope to validate the effectiveness of the
control scheme. The main contribution of the paper can be
concluded as follows:
(1) One superior characteristic of the proposed control

scheme is that the control method developed conven-
tional sliding method by adding a fractional order term in
the sliding manifold which can provide an extra degree
of freedom, so that one can achieve better trajectory

tracking performance as well as parameter adaptation
performance compared to conventional integer order slid-
ing mode method. This is the most important feature
of the proposed method, as compared with conventional
gyroscope control methods.

(2) The proposed control method improves system tracking
performance as well as robustness by dealingwith system
nonlinearities such as parameter variation and external
disturbances. Then adaptive fractional order dynamic
sliding mode control methods has been extended to the
control of MEMS gyroscopes. This is a successful exam-
ple using fractional calculus and dynamic sliding mode
control with the MEMS gyroscope.

(3) Adaptive laws are proposed in the stability frame-
work to online tune system parameters and the sta-
bility of the entire control system is guaranteed using
Lyapunov stability theorem. It shall be mentioned that
all the adaptive algorithms contain fractional order
terms which can provide more flexibility in the con-
troller design as well as parameters adaptation process.
Besides, as long as persistent excitation condition [11]
is satisfied, all system parameters can be correctly
estimated.

The rest of the paper is organized as follows: in section 2,
an introduction of fractional calculus is presented and a
MEMS gyroscope system model is given. In section 3,
an adaptive fractional order dynamic sliding mode controller
is studied and the stability of the control system is also
provided. Section 4 shows the simulation results and section
5 gives the conclusions.

II. PRELIMINARY AND SYSTEM DESCRIPTION
Factional calculus is a generalization of integration and differ-
entiation to fractional order fundamental operation [24], [25].
Denoted by aDαt , the fractional order operator takes both
fractional order derivative and fractional integral in a single
expression defined as:

aDαt =


dα

dtα
α > 0

1 α = 0∫ t

a
(dτ )−α α < 0

(1)

where a and t are the limits of the operator and α is
the fractional order of the operator. There are three most
commonly used definitions for general fractional order
operator.
Definition 1: for n − 1 < α < n ∈ Z+, the α − th

order Grunwald-Letnikov(GL) fractional derivative [24], [25]
is expressed as

aDαt f (t) = lim
h→0

h−α
[(t−a)/h]∑
j=0

(−1)j
(
α

j

)
f (t − jh) (2)

VOLUME 7, 2019 133009



H. Wang et al.: Control of Z-Axis MEMS Gyroscope Using Adaptive Fractional Order Dynamic Sliding Mode Approach

where [(t − a)/h] represents the max integer number which

is less than (t−a)/h,
(
α

j

)
=

0(α+1)
0(k+1)0(n−k+1) and 0(•) is the

gamma function, 0(γ ) =
∞∫
0
e−t tγ−1dt .

Definition 2: The α − th order Riemann-Letnikov(RL)
fractional derivative [24], [25] is written as

Dαf (t) =
dn

dtn
[

1
0(n− α)

t∫
0

f (τ )
(t − τ )α−n+1

dτ ] (3)

where n− 1 < α < n ∈ Z+.
Definition 3: The α − th order Caputo fractional deriva-

tive [24], [25] is defined as

Dαf (t) =
1

0(n− α)

t∫
0

f (τ )
(t − τ )α−n+1

dτ (4)

where n− 1 < α < n ∈ Z+.
In the following parts, we will use Caputo definition in the

control method design and the operator is denoted by Dα for
clarity [26], [27].

Generally speaking, a typical Z-axis vibratory gyroscope
contains a proof mass, spring beams, electrostatic actuators
and sensing mechanisms. In the gyroscope, the proof mass
can only move in the X-O-Y plane and the gyroscope is
rotating at a constant angular velocity around the Z-axis.
Due to limitation of manufacturing technology, the gyroscope
structure is not totally symmetric which will cause extra
coupling between X and Y axis. The motion equation [13]
of the gyroscope is derived as:{

mẍ + dxx ẋ + dxyẏ+ kxxx + kxyy = ux + 2m�zẏ
mÿ+ dxyẋ + dyyẏ+ kxyx + kyyy = uy − 2m�zẋ

(5)

wherem is the weight of the proof mass; x and y are the coor-
dinates of the mass; kxx kyy dxx dyy are the spring coefficients
and damping coefficients in the X and Y direction; dxy kxy are
the extra coupling terms caused by the asymmetric structure
and friction imperfection;�z is the angular velocity and uxuy
represent control forces in the X and Y direction.

Dividing both sides of (5) by the reference massm, the ref-
erence length q0 and the resonance frequency ω2

0, we can get
the motion equation in non-dimensional form as{

ẍ∗ + d∗xx ẋ
∗
+ d∗xyẏ

∗
+ ω2

xx
∗
+ ωxyy∗ = u∗x + 2�∗z ẏ

∗

ÿ∗ + d∗xyẋ
∗
+ d∗yyẏ

∗
+ ωxyx∗ + ω2

yy
∗
= u∗y − 2�∗z ẋ

∗ (6)

wherex∗ = x
q0
, y∗ = y

q0
, ẋ∗ = x

q0ω0
, ẏ∗ = y

q0ω0
, ẍ∗ = ẍ

q0ω2
0
,

ÿ∗ = ÿ
q0ω2

0
, d∗xx =

dxx
mω0

, d∗xy =
dxy
mω0

, d∗yy =
dyy
mω0

, �∗z =
�z
ω0
,

ωx =

√
kxx
mω2

0
, ωy =

√
kyy
mω2

0
, ωxy =

kxy
mω2

0
, u∗x =

ux
mq0ω2

0
,

u∗y =
uy

mq0ω2
0
.

Rewriting (6) in vector form yields

q̈+ Dq̇+ Kq = u− 2�q̇ (7)

where

q =
[
x∗

y∗

]
, u =

[
u∗x
u∗y

]
, D =

[
d∗xx d∗xy
d∗xy d∗yy

]
,

K =
[
ω2
x ωxy

ωxy ω2
y

]
, � =

[
0 −�∗z
�∗z 0

]
.

Taking parameters variation and external disturbances into
consideration, we can further get the motion equation in
vector form as

q̈ = u− (D+ 2�)q̇− Kq− (1D+ 21�)q̇−1Kq+ d

= u− (D+ 2�)q̇− Kq+ F (8)

For simplicity, (8) is rewritten in the form

q̈ = f + u+ F (9)

where f = −(D + 2�)q̇ − Kq, q is the state vector, u is the

control vector and F =
[
F1
F2

]
represents lumped, matched

unknown disturbances including parameters variation and
external disturbance, expressed as F = −(1D + 21�)q̇ −
1Kq+ d .
Assumption 1: The lumped parameter uncertainties and

external disturbance F is bounded such that |Fi| ≤ Fdi i =
1, 2. The derivative of the lumped parameter uncertainties and
external disturbance is bounded such that

∣∣Ḟi∣∣ ≤ Ḟdi i = 1, 2,
where Fdi, Ḟdi i = 1, 2 are positive constants.

In the next section, an adaptive fraction order dynamic
manifold is proposed and the design of an adaptive fractional
order dynamic sliding mode controller is investigated so that
gyroscope trajectory can track the reference trajectory.

III. ADAPTIVE FRACTIONAL ORDER DYNAMIC
SLIDING MODE CONTROLLER
A. DESIGN OF FRACTIONAL ORDER DYNAMIC
SLIDING MODE CONTROL
An adaptive fractional order dynamic sliding mode controller
is established with the objective to find a control law so that
the gyroscope state q can track a reference trajectory qd .
Assuming that all parameters in the gyroscope system are
well known, the design of an ideal fractional dynamic sliding
mode controller is described step by step as follows:

Define the tracking error as

e = qd − q (10)

The derivative of tracking error is

ė = q̇d − q̇ (11)

Define a fractional order sliding surface as

S = ė+ c2e+ c3Dα−1e (12)

where c2 =
[
c21 0
0 c22

]
, c3 =

[
c31 0
0 c32

]
are sliding surface

parameters which are chosen to be diagonal matrixes with the
diagonal elements c2i, c3i , i = 1, 2 being positive constants.
α − 1 is the fractional order of fractional order operation.
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The derivative of the sliding surface is

Ṡ = ë+ c2ė+ c3Dαe

= (q̈d − q̈)+ c2(q̇d − q̇)+ c3Dαe

= (q̈d + (D+ 2�)q̇+ Kq− u)

+ c2(q̇d − q̇)+ c3Dαe (13)

A fractional order dynamic sliding manifold is designed as

σ = Ṡ + ∂S

= ë+ c2ė+ c3Dαe+ (ė+ c2e+ c3Dα−1e) (14)

where ∂ =
[
∂1 0
0 ∂2

]
is the dynamic sliding surface parame-

ter where ∂i , i = 1, 2 are positive constants.
It can be seen from the definition of the dynamic sliding

manifold in (14) that if σ → 0, Ṡ + ∂S = 0 is a stable
system only if all the roots of Ṡ + ∂S = 0 are located in
the left half plane. That is to say if σ → 0, the sliding surface
designed in (12) will converge to zero with ∂ being a positive
diagonal matrix. And it can be inferred from the definition
of the sliding surface in (12) that the tracking error will also
converge to zero.

Differentiating both sides of (4), the derivative of the
dynamic surface is

σ̇ = S̈ + ∂ Ṡ

=
...
e + c2ë+ c3Dα+1e+ ∂(ë+ c2ė+ c3Dαe)

=
...
e + (c2 + ∂)ë+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė

= (
...
q d −

...
q )+ (c2 + ∂)(q̈d − q̈)

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė

= (
...
q d − ḟ − u̇− Ḟ)+ (c2 + ∂)(q̈d − f − u− F)

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė (15)

Then, a sliding mode controller can be designed in the
following form

u = ueq + usw (16)

where

ueq = (c2 + ∂)−1[(
...
q d − ḟ − u̇eq)

+ (c2 + ∂)(q̈d − f − u̇eq)

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė] (17)

usw = (c2 + ∂)−1ηsgn(σ ) (18)

η =

[
η1 0
0 η2

]
is the robust gain of the switch term and

ηi , i = 1, 2 chosen to be positive constants.
Theorem 1: If the control force designed in (16) is applied

to the MEMS gyroscope system described in (9), the entire
control system is stable.

Proof: Choose a Lyapunov candidate as

V =
1
2
σ Tσ (19)

Differentiating both sides of (19) and substituting (15) into
V̇ leads to

V̇ = σ T σ̇

= σ T [(
...
q d − ḟ − u̇− Ḟ)

+ (c2 + ∂)(q̈d − f − u− F)

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė] (20)

Substituting the control force in (16) into (20) yields

V̇ = σ T σ̇

= σ T (−ηsgn(σ ))

= −η

∣∣∣σ T ∣∣∣ ≤ 0 (21)

Since the Lyapunov function is positive definite and the
derivative of the Lyapunov function is negative definite,
according to the Lyapunov stability theorem, it can be con-
cluded that the entire control system is asymptotically stable.

B. DESIGN OF ADAPTIVE FRACTIONAL ORDER DYNAMIC
SLIDING MODE CONTROL
If the system parameters are unknown, the dynamic sliding
mode controller designed in (16) cannot be implemented
directly. Adaptive control technique is adopted in this part to
online tune the unknown system parameters in (16).

Control force in (16) can be modified in the new form

ûeq = (c2 + ∂)−1[(qd −
˙̂f − u̇eq)

+(c2 + ∂)(q̈d − f̂ − ˙̂ueq)

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė] (22)

where f̂ = −(D̂+ 2�̂)q̇− K̂q is an estimate of f .
And the proposed modified adaptive controller is designed

as

û = ûeq + usw (23)

where ûeq is shown in (22) and usw remains the same as (18).
In order to update the system parameters in (23), the adap-

tive laws are given in the following form

˙̃DT = η1q̈σ T + η1q̇σ T (c2 + ∂) (24)
˙̃
�T
= 2(η3q̈σ T + η3q̇σ T (c2 + ∂)) (25)

˙̃KT
= η2q̇σ T + η2qσ T (c2 + ∂) (26)

The block diagram of the designed adaptive fractional
order sliding mode control system is depicted in Fig.1.
Theorem 2: If the designed controller in (23) and the

adaptive laws in (24), (25), (26) are applied to the system
in (9), the entire control system is asymptotically stable,
system tracking errors will converge to zero and all the system
parameters can be correctly estimated.

Proof: Choose a new Lyapunov candidate as

V =
1
2
σ Tσ +

1
2
tr(D̃T

1
η1
D̃)

+
1
2
tr(K̃T 1

η2
K̃ )+

1
2
tr(�̃T 1

η3
�̃) (27)
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FIGURE 1. Block diagram of the adaptive dynamic sliding mode controller.

where σ is the dynamic sliding manifold, D̃, K̃ , �̃ are the
estimation errors of the known system parameters defined
such that D− D̂ = −D̃, �− �̂ = −�̃, K − K̂ = −K̃ .

Differentiating both sides of (27) and substituting (15) into
V̇ yield

V̇ = σ T σ̇ + tr( ˙̃DT
1
η1
D̃)+ tr( ˙̃KT 1

η2
K̃ )+ tr( ˙̃�T 1

η3
�̃)

= σ T
[
(
...
q d − ḟ − u̇)+ (c2 + ∂)(q̈d − f − u)
+c3Dα+1e+ ∂c3Dαe+ ∂c2ė

]
+ tr(∗)

(28)

where tr( ˙̃DT 1
η1
D̃) + tr( ˙̃KT 1

η2
K̃ ) + tr( ˙̃�T 1

η3
�̃) is denoted as

tr(∗) for clarity.
Substituting the adaptive controller in (23) into (28) gives

V̇ = σ T
[
(
...
q d − ḟ − u̇− Ḟ)+ (c2 + ∂)(q̈d − f − u− F)
+c3Dα+1e+ ∂c3Dαe+ ∂c2ė

]
+ tr(∗̇)

= σ T [
...
q d − ḟ − u̇− Ḟ + (c2 + ∂)q̈d − (c2 + ∂)f

−(c2 + ∂)(c2 + ∂)−1((
...
q d −

˙̂f − u̇)

+ (c2 + ∂)(q̈d − f̂ − ˙̂u)− (c2 + ∂)F

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė+ ηsgn(σ ))

+ c3Dα+1e+ ∂c3Dαe+ ∂c2ė]+ tr(∗̇)

= σ T [−Ḟ − (c2 + ∂)F − ḟ +
˙̂f − (c2 + ∂)f

+ (c2 + ∂)f̂ − ηsgn(σ )]+ tr(∗̇)

= σ T [−Ḟ − (c2 + ∂)F +
˙̃f + (c2 + ∂)f̃

− ηsgn(σ )]+ tr(∗̇) (29)

where f̃ = f̂ − f and f̃ is described as

f̃ = −(D̂+ 2�̂)q̇− K̂q− (−(D+ 2�)q̇− Kq)

= [(D− D̂)+ 2(�− �̂)]q̇+ (K − K̂ )q

= (−D̃− 2�̃)q̇− K̃q (30)

The derivative of f̃ is given in the form

˙̃f = (−D̃− 2�̃)q̈− K̃ q̇ (31)

Substituting (31) into (29) yields

V̇ = σ T [−Ḟ − (c2 + ∂)F]

+ σ T {[(−D̃− 2�̃)q̈− K̃ q̇]

+ (c2 + ∂)[(−D̃− 2�̃)q̇− K̃q]− ηsgn(σ )}

+ tr(∗̇)

= σ T [−Ḟ − (c2 + ∂)F]

+ σ T {[−D̃q̈− (c2 + ∂)D̃q̇]

+ [−2�̃q̈− 2(c2 + ∂)�̃q̇]

+ [−K̃ q̇− (c2 + ∂)K̃q]− ηsgn(σ )}

+ tr(∗̇)

= σ T [−Ḟ − (c2 + ∂)F]

+ [−q̈σ T D̃− q̇σ T (c2 + ∂)D̃]+ tr(
˙̃DT D̃
η1

)

+ [−2q̈σ T �̃− 2q̇σ T (c2 + ∂)�̃]+ tr(
˙̃
�T �̃

η3
)

+ [−q̇σ T K̃ − qσ T (c2 + ∂)K̃ ]+ tr(
˙̃KT K̃
η2

)− η |σ |

(32)

Substituting adaptive laws in (24), (25), (26) into (32)
yields

V̇ = σ T [−Ḟ − (c2 + ∂)F]− η
∣∣∣σ T ∣∣∣ (33)

With Assumption 1, we can further get

V̇ ≤ [Ḟd + (c2 + ∂)Fd − η]
∣∣∣σ T ∣∣∣ (34)

If the robust sliding gain η is selected so that η ≥ [Ḟd +
(c2 + ∂)Fd ], V̇ ≤ 0. V̇ is semi-negative definite implies that
σ , D̃, K̃ , �̃ are all bounded. It can be concluded from (15) that
σ̇ is also bounded. The inequality V̇ ≤ [Ḟd + (c2 + ∂)Fd −
η]
∣∣σ T ∣∣ implies that σ T is integrable as
t∫
0

∣∣σ T ∣∣dt ≤ 1
Ḟd+(c2+∂)Fd−η

(V (0) − V (t)). Since V (0)

is bounded, V (t) is bounded and non-increasing. It can be
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concluded that
t∫
0

∣∣σ T ∣∣dt is also bounded. Since
t∫
0

∣∣σ T ∣∣dt
is bounded and σ̇ is also bounded, according to Barbalart
lemma, σ will asymptotically converge to zero, lim

t→∞
σ = 0.

It can be concluded from (12) and (14) that e will asymptoti-
cally converge to zero. The sliding surface and tracking error
will converge to zero asymptotically;

For the adaptive laws (24), (25) and (26), according to the
theory of persistence excitation [11], if the reference trajec-

tory qd =
[
xd
yd

]
=

[
A1 sin(ω1t)
A2 sin(ω2t)

]
is persistence excitation

signals, i.e., ω1 6= ω2, D̃, K̃ , �̃will converge to zero,D, K ,�
will converge to their true values. All the parameters can be
estimated correctly.
Remark: It can be found that the robust gain shall meet the

condition that η ≥ [Ḟd+(c2+∂)Fd ]. The condition may lead
to a very big robust gain, but if controller parameters c2, ∂ are
chosen to be very small, the robust gain can be arbitrary small.

IV. SIMULATION STUDY
This section has 3 parts, where trajectory tracking per-
formances using ADSMC and AFDSMC are presented
and parameters adaptation performances are also shown
in the first part. In the second part, system responses
under AFDSMC with different fractional orders are pro-
vided. Parameter adaptation performances under different
fractional orders are also shown in the second part. In the
third part, system dynamics with frequency deviation are
studied.

It shall be emphasized that all the parameters in the design
of sliding surfaces, dynamic surfaces, and adaptive laws are
all the same. The only difference between ADSMC and
AFDSMC is that a fractional term is added in the design of
AFDSMC controller while the sliding surface of ADSMChas
only integral terms. And in the second part, all simulation
results are derived using AFDSMC with exactly the same
parameters; the only difference is that the fractional orders
are different.

As an illustrative example, we use a z-axis gyroscope
dynamic model [13] for the study of adaptive fractional order
dynamic sliding mode controller.

Parameters of the gyroscope dynamic model (7) are set as
follows:

m = 1.8× 10−7kg, kxx = 63.955N/m,

kyy = 95.92N/m, kxy = 12.779N/m,

dxx = 1.8× 10−6N • s/m, dyy = 1.8× 10−6N • s/m,

dxy = 3.6× 10−7N • s/m.

Choose a reference length q0 = 1µm, reference frequency
ω0 = 1kHz, and the angular velocity �z = 100rad/s.
The parameters can be obtained through non-dimensional
transformation ω2

x = 355.3, ω2
y = 532.9, ωxy = 70.99,

d∗xx = 0.01, d∗yy = 0.01, d∗xy = 0.002, �∗z = 0.1.
Initial conditions on matrix D, K , � are D(0) = 0.95D,

K (0) = 0.95K ,�(0) = 0.95�. The desired motion trajectory

FIGURE 2. Comparison of tracking performances using ADSMC and
AFDSMC.

xd = sin(4.11t) to xd = sin(2.085t) and yd = 0.7 sin(5.11t)
to yd = 0.7 sin(2.555t) at time point t = 12π/4.17 in X
axis and t = 12π/5.11 in Y axis. External disturbances are

d =
[
d1
d2

]
=

[
rand(1)
rand(1)

]
where disturbance in each channel

is uniformly distributed between 0-1.
Parameters of ADSMC and AFDSMC and Gains of adap-

tive laws (24)-(26) are provided in Table.1.

A. COMPARISONS BETWEEN ADSMC AND AFDSMC
System trajectory tracking performances and tracking errors
using ADSMC and AFDSMC are shown in Fig.2 and Fig.3.
It can be found from Fig.2 that both red line (AFDSMC)
and blue line (ADSMC) can track the black line (command
trajectory) in a few seconds and the three lines almost overlap
with each other in the end. In is shown in Fig.3 that both
blue line (ADSMC) and red line (AFDSMC) will converge
to zero, this means that system tracking errors using ADSMC
and AFDSMC will converge to zero. It can be observed
from the partial enlarged pictures in both tracking error fig-
ures that red lines (AFDSMC) response more quickly than
blue lines (ADSMC) and red lines (AFDSMC) use less time
than blue line (ADSMC) to converge to zero, this means that
the fractional order terms in AFDSMC scheme can improve
system transient performances.

Fig.4 and Fig.5 depict adaptation performances of system
parameters and angular velocity. It can be clearly seen from
Fig.4 that red line (AFDSMC) uses less time to become
stable and the values red and blue lines converge to are
exactly system parameters we set in the system. It can
be seen in Fig.5 that both blue line (ADSMC) and red
line (AFDSMC) are going up and down around 0.1 which is
just the angular velocity set in the system. That is to say the
adaptive laws using fractional order terms can correctly esti-
mate system parameters and fractional order adaptive laws
has better parameter identification performance than integral
order adaptive laws.

Fig.6 depicts control forces of ADSMC (blue line)
and AFDSMC (red line), it can be seen that there
is no severe chattering phenomenon in control forces.
This implies that adding fractional order terms in the
sliding surface can also reduce chattering in control
forces.
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TABLE 1. Parameters in the design of ADSMC and AFDSMC.

FIGURE 3. Tracking errors using ADSMC and AFDSMC.

FIGURE 4. Adaptation of parameters of ADSMC and AFDSMC.

B. SYSTEM DYNAMIC AND PARAMETER ADAPTATION
USING AFDSMC UNDER DIFFERENT FRACTIONAL ORDERS
It shall be claimed that all the parameters in all the simulation
cases in this part are all the same except the fractional order in
the sliding surface. It can be seen from Fig.7-Fig.11 that there

FIGURE 5. Adaptation of angular velocity of ADSMC and AFDSMC.

FIGURE 6. Control forces of ADSMC and AFDSMC.

are 4 different color lines where green line represents α−1 =
0.3, pink line represents α − 1 = 0.85, red line represents
α− 1 = −0.15 and blue line represents α− 1 = −0.85. The
positive fractional orders represent derivation operation and
negative fractional orders represent integration operation.
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FIGURE 7. Tracking performances of AFDSMC under different factional
orders.

FIGURE 8. Tracking errors of AFDSMC under different factional orders.

FIGURE 9. Adaptation of parameters using AFDSMC under different
factional.

FIGURE 10. Adaptation of angular velocity using AFDSMC under different
factional orders.

System dynamics and tracking errors under AFDSMCwith
different fractional orders are shown in Fig.7 and Fig.8. It can
be found from Fig.7 that all the 4 lines can track the black
line (command trajectory) in a few seconds and the 4 lines
almost overlap with each other in the end. It can be seen from
Fig.8 that all the tracking errors under different fractional
orders will converge to zero and it can be observed from the
partial enlarged pictures in both tracking error figures that
pink lines (α − 1 = 0.85) have more rapid response than the
other 3 lines while green line (α − 1 = 0.3) responses more
quickly than the other 2. This implies that adding fractional

FIGURE 11. Control forces using AFDSMC under different factional
orders.

FIGURE 12. Tracking performances of AFDSMC under frequency deviation.

order derivative terms in the sliding surface can accelerate
system response, but a too strong derivative order term (pink
line α−1 = 0.85) may degrade system tracking performance
where some oscillations can be observed in the pink line
(α − 1 = 0.85). Comparing blue line (α − 1 = −1.85) with
pink line (α − 1 = 0.85),both lines have some oscillations
and both lines use more time than green (α − 1 = 0.3)
and red lines (α − 1 = −0.15) to converge to zero. But
there are some differences that the error dynamic of blue line
(α − 1 = −1.85) is very smooth while the error dynamic of
pink line (α − 1 = 0.85) is very intense. It can be inferred
that big fractional derivative order will result intense system
response while big fractional integration order can decelerate
system responses.

Adaptation performances of system parameters and angu-
lar velocity under different fractional orders are shown
in Fig.9 and Fig.10 where pink lines response more inten-
sively than the other 3. Observed from the partial enlarged
pictures in each figure, the adaptation progress of pink line
and green line is more rapid than the other 2. This situation is
also in accordance with error dynamics in Fig.8.

Fig.11 depicts control forces under different fractional
orders showing that different fractional order terms can adjust
system dynamics without causing chattering phenomenon.

C. TRACKING PERFORMANCES EVALUATION UNDER
FREQUENCY DEVIATION
Control performances using AFDSMC under different frac-
tional orders have been provided in part 4.1 and 4.2. in order
to investigate performances of the control system under fre-
quency deviation, we provide results when frequencies of
command signals changes from frequency A to frequency B.

Fig.12 and fig.13 depicts tracking performances and track-
ing errors under frequency deviation. It can be seen from
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FIGURE 13. Tracking error of AFDSMC under frequency deviation.

tracking performance in fig.12 that frequency of command
signal in X and Y axis changes from xd = sin(4.11t) to xd =
sin(2.085t) and yd = 0.7 sin(5.11t) to yd = 0.7 sin(2.555t)
at time point t = 12π/4.17 and t = 12π/5.11 where actual
system trajectory can soon track the command trajectory.

V. CONCLUSION
This paper proposes an adaptive fractional order dynamic
sliding mode controller for MEMS gyroscopes. Fractional
calculus is adopted in the design of dynamic sliding mode
control and the new fractional control scheme is applied to
a MEMS gyroscope model. Dynamic sliding mode control
can help reduce chattering in control forces while fractional
calculus can improve system tracking performance. Adap-
tive control technique is also incorporated in the controller
design where the control law and all the adaptive laws are
derived in the Lyapunov framework to guarantee the asymp-
totic stability of the closed-loop system. As long as persis-
tent excitation condition is satisfied, all system parameters
including the angular velocity can be correctly estimated.
Simulation results verify the validity of the proposed control
approach, demonstrating that fractional calculus can improve
system tracking performances as well as parameter estima-
tion performance.
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