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ABSTRACT Supporting critical Machine-Type Communications (MTC) in addition to Human-Type
Communications (HTC) is a major target for LTE networks to fulfill the 5G requirements. However,
guaranteeing a stringent Quality-of-Service (QoS) for MTC, in terms of latency and reliability, while not
sacrificing that of HTC is a challenging task from the radio resource management perspective. In this paper,
we optimize the resource allocation process through exploiting the additional degrees of freedom introduced
by massive Multiple-Input Multiple-Output (MIMO) techniques. We utilize the effective bandwidth and
effective capacity concepts to provide statistical guarantees for the QoS, in terms of probability of delay-
bound violation, of critical MTC in a cross-layer design manner. In addition, we employ the matching
theory to solve the formulated combinatorial problem with much lower computational complexity compared
to that of the global optimal solution so that the proposed scheme can be used in practice. In this regard,
we analyze the computational complexity of the proposed algorithms and prove their convergence, stability
and optimality. The results of extensive simulations that we performed show the ability of the proposed
matching-based scheme to satisfy the strict QoS requirements of critical MTC with no impact on those
of HTC. In addition, the results show a close-to-global optimal performance while outperforming other
algorithms that belong to different scheduling strategies in terms of the adopted performance indicators.

INDEX TERMS Critical machine-type communications, ultra-reliable low-latency communications,
massive MIMO LTE.

I. INTRODUCTION
In order to accommodate all communicating elements to be
connected to the network and form the Internet of Things
(IoT), the evolution of the communication networks to incor-
porate Machine-Type Communications (MTC) in addition to
Human-TypeCommunications (HTC) has become inevitable.
MTC can be categorized into two major classes, massive
MTC and critical MTC. The former is about connecting a
massive number of low-complexity and low-cost devices such
as sensors and wearables. It supports the IoT applications
that require low data rate and latency-tolerant transmissions.
On the other hand, critical MTC represent those types of
communications that require very low latency, ultra-high
reliability, and high network availability. Therefore, they are
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also known as Ultra-Reliable Low-Latency Communications
(URLLC). Supporting such type of MTC opens the door to
many applications such as traffic safety, industry automation,
emergency and disaster response, e-health services, andmany
other yet-to-appear applications.

Among the different wireless technologies, cellular net-
works are considered one of the most convenient technolo-
gies to provide the connectivity of critical MTC devices
(MTCDs). This is by virtue of their advanced Radio Resource
Management (RRM) techniques and the availability of
licensed spectrum that can guarantee the required stringent
Quality of Service (QoS). Accordingly, the International
Telecommunication Union (ITU) targets URLLC as a major
use case, in addition to enhanced Mobile Broadband (eMBB)
and massive MTC, in the requirements for the International
Mobile Telecommunications 2020 and beyond (IMT-2020)
[1]. The Third Generation Partnership Project (3GPP) is
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working on evolving the current Long-Term Evolution (LTE)
standard, in addition to the New Radio (NR), to fulfill the
Fifth-Generation (5G) requirements with backward compat-
ibility [2]. Therefore, several enhancements in the PHYsical
(PHY) and Medium Access Control (MAC) layers have been
introduced in 3GPP Releases 14 and 15 to support critical
MTC in LTE [3]. For instance, the concept of short transmis-
sion time intervals and supporting reduced processing time
are considered in [4], in addition to fast uplink access onMAC
in [5], as techniques to reduce the latency in LTE to serve
critical MTC efficiently.

Massive Multiple-Input Multiple-Output (MIMO) is con-
sidered as a major technology to improve the spectral effi-
ciency, processing complexity, and energy efficiency of LTE
systems to fulfill the 5G requirements. Therefore, 3GPP
targets employing tens of antennas at the eNodeB (eNB)
to utilize the massive MIMO techniques [6].
These MIMO enhancements in LTE are standardized under
the official name of Full-Dimension MIMO (FD-MIMO) [7].
In this case, the additional degrees of freedom introduced by
massive MIMO can be exploited to serve critical MTC effi-
ciently [8]. As analyzed in [9], the spatial degrees of freedom
created by massive MIMO enable several beneficial proper-
ties for critical MTC such as high signal-to-noise ratio (SNR)
links, spatial division multiplexing, and quasi-deterministic
links that are immune to fast fading. In this regard, the study
in [10] investigates the feasibility of the massive antenna sys-
tems to fulfill the stringent requirements of critical MTC in
the uplink direction, testing different multi-antenna schemes
such as coherent and non-coherent receivers. On the other
hand, the satisfaction of the requirements of critical MTC
should be without sacrificing the QoS of the HTC traffic.
This is due to the fact that the characteristics of critical MTC
traffic is different than those of HTC in several aspects such
as the data rate, the packet size, the latency-tolerance, and the
reliability requirements. Therefore, and to achieve the goal
of fulfilling the stringent QoS requirements of critical MTC
without negative effects on HTC, RRM techniques should be
optimized to serve both types of communications efficiently
without degrading the system utility as well. Hence, in this
paper, we optimize the resource allocation and scheduling
process for critical MTC, considering the coexistence of the
HTC traffic, through exploiting massive MIMO techniques.

A. RELATED WORK
Several recent studies consider the resource allocation prob-
lem of critical MTC without considering the coexistence
of HTC traffic. In [11], the authors propose a downlink
scheduler for reliable low latency users. First, they subdivide
the users into two groups, high and low priority, according
to the possibility of satisfying their QoS requirements in
terms of maximum delay and packet error rate. Therefore,
they serve the users who have QoS requirements that can
be satisfied in the scheduling period first. However, they
consider a special case of channel status feedback, in which a
wideband report is used for the whole bandwidth. The study

in [12] maximizes the energy efficiency in the downlink of
Frequency Division Multiple Access (FDMA) systems that
serve URLLC while considering their end-to-end delay and
packet loss requirements. This is achieved by optimizing the
transmit power, bandwidth and the number of active antennas.
They adopt a finite blocklength analysis to approximate the
achievable data rates of the users. Nevertheless, they do not
consider Orthogonal FDMA (OFDMA)-based systems such
as LTE. In [13], the study maximizes the energy efficiency
of URLLC in OFDMA-based radio access systems consid-
ering their QoS requirements of packet loss and latency.
For this purpose, they optimize the packet dropping, power
allocation, and bandwidth allocation policies. The authors
in [14] extend the work in [12] and [13] by exploiting the
multi-user diversity. However, they consider the downlink
of FDMA-based cellular systems similar to [12]. In [15],
the MTCDs are clustered based on their QoS characteristics,
requirements and transmission protocols. Then, the aggregate
data rate is maximized while considering the minimum data
rate requirements of the devices. Nevertheless, separating
the resource allocation processes for HTC and critical MTC,
as discussed in the aforementioned works, does not optimize
the overall resource allocation and reduces the gain resulting
frommultiuser diversity. Furthermore, this approach does not
consider the impact of satisfying the stringent requirements of
critical MTC on HTC traffic.

Therefore, studies consider the coexistence of MTC and
HTC traffic types in the resource allocation problem. In [16],
the authors consider splitting the radio resources between
both types of users based on their buffer sizes. Then, every
type of communication is scheduled separately. The resources
are allocated fairly on theMTCDs considering their transmis-
sion deadlines. However, such splitting process of the radio
resources before allocation does not optimize the allocation
process at the system level. In [17], [18], the authors optimally
maximize the aggregate data rate of the HTC traffic while
considering the QoS requirements of all users. Nevertheless,
they do not consider multiple antenna configurations that
complicate the resource allocation process. This is due to
the interference that can occur between users co-scheduled
on the the same radio resources. Hence, the selection of the
co-scheduled users should be taken into consideration while
optimizing the resource allocation process. Moreover, they
do not consider effective bandwidth and effective capacity
concepts that can be used to provide statistical guarantees for
the QoS of critical MTC as will be discussed in Section II-B.

B. PAPER CONTRIBUTIONS AND ORGANIZATION
The major contributions of this paper can be summarized in
the following:
• We formulate the resource allocation problem of critical
MTC coexistent with HTC in massive MIMO LTE net-
works such that the system utility is maximized while
satisfying the different QoS requirements of both types
of communications. In this regard, we use the effective
bandwidth [19] and effective capacity [20] concepts to
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FIGURE 1. An eNB with massive antennas serving critical MTCDs
coexistent with HTC UEs in an LTE cell.

design the resource allocation constraints from a cross-
layer perspective to provide statistical guarantees for the
QoS requirements of critical MTC in terms of proba-
bility of delay-bound violation. This considers both the
PHY layer parameters and the buffer dynamics of the
devices. Then, we formulate an equivalent instantaneous
resource allocation problem exploiting the ergodicity of
the service processes. However, an exponential compu-
tational complexity is required to calculate the global
optimal solution of the formulated optimization problem
that is NP-hard, as will be discussed in Section II.

• Therefore, we propose a computationally-efficient algo-
rithm for the formulated resource allocation problem
that can be implemented in practice. For this purpose,
we utilize the matching theory [21] to formulate the
resource allocation problem as a matching process that
can be solved efficiently with much lower computa-
tional complexity compared to that of the global optimal
solution. In this regard, we analyze the computational
complexity of the proposed algorithms in big-O notation
and discuss and prove the convergence and stability of
the proposed matching processes. In addition, the opti-
mality of the proposed resource allocation scheme is
investigated. Moreover, we run extensive simulations
to evaluate the performance of the proposed matching-
based resource allocation technique and compare it with
other algorithms from different scheduling techniques.
The statistics of the major parameters impacting the
computational complexity of the proposed algorithms
are calculated.

The rest of the paper is organized as follows. In Section II,
we discuss the adopted system model and formulate the
resource allocation problem. The proposed matching-based
resource allocation technique is presented in Section III.
Then, in Section IV, the proposed scheme is analyzed form
the practical and computational perspective. The simulation
results are presented and discussed in Section V. Finally,
the study is concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL AND GENERAL FORMULATION
We consider the resource allocation and scheduling of the
uplink transmissions of single-antenna users in a single
LTE cell that is served by a single eNB, as shown in Fig. 1.

TABLE 1. Frequently used symbols and notations.

Assume that the set of users is indexed by U = H ∪M =

{1, · · · , u, · · · , U}, where H is a set of HTC UEs and
M is a set of critical MTCDs. Suppose that the number of
HTC UEs and critical MTCDs in the cell are H and M ,
respectively. The system bandwidth is divided into Physical
Resource Blocks (PRBs) of 180 KHz bandwidth that are
indexed by K = {1, · · · , k, · · · , K }. A user can use
a PRB for uplink transmission for a time period known as
the Transmission Time Interval (TTI). The frequently used
symbols and notations are summarized in Table 1.

Assume that the eNB uses A antennas, where A � U .
Such a massive number of antennas is deployed to utilize
beamforming at the eNB for the uplink reception. Therefore,
a set, Ck of users can be co-scheduled on the same PRB k .
That is, yk ∈ CA×1, which is the received signal vector at the
eNB on the kth PRB, is calculated by

yk =
∑
u∈Ck

hu,k
√
Pu,ksu,k + nk , (1)

where su,k ∈ C is the data signal transmitted by the
uth user on the kth PRB, which is normalized to unit
power, nk ∈ CA×1 is the receiver AWGN noise vector on
the kth PRB, which is a complex Gaussian vector with zero
mean and covariance matrix of NkIA, where IA is the identity
matrix of size A, and Pu,k is the transmit power on the
kth PRB by the uth user. The channel between the eNB and
the uth user on the kth PRB is represented by hu,k ∈ CA×1
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which is calculated by

hu,k =
√
Zu/Lufu,k , (2)

where Lu is the power path loss, Zu is the shadowing power
gain, and fu,k is the small-scale fading between the device and
the eNB on the kth PRB, which is assumed to be independent
and identically distributed complex Gaussian.

The received signal, yk , is multiplied by a unit-norm
receive beamforming vector, vu,k ∈ CA×1, to spatially dis-
criminate the signal sent by the uth user on the kth PRB
from the interfering signals of other co-scheduled users on
the same PRB, {u′ 6= u : u′ ∈ Ck}. Therefore, the uplink
SINR of the signal from the uth user on the kth PRB can be
calculated by [22]

γu,k =

Pu,k
Nk
|hHu,kvu,k |

2∑
∀u′ 6=u,u′∈Ck

Pu′,k
Nk
|hHu′,kvu,k |

2 + vHu,kIAvu,k
. (3)

Consequently, the maximum achievable data rate of user u
over PRB k is

Ru,k = B log2(1+ γu,k ), (4)

where B = 180 KHz, is the bandwidth of one PRB.
Every TTI, the scheduler in the eNB assigns the PRBs to

the users such that the system utility is maximizedwhile satis-
fying the QoS requirements of the users in the cell. According
to [1], achieving high data rates for critical MTC is of low
importance since their transmissions are characterized by
their low data rate [23] and small packet size [24]. However,
satisfying their latency and reliability requirements is crucial.
On the other hand, the QoS of HTC improves by increasing
their data rates. Therefore, maximizing the data rate of all
users in the cell impacts the resource utilization negatively.
This is because maximizing the data rate of criticalMTC does
not improve their QoS, given that their latency requirements
are satisfied. Nevertheless, this data rate is at the expense of
that of the HTC UEs.

As a consequence, we formulate the resource allocation
problem such that the aggregate data rate of the HTC traffic
is maximized while considering the QoS requirements of all
users as constraints. That is, the optimization problem of the
resource allocation process is formulated as follows:

max
{K1,··· ,KU }∈K

∑
u∈H

Ru (5)

s.t. E{Ru} ≥ R̄minu , ∀u ∈ H (5a)

Pr[Du ≥ Dmaxu ] ≤ εu, ∀u ∈M (5b)

|Ku| ≤ Kmax
u , ∀u ∈M (5c)

|Ck | ≤ Cmax
k , ∀k ∈ K, (5d)

where Ku ∈ K is the subset of PRBs assigned to the uth
user, Ru is the maximum achievable data rate of user u over
the subset of PRBs assigned to it, and E{Ru} is its average
rate. To guarantee a minimum average rate for each HTC
user, constraint (5a) is used, where R̄minu is the required min-
imum average rate of user u. On the other hand, we use

FIGURE 2. A cross-layer perspective of the eNB scheduler.

accurate statistical guarantees for the latency requirements of
critical MTC. For this purpose, we ensure that the prob-
ability of delay bound violation (PDBV) of each critical
MTCD is under a certain threshold εu as in constraint (5b),
where Dmaxu is the delay bound for the uth MTCD. There-
fore, given that the packets that miss their deadlines are
dropped, the parameter εu represents one component of the
reliability guarantees of MTCD u. Constraint (5c) is used to
ensure a maximum number of allowed PRBs to be assigned
to MTCDs. For example, in LTE Release 13, the num-
ber of PRBs that are assigned to MTCDs is limited to 6.
Constraint (5d) is expressed to limit the number of
co-scheduled users on PRBs as used in the framework of
users pairing as in [25], for instance. In (5c) and (5d),
Kmax
u is the maximum number of PRBs that can be assigned

to MTCD u and Cmax
k is the maximum number of co-

scheduled users allowed on PRB k . As discussed in [26], non-
contiguous resource allocations are allowed in the uplink of
LTE-Advanced. This enhances the spectral efficiency as dis-
cussed in [27] thanks to using frequency-selective scheduling.

B. CROSS-LAYER DESIGN AND FORMULATION
To provide statistical guarantees for the satisfaction of the
latency requirements of critical MTC, a cross-layer design
is required to consider their buffer dynamics as well as
PHY layer parameters. For this purpose, we use the effective
bandwidth and effective capacity concepts.

The resource allocation and scheduling process determines
the data rate of every user in every TTI and controls the
dynamics of the queues of the devices, as shown in Fig. 2.
Let us define the arrival and service processes, in bits, of
user u asAu(t) and Su(t), respectively. According to the large
deviations theory, the PDBV of the queue can accurately be
approximated by [19]:

Pr[Du(t) ≥ Dmaxu ] ≈ e−θuδuD
max
u , (6)

where δu depends on both the arrival and service processes as
will be discussed below and θu is known as the QoS exponent
that characterizes the queue length decaying rate where a
smaller θu represents a looser QoS constraint and vice versa.
The effective bandwidth [19] of the arrival process of user u

is defined as the minimum constant service rate that can serve
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that process with a guaranteed QoS exponent θu such that

Pr[Du(t) ≥ Dmaxu ] ≈ e−θuδuD
max
u ≤ εu, (7)

and is calculated by

3u(θu) = lim
t→∞

1
tθu

lnE{eθuAu(t)}. (8)

In a similar manner, the effective capacity [20] of the
service process of the uth user is defined as the maximum
constant arrival rate that can be served by the process with a
guaranteed QoS exponent θu, and is calculated by

κu(θu) = − lim
t→∞

1
tθu

lnE{e−θuSu(t)}. (9)

Therefore, the effective capacity of a wireless channel con-
verges to the ergodic capacity when the QoS constraints are
relaxed as discussed in [28].

The parameter δu can be calculated by deriving the rate at
which the effective capacity and effective bandwidth curves
intersect [29]. That is, δu = κu(θ∗u ) = 3(θ∗u ). For instance,
for a Poisson process, the parameter δu can be calculated as
follows [30]:

δu = λu

(
eθ
∗
u − 1
θ∗u

)
, (10)

where λu is the arrival rate of the Poisson process.
Accordingly, to guarantee a certain QoS exponent for

an MTCD u, the effective capacity of the service process
should satisfy the following inequality

κu(θu) ≥ 3u(θu), (11)

where the guaranteed QoS exponent, θu, represents the
required QoS level (Dmaxu , εu) and can be derived from (7)
as

θu =
− ln εu
δuDmaxu

. (12)

To derive the effective capacity of the service process that
represents the serviced bits at time t , we assume that the data
rate of user u at the ith TTI is Ru[i]. Therefore, the sequence
{Ru[i]T : i = 1, 2, 3, · · · }, where T is the TTI period, is a
discrete-time stationary and ergodic random process. Hence,
the service process for the uth user is

Su[t] =
t∑
i=1

Ru[i]T . (13)

Due to the fact that the sequence {Ru[i]T : i = 1, 2, 3, · · · }
is uncorrelated, the effective capacity of the uth user in (9)
reduces to [31]:

κu(θu) =
−1
θu

lnE{e−θuRu[i]T }. (14)

From the previous discussion, the PDBV constraint of
critical MTCDs in (5b) can be expressed in a cross-layer

perspective using (11) and (14). That is, the equivalent opti-
mization problem to that in (5) is

max
X

∑
u∈H

K∑
k=1

Ru,kxu,k (15)

s.t. E{Ru} ≥ R̄minu , ∀u ∈ H (15a)
−1
θu

lnE{e−θuRu[i]T } ≥ 3u, ∀u ∈M (15b)

K∑
k=1

xu,k ≤ Kmax
u , ∀u ∈M (15c)

U∑
u=1

xu,k ≤ Cmax
k , ∀k ∈ K (15d)

xu,k ∈ {0, 1}, ∀u ∈ U , k ∈ K, (15e)

where X is a U × K binary indicator matrix such that
xu,k indicates whether PRB k is assigned to user u.
Constraints (15a)–(15d) are equivalent to (5a)–(5d), respec-
tively. Constraint (15e) is used to restrict xu,k to binary values.

The optimization problem in (15) falls in the Binary Non-
linear Programming (BNLP) category. This type of problems
can be optimally solved using exhaustive search or algorithms
such as the Branch and Bound (BB). However, the compu-
tational complexity of such algorithms is exponential which
makes the problem NP-hard [32]. Therefore, these algo-
rithms cannot be used in real-time processing such as in
resource allocation and scheduling. Therefore, we propose
computationally-efficient algorithms as a trade-off between
the complexity and the performance so that they can be used
in practice as resource allocation and scheduling schemes.

III. MATCHING-BASED RESOURCE ALLOCATION
In this section, we formulate an instantaneous resource allo-
cation problem that can be solved every TTI such that the
long-term constraints (15a) and (15b) are satisfied. Then,
utilizing the matching theory, we formulate the instantaneous
problem as a two-sidedmatching process. Finally, we propose
a complete matching-based resource allocation algorithm.

A. FORMULATION OF THE INSTANTANEOUS RESOURCE
ALLOCATION PROBLEM
Theorem 3.1 can be used to restrict the instantaneous data
rates of the users such that their average data rate or PDBV
constraints be satisfied in the long-term. That is, we derive
data rate constraints equivalent to the constraints in (15a) and
(15b) as follows.
Theorem 3.1: The long-term constraints in (15a) and

(15b) for the HTC and critical MTC, respectively, can be
fulfilled if the following necessary and sufficient set of con-
straints is satisfied:

Ru[i] ≥ Rminu [i], ∀u ∈ U , (16)

where, Rminu [i] is the instantaneous minimum data rate at the
ith TTI for the uth user to fulfill its long-term constraint and is
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Rminu [i] =

 iR̄minu − (i− 1)Ravgu [i− 1], ∀u ∈ H
1
θuT

ln
(
ie−θu3u − (i− 1)8avg

u [i− 1]
)
, ∀u ∈M

, (17)

calculated by (17), as shown at the top of the this page, where

Ravgu [i] =


Ru[i]+ (i− 1)Ravgu [i− 1]

i
, i ≥ 2

Ru[i], i = 1,
(18)

8avg
u [i] =


8u[i]+ (i− 1)8avg

u [i− 1]
i

, i ≥ 2

8u[i], i = 1,
(19)

8u[i] = e−θuRu[i]T . (20)

Proof: To derive the minimum instantaneous rate of the
set of HTC UEs, define Ravgu [i] as the cumulative moving
average (CMA) of Ru[i] at the ith TTI. This can be calculated
using (18). This CMA represents the estimation of E{R},
at the ith TTI, due to the ergodicity of the random process
composed by the sequence {Ru[i] : i = 1, 2, 3, · · · }.
Therefore, the constraint in (15a) can be satisfied by fulfilling
the following instantaneous constraint

Ravgu [i] ≥ R̄minu , ∀u ∈ H. (21)

Using (18), we can write (21) as

Ru[i] ≥ iR̄minu − (i− 1)Ravgu [i− 1], ∀u ∈ H. (22)

Therefore, the equivalent minimum instantaneous rate for the
HTC UEs can be given by (17).

Similarly, to derive the minimum instantaneous data rate
of the MTCDs, we define 8u[i] as in (20) and 8avg

u [i] as the
CMA of 8u[i] at the ith TTI as given in (19). Similarly, this
represents the estimation of E{e−θuRu[i]T } since the random
process {Ru[i]T : i = 1, 2, 3, · · · } is ergodic. Thus, the con-
straint in (15b) can be expressed as

8avg
u [i] ≤ e−θu3u . (23)

Using (19), (23) can be rewritten in the following form

e−θuRu[i]T ≤ ie−θu3u − (i− 1)8avg
u [i− 1]. (24)

The last inequality can be written as in the form used in (16).
Therefore, the minimum instantaneous data rate of the critical
MTCDs can be derived as in (17).

Using the equivalent set of constraints as in (16) in place
of (15a) and (15b), we can derive an instantaneous resource
allocation problem that is equivalent to (15) at the ith TTI as
follows

max
X

∑
u∈H

K∑
k=1

Ru,k [i]xu,k (25)

s.t. Ru[i] ≥ Rminu [i], ∀u ∈ U (25a)
K∑
k=1

xu,k ≤ Kmax
u , ∀u ∈M (25b)

U∑
u=1

xu,k ≤ Cmax
k , ∀k ∈ K (25c)

xu,k ∈ {0, 1}, ∀u ∈ U , k ∈ K. (25d)

To solve the equivalent instantaneous problem in (25),
we utilize the matching theory to devise a computationally-
efficient algorithm.

B. MATCHING MODEL AND FORMULATION
To formulate the resource allocation problem in (25) as a
centralized matching process, we assume that U and K are
two disjoint sets of agents that are willing to maximize their
utilities and satisfy their minimum requirements. After the
PRB assignment process is complete, we say that (u, k) is
a matched pair if PRB k is assigned to user u. Therefore,
a two-sidedmatchingµ for the considered resource allocation
problem in (25) can be defined as follows.
Definition 3.2: A matching µ that is equivalent to the

resource allocation problem in (25) is defined as a mapping
from the set U ∪K into the set U ∪K such that for any u ∈ U
and k ∈ K:
(i) µ(u) ⊆ K,
(ii) µ(k) ⊆ U ,
(iii) |µ(k)| ≤ Cmax

k , ∀k ∈ K,
(iv) |µ(u)| ≥ qminu , ∀u ∈ H,
(v) qminu ≤ |µ(u)| ≥ q

max
u , ∀u ∈M,

(vi) k ∈ µ(u)⇐⇒ u ∈ µ(k).
Condition (i) indicates that every user u ∈ U can be

matched to a set of PRBs. Also, every PRB k ∈ K can
be matched to a set of users as indicated in condition (ii).
Therefore, this matching process falls in the many-to-many
matching category. Condition (iii) represents the maximum
number of co-scheduled users per PRB k . Condition (iv)
represents the minimum rate requirement of the HTC UEs,
where the minimum quota, qminu , is the cardinality of the set
of PRBs that satisfy this constraint. Similarly, condition (v) is
formulated for the minimum rate and the maximum number
of PRBs constraints of the MTCDs. Condition (vi) indicates
that if a PRB k is matched to a user u, then it should be in its
matched set of PRBs as well.

Due to the interference between users, the matching of
every user u to every PRB k does not depend only on its chan-
nel conditions on this PRB. That is, every user u cares about
other users that are matched to the same PRBs. Therefore,
similar to [33], we use a weighted, directed social network
graph to model the relationship of every user to other users
on every PRB to represent the interference between them as
follows.
Definition 3.3: The friendship network among users

on every PRB k is modeled as a weighted graph
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FIGURE 3. Weighted directed friendship network between users.

G = (N , 4k ,wk ), where N = U is the set of nodes,
4k is the set of arcs between them on PRB k, and wk are
the weights that represent the relationship between users on
the kth PRB, as shown in Fig. 3. The relationship between
user u and u′ on PRB k is weighted by

wk (u, u′) =
Pu′,k
Nk
|hHu′,kvu,k |

2. (26)

To define the utility of agents, we first define the desirabil-
ity between user u and PRB k , %u,k , as follows

%u,k =
Pu,k
Nk
|hHu,kvu,k |

2. (27)

Therefore, the utility of user u on PRB k depends on the
desirability of user u and PRB k , and the weight of the
relationship between u and other users co-scheduled on the
same PRB, {u′ 6= u : u′ ∈ Ck}. That is, the utility of user u
on PRB k , 9u,k , can be calculated by

9u,k = B log2

(
1+

%u,k∑
∀u′ 6=u,u′∈Ck wk (u, u

′)+ vHu,kIAvu,k

)
.

(28)

On the other hand, the utility of every PRB depends on the
utilities of the HTC UEs scheduled on this PRB. Therefore,
the utility of PRB k can be calculated as

9k =
∑

u∈µ(k)∩H
9u,k . (29)

Accordingly, to maximize the aggregate data rate of the
HTC users, the matching assignment µ should maximize the
system utility 9 that is defined as follows

9 =

K∑
k=1

9k , (30)

subject to the conditions in Definition 3.2.

Algorithm 1 Proposed Matching-Based Scheduling
Algorithm
1: for all TTIs do
2: Construct the instantaneous equivalent resource allo-

cation problem as in (25) by calculating the minimum
instantaneous data rate required for all u ∈ U at current
TTI using (17).

3: Formulate the instantaneous problem as a two-sided
matching process by constructing the preference lists of
all u ∈ U over k ∈ K and all k ∈ K over u ∈ U according
to %u,k .
Matching Phase 1

4: Use Algorithm 2 to match the agents so that their
minimum rate constraints are satisfied.
Matching Phase 2

5: Use Algorithm 3 to match the agents to maximize the
data rate of the HTC users.

6: end for

C. MATCHING-BASED RESOURCE ALLOCATION
ALGORITHM
We now propose the resource allocation algorithm that is
based on the matching process formulated in Section III-B.
The matching process is a many-to-many assignment. How-
ever, two major challenges arise in this matching process.
The first one is the lower quota bounds that are used for
the minimum rate constraints. The second challenge is the
externalities in the problem since the allocation of the PRBs to
a certain user affects the other users that are co-scheduled on
the same PRBs. To address these challenges, we perform the
matching process in two phases, where each phase addresses
one of the challenges. Algorithm 1 summarizes the proposed
approach for solving the resource allocation problem in (15)
and how the two phases of matching can be used to overcome
the difficulty of the matching process.

In Algorithm 1, in every TTI, we construct the instanta-
neous resource allocation problem as in (25) and then derive
a matching that solves it, as discussed in Section III-B.
To establish the matching process, every agent u ∈ U , or
k ∈ K, composes its preference list P(u), or P(k), respec-
tively, in which the agents in the opposite set are ordered.
Therefore, we say that PRB k is preferred to k ′ by user u
which is expressed as k �u k ′, if k precedes k ′ in
u’s preference list, P(u). Similarly, if user u precedes u′ in
k’s preference list P(k), we say that u �k u′. The ordering
of the agents of the opposite set depends on the desirability
between the two agents, %u,k , as in (27). That is,

k �u k ′ ⇐⇒ %u,k > %u,k ′ , (31)

u �k u′ ⇐⇒ %u,k > %u′,k . (32)

The preferences of the agents are transitive. That is, if u �k u′

and u′ �k u′′, then u �k u′′.
In Phase 1 of the matching, the users are matched such

that their minimum instantaneous rate requirements are
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Algorithm 2 Satisfy Minimum Rate Constraints
1: Set the status of all u ∈ U that have minimum rate

constraints to 1 and others to 0, where a status of 1
indicates that the user is willing to propose and otherwise
is status 0.

2: while any user’s status is 1 do
3: Listen to the first user willing to propose. Assume it

is u∗ and its preferred PRB is k∗ which is not in current
µ(u∗).

4: if |µ(k∗)| < Cmax
k then

5: Match u∗ to k∗ by updating their match lists µ(u∗)
and µ(k∗) respectively.

6: for all u ∈ µ(k∗) do
7: Update its rate on the current PRB k∗ considering

the interference of other co-scheduled users.
8: if Ru < Rminu [i] and |µ(u)| < Kmax

u then
9: Set the status of u to 1.
10: else
11: Set the status of u to 1.
12: end if
13: end for
14: else
15: Let k∗ select the preferred set of users from the

matched set and the candidate one u∗ according to its
preference list.

16: if the rejected user is the proposing one u∗ then
17: Remove k∗ from the preference list of u∗ and

clear its status if its preference list became empty.
18: else
19: Update the rate and status of the accepted set.
20: Update the preference list, rate, and status of the

rejected user.
21: end if
22: end if
23: end while

Feasibility test
24: if any u ∈ U still not satisfied then
25: Problem is infeasible.
26: end if

satisfied without considering the maximization of the aggre-
gate data rate of the HTC UEs. For this purpose, we use
Algorithm 2 that is based in principle on the one-to-many
Gale-Shapley algorithm [34] after adapting it to the many-
to-many problem and considering the externalities and lower
quota bounds. Then, in Phase 2, the aggregate data rate
of the HTC users is maximized by utilizing Algorithm 3.
In Algorithm 3, the users are added, deleted, and swapped
such that the system utility9 is maximized without violating
the minimum rate constraints that were satisfied in Phase 1.
These three operations are similar to the swap-matching tech-
niques studied for one-to-many problems in [33] to overcome
the externalities in the problem.However, we use addition and
deletion operations in addition to the swap operation in our

Algorithm 3 Maximize the HTC Data Rate
1: while There is still approved addition/deletion/swap do
Step 1: Add users to improve the utility of PRBs

2: for all k ∈ K do
3: Determine the unmatched users and sort them

according to the preference list of the PRB k , P(k).
4: Consider the users in this candidate list in order,

to be added to the current match µ(k). The approved
user must yield a better utility of the PRB, 9k , without
violating the minimum rate requirements of the currently
matched users, µ(k), in addition to the other conditions
in Definition 3.2.

5: Add the approved users to the current match.
6: Update the rate of the new matched set of users.
7: Update the utility of PRB k , 9k .
8: end for
Step 2: Delete users to improve the utility of PRBs

9: for all k ∈ K do
10: Search in the matched users, µ(k), for the ones that

can be unmatched to PRB k such that the utility function
of the PRB, 9k , would improve without violating their
minimum rate requirements.

11: Unmatch the approved users from PRB k .
12: Update the rate of the matched and rejected users on

PRB k .
13: Update the utility of PRB k , 9k .
14: end for

Step 3: Swap users to improve the system utility
15: for all u ∈ U do
16: Search U\{u} for an approved swap that can

improve the system utility function,9, without violating
the minimum rate constraints of the users.

17: Implement the approved swaps.
18: Update the rate of the affected users.
19: Update the utilities of affected PRBs.
20: end for
21: end while

many-to-many problem. Also, we consider the lower quota
bounds in all operations.

IV. ANALYSIS OF THE PROPOSED METHODS
In this section, we analyze the performance of the proposed
resource allocation scheme from a practical perspective. For
this purpose, we analyze the stability and convergence of
the proposed matching algorithms. In addition, we discuss
the optimality and computational complexity of the proposed
scheme.

A. STABILITY
The stability of the proposed resource allocation scheme
in Algorithm 1 depends on that of the matching phase in
Algorithm 3. This is because the other matching phase in
Algorithm 2 is used mainly to satisfy the minimum instanta-
neous rate requirements of the users. To define the stability of
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Algorithm 3, we first define the swap, addition, and deletion
matchings as follows.
Definition 4.1: Swap, µsu1,u2 , addition, µ

a
u,k , and deletion,

µdu,k , matchings are defined respectively as follows:
• µsu1,u2 = {µ\{(u1, k1), (u2, k2)} ∪ {(u1, k2), (u2, k1)}},
k1 ∈ µ(u1), k2 ∈ µ(u2),

• µau,k = µ ∪ (u, k), and
• µdu,k = µ\(u, k).
Given the definition of swap, addition, and deletion match-

ings, the stability of the matching scheme in Algorithm 3 can
be defined as follows.
Definition 4.2: A matching µ is stable if and only if there

are no u, u′, k such that
1) 9(µsu,u′ ) > 9(µ),
2) 9(µau,k ) > 9(µ), or
3) 9(µdu,k ) > 9(µ).

This is given that the matchings µsu,u′ , µ
a
u,k , and µ

d
u,k satisfy

the minimum instantaneous rate requirements of all users in
addition to the other conditions in Definition 3.2.

The stability of Algorithm 3 is analyzed as follows.
Lemma 4.3: If the matching scheme in Algorithm 3 con-

verges to a matching µ∗. Then, this matching µ∗ is stable as
defined in Definition 4.2.

Proof: Assume that there are u′, u′′, k ′ that can yield
9(µau′,k ′ ) > 9(µ), 9(µdu′,k ′ ) > 9(µ), or 9(µsu′,u′′ ) >

9(µ), and the new matchings satisfy the conditions
in Definition 3.2. Then, this newmatchingwould be approved
in Step 1, 2, or 3, respectively, in Algorithm 3. This is because
Steps 1, 2, and 3 in Algorithm 3 search for all approved
addition, deletion, and swap operations, respectively, which
improves the system utility 9 without violating the condi-
tions in Definition 3.2. Accordingly, these u, u′, k cannot
exist given that the algorithm converged to a matching µ∗.
Consequently, the matching µ∗ is stable.

B. CONVERGENCE
The convergence of the proposed resource allocation
scheme depends on that of the matching algorithms in
Algorithm 2 and Algorithm 3. Therefore, in Theorem 4.4 we
discuss the convergence of Algorithms 2 and 3 as follows.
Theorem 4.4: The proposed matching schemes in

Algorithm 2 and Algorithm 3 converge after a finite number
of iterations.

Proof: In Algorithm 2, every user u proposes to its pre-
ferred PRB in its preference list,P(u), in order. If it is rejected
by a PRB, it deletes it from its preference list and proposes to
the next one until it satisfies its requirements, or its preference
list becomes empty. Since the number of PRBs is limited,
the preference list of every user u is limited aswell. Therefore,
the number of proposals, and hence iterations, is limited.
Consequently, Algorithm 2 converges after a finite number
of iterations.

In Algorithm 3, after every approved addition, dele-
tion, or swap operation, the new matching improves the
system utility. That is, if the matching after every approved

operation is as follows

µ(1), µ(2), · · · , µ(j−1), µ(j), · · · , µ(final), (33)

then 9(µ(j)) > 9(µ(j−1)). In other words, the system utility
improves from every matching to the next. Due to the limited
number of users and PRBs, the number of matchings is finite.
In addition, the sum rate of the HTCUEs, which is the system
utility,9(µ), has an upper bound. Therefore, there is a round
in which there is no further operation can be approved by the
algorithm. Consequently, Algorithm 3 converges after a finite
number of approved operations.

C. OPTIMALITY
To analyze the optimality of the proposed resource allo-
cation technique in Algorithm 1, we investigate how
Algorithms 2 and 3 are used to get to a final solution for
the problem in (25). As previously discussed, Algorithm 2 is
mainly used to find a feasible solution that satisfies the
minimum instantaneous rate requirements in addition to the
remaining constraints in (25). However, Algorithm 3 is used
to maximize the aggregate data rate of the HTC users,
which is the objective function of (25), without violating
the feasibility of the solution. Hence, the optimality of
Algorithm 1 depends on that of Algorithm 3.

To analyze the optimality of Algorithm 3, we first discuss
the relationship between the local maxima of the problem
in (25) and the stability of the solution as a matching scheme
as follows.
Theorem 4.5: All local maxima of the objective function of

the problem in (25) represent a stable matching as defined in
Definition 4.2.

Proof: Assume that a resource allocation pattern, that is
represented by the matching µ∗, is a local maximum to the
optimization problem in (25). If µ∗ is not a stable matching,
then, according toDefinition 4.2, there is at least one addition,
deletion, or swap operation that can yield a better matching
that has a better system utility function 9(µ). Since the
system utility function9 is the same as the objective function
of the problem in (25), this contradicts the assumption that
µ∗ is a local maximum. Therefore, µ∗ must be a stable
matching.

Consequently, the optimality of Algorithm 1 can be proved
as in the following lemma.
Lemma 4.6: The matching-based resource allocation

scheme in Algorithm 1 yields a local optimal solution for the
optimization problem in (25).

Proof: This is a direct the result of Theorem 4.5 and the
stability proof of Algorithm 1 that is based on Lemma 4.3.

D. COMPUTATIONAL COMPLEXITY
To analyze the computational complexity of the proposed
resource allocation scheme in Algorithm 1, we calculate
the worst case computational complexity of every step in
Algorithm 1 in terms of big-O notation. For this purpose,
we first analyze the computational complexity of the steps
of Algorithm 2 and 3.
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The worst case computational complexity of the steps of
Algorithm 2 can be summarized as follows:
• step 1 requires O(U ),
• steps 2-23 require O(UKCmax

k ), and
• steps 24-26 require O(U ).
The steps of Algorithm 3 have the following computational

complexity:
• steps 2-8 require O(K (min(H ,Cmax

k ))2),
• steps 9-14 require O(KCmax

k ), and
• steps 15-20 require O(U (U − 1)Cmax

k Kmax
u ).

Accordingly, we can analyze the worst case computational
complexity of every step of Algorithm 1 as follows:
• step 2 requires O(U ),
• step 3 requires O(UK 2)+O(KU2),
• step 4 (Algorithm 2) requires O(KUCmax

k ), and
• step 5 (Algorithm 3) requires O(r(U2 Kmax

u Cmax
k )),

where r is the number of rounds implemented in Algorithm 3.
Numerical evaluations for this parameter are presented
in Section V.

Therefore, step 5 dominates the total complexity of the
proposed resource allocation scheme. In fact, this is the com-
putational complexity of the swap operations that are used to
maximize the aggregate data rate of the HTC users. However,
the complexity of the algorithm is still much lower than that
of the global optimal solution. This is because, as mentioned
above, the computational complexity of the global optimal
solution of BNLP problem is exponential, which makes the
problem NP-hard [32].

V. EXPERIMENTAL RESULTS
In this section, we present and discuss the results of the sim-
ulation experiments performed to evaluate the performance
of the proposed matching-based resource allocation scheme.
We compare the performance of the proposed algorithmswith
that of the global optimal allocation, the solution calculated
by theGenetic Algorithm (GA), and the Proportional Fairness
(PF) scheduler for multi-user MIMO systems as in [36].
In addition, we evaluate the computational complexity of the
proposed algorithm by discussing the statistics of the major
parameters that affect the complexity.

In the simulations, we uniformly distribute a set of single-
antenna HTC and critical MTC users in a single LTE cell
with a radius of 500 m. The users are served by a single
eNB that contains a massive number of antennas which
are used to simultaneously schedule more than one user on
the same PRB. Without loss of generality, we use maximal
ratio combining (MRC) receive beamforming vectors in the
simulations. The users generate uplink transmissions with
Poisson arrivals with average arrival rate uniformly picked
from the sets as in Table 2, which summarizes the simulation
parameters. As discussed in Section II, we assume that the
HTC UEs have minimum average rate requirements and the
critical MTCDs have minimum PDBV requirements. There-
fore, the aggregate achievable data rate of the HTC UEs and
the average PDBV of the MTCDs in the cell are the metrics

TABLE 2. Simulation parameters.

used to evaluate the performance of the proposed resource
allocation scheme. The confidence interval of the estimation
of the HTC aggregate rate ranges from 0.2586 Mbps to
0.7083 Mbps with an average of 0.4544 Mbps. For the esti-
mation of the average PDBV of the MTCDs, the confidence
interval varies from 1.56 × 10−4 to 2.70 × 10−3 with an
average of 1.12× 10−3.
Fig. 4 shows the aggregate achievable data rate of the

HTC UEs in the cell using the proposed matching-based, the
GA-based, and the PF schedulers. Increasing the number of
HTC UEs or antennas allows the scheduler to co-schedule
more HTC UEs on the same PRB. This results in an improve-
ment in the HTC sum-rate as shown in Figs. 4a and 4c. On the
other hand, scheduling more MTCDs in the cell degrades the
HTC sum-rate since fulfilling their QoS requirements come
at the expense of the HTC data rate, as Fig. 4b reveals. In all
cases, the matching-based resource allocation achieves better
aggregate HTC data rate compared to the other schedulers.
This is because the PF scheduler allocates the PRBs in a fair
manner to all users by maximizing their data rate based on
their average throughput. Nevertheless, maximizing the data
rate of the MTCDs after satisfying their QoS requirements
is inefficient and impacts that of the HTC as discussed in
Section II. On the other side, both the matching-based and the
GA-based schemes maximize the data rate of the HTC UEs
while satisfying the QoS requirements of all users. The GA
yields a local maximum to the optimization problem but with
lower objective value than the matching-based algorithm.

To show how close the solution of the matching-based
algorithm is to the global optimal solution, we compare the
HTC sum-rate, which is the objective function of the opti-
mization problem, with that of the global maximum. For
this purpose, we use the BARON solver [37] to solve the
optimization problem in every TTI, i.e., the problem in (25).
BARON adopts a polyhedral branch-and-cut approach to cal-
culate the global optimal solution of the handled optimization
problem [37]. Due to the exponential computational com-
plexity of calculating the global optimal solution of such a
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FIGURE 4. Aggregate HTC achievable data rate.

FIGURE 5. Comparison with the global optimal solution (3 runs and 100 TTIs).

FIGURE 6. Average PDBV of MTCDs in the cell.

problem, we run the simulation on a small-size problem as
demonstrated in Fig. 5. The figure shows the aggregate data
rate of the HTC UEs in the cell versus the number of HTC
UEs, the MTCDs, and the antennas. As the figure reveals,
the sum-rate achieved by utilizing the matching-based algo-
rithm is close to the global optimal rate and always better than
that of the GA-based algorithm, as discussed before.

The satisfaction of the QoS requirements of the critical
MTC is demonstrated in Fig. 6 which shows the average
PDBV of the MTCDs in the cell versus the number of

the HTC UEs, MTCDs, and antennas for the scheduling
algorithms. As expected, both the matching-based and the
GA-based algorithms satisfy the required level of QoS in all
cases. This is due to the fact that any feasible solution to
an optimization problem must satisfy its constraints and the
constraints of the problem in (15) are formulated to fulfill
the QoS requirements of the MTCDs. This fulfillment of the
constraints could be with equality or as an inequality based
on what maximizes the objective function. However, the
PF scheduler targets a fair allocation on all users without
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FIGURE 7. CDF of the major parameters of the matching algorithm based
on 28, 315 samples.

considering latency requirements. Consequently, the strin-
gent latency requirements are violated.

In addition to analyzing the computational complexity of
the proposed matching-based resource allocation scheme in
big-O notation, as discussed in Section IV-D, we calculate
statistics of the major parameters affecting the complexity
using simulations. For this purpose, we calculate the cumu-
lative distribution function (CDF) of the number of rounds,
additions, deletions, and swaps performed in Algorithm 3.
This is because these parameters mainly determine the com-
plexity of Algorithm 3 that represents themajor component of
the complexity of the proposed scheme. Fig. 7 shows the CDF
of the parameters after executing the matching-based scheme
28, 315 times during the simulation using different combina-
tions of numbers of users and antennas. As the figure reveals,
the maximum number of the rounds, additions, deletions,
and swaps was 11, 241, 56, 68, respectively. This shows
the order of those parameters and the reduced computational
complexity of the proposed scheme compared to the global
optimal solution that has an exponential complexity.

VI. CONCLUSION
In this paper, we utilized the effective bandwidth and effec-
tive capacity theories to formulate a cross-layer resource
allocation problem for critical MTC coexistent with HTC
in LTE networks with massive MIMO deployments. Then,
we employed the matching theory to solve the formulated
problem with much lower complexity compared to that of the
global optimal solution. Therefore, the proposed matching-
based resource allocation scheme can be used in practice in
LTE networks. To this end, we analyzed the computational
complexity, the convergence, the stability, and the optimality
of the proposed algorithms. The analysis showed that the
proposed scheme converges to a local optimal allocation in
a polynomial time. Extensive simulations proved the effi-
ciency of the proposed scheme in satisfying the different
types of QoS of both types of communications (HTC and crit-
ical MTC) while maximizing the system utility. The results
revealed the superiority of the matching-based resource
allocation compared to other algorithms of different schedul-
ing strategies while achieving a close-to-global optimal per-
formance. Moreover, the statistics of the major parameters

that impact the computational complexity of the proposed
algorithms showed the feasibility of applying the proposed
scheme in practice.
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